GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
/* $OpenBSD: ec2_mult.c,v 1.9 2017/01/29 17:49:23 beck Exp $ */ |
||
2 |
/* ==================================================================== |
||
3 |
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
||
4 |
* |
||
5 |
* The Elliptic Curve Public-Key Crypto Library (ECC Code) included |
||
6 |
* herein is developed by SUN MICROSYSTEMS, INC., and is contributed |
||
7 |
* to the OpenSSL project. |
||
8 |
* |
||
9 |
* The ECC Code is licensed pursuant to the OpenSSL open source |
||
10 |
* license provided below. |
||
11 |
* |
||
12 |
* The software is originally written by Sheueling Chang Shantz and |
||
13 |
* Douglas Stebila of Sun Microsystems Laboratories. |
||
14 |
* |
||
15 |
*/ |
||
16 |
/* ==================================================================== |
||
17 |
* Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. |
||
18 |
* |
||
19 |
* Redistribution and use in source and binary forms, with or without |
||
20 |
* modification, are permitted provided that the following conditions |
||
21 |
* are met: |
||
22 |
* |
||
23 |
* 1. Redistributions of source code must retain the above copyright |
||
24 |
* notice, this list of conditions and the following disclaimer. |
||
25 |
* |
||
26 |
* 2. Redistributions in binary form must reproduce the above copyright |
||
27 |
* notice, this list of conditions and the following disclaimer in |
||
28 |
* the documentation and/or other materials provided with the |
||
29 |
* distribution. |
||
30 |
* |
||
31 |
* 3. All advertising materials mentioning features or use of this |
||
32 |
* software must display the following acknowledgment: |
||
33 |
* "This product includes software developed by the OpenSSL Project |
||
34 |
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
||
35 |
* |
||
36 |
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
||
37 |
* endorse or promote products derived from this software without |
||
38 |
* prior written permission. For written permission, please contact |
||
39 |
* openssl-core@openssl.org. |
||
40 |
* |
||
41 |
* 5. Products derived from this software may not be called "OpenSSL" |
||
42 |
* nor may "OpenSSL" appear in their names without prior written |
||
43 |
* permission of the OpenSSL Project. |
||
44 |
* |
||
45 |
* 6. Redistributions of any form whatsoever must retain the following |
||
46 |
* acknowledgment: |
||
47 |
* "This product includes software developed by the OpenSSL Project |
||
48 |
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
||
49 |
* |
||
50 |
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
||
51 |
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
52 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
||
53 |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
||
54 |
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||
55 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
56 |
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
57 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||
58 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
||
59 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
60 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
||
61 |
* OF THE POSSIBILITY OF SUCH DAMAGE. |
||
62 |
* ==================================================================== |
||
63 |
* |
||
64 |
* This product includes cryptographic software written by Eric Young |
||
65 |
* (eay@cryptsoft.com). This product includes software written by Tim |
||
66 |
* Hudson (tjh@cryptsoft.com). |
||
67 |
* |
||
68 |
*/ |
||
69 |
|||
70 |
#include <openssl/opensslconf.h> |
||
71 |
|||
72 |
#include <openssl/err.h> |
||
73 |
|||
74 |
#include "ec_lcl.h" |
||
75 |
|||
76 |
#ifndef OPENSSL_NO_EC2M |
||
77 |
|||
78 |
|||
79 |
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective |
||
80 |
* coordinates. |
||
81 |
* Uses algorithm Mdouble in appendix of |
||
82 |
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
||
83 |
* GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
||
84 |
* modified to not require precomputation of c=b^{2^{m-1}}. |
||
85 |
*/ |
||
86 |
static int |
||
87 |
gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) |
||
88 |
{ |
||
89 |
BIGNUM *t1; |
||
90 |
int ret = 0; |
||
91 |
|||
92 |
/* Since Mdouble is static we can guarantee that ctx != NULL. */ |
||
93 |
986946 |
BN_CTX_start(ctx); |
|
94 |
✓✗ | 493473 |
if ((t1 = BN_CTX_get(ctx)) == NULL) |
95 |
goto err; |
||
96 |
|||
97 |
✓✗ | 493473 |
if (!group->meth->field_sqr(group, x, x, ctx)) |
98 |
goto err; |
||
99 |
✓✗ | 493473 |
if (!group->meth->field_sqr(group, t1, z, ctx)) |
100 |
goto err; |
||
101 |
✓✗ | 493473 |
if (!group->meth->field_mul(group, z, x, t1, ctx)) |
102 |
goto err; |
||
103 |
✓✗ | 493473 |
if (!group->meth->field_sqr(group, x, x, ctx)) |
104 |
goto err; |
||
105 |
✓✗ | 493473 |
if (!group->meth->field_sqr(group, t1, t1, ctx)) |
106 |
goto err; |
||
107 |
✓✗ | 493473 |
if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) |
108 |
goto err; |
||
109 |
✓✗ | 493473 |
if (!BN_GF2m_add(x, x, t1)) |
110 |
goto err; |
||
111 |
|||
112 |
493473 |
ret = 1; |
|
113 |
|||
114 |
err: |
||
115 |
493473 |
BN_CTX_end(ctx); |
|
116 |
493473 |
return ret; |
|
117 |
} |
||
118 |
|||
119 |
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery |
||
120 |
* projective coordinates. |
||
121 |
* Uses algorithm Madd in appendix of |
||
122 |
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
||
123 |
* GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
||
124 |
*/ |
||
125 |
static int |
||
126 |
gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, |
||
127 |
const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) |
||
128 |
{ |
||
129 |
BIGNUM *t1, *t2; |
||
130 |
int ret = 0; |
||
131 |
|||
132 |
/* Since Madd is static we can guarantee that ctx != NULL. */ |
||
133 |
986946 |
BN_CTX_start(ctx); |
|
134 |
✓✗ | 493473 |
if ((t1 = BN_CTX_get(ctx)) == NULL) |
135 |
goto err; |
||
136 |
✓✗ | 493473 |
if ((t2 = BN_CTX_get(ctx)) == NULL) |
137 |
goto err; |
||
138 |
|||
139 |
✓✗ | 493473 |
if (!BN_copy(t1, x)) |
140 |
goto err; |
||
141 |
✓✗ | 493473 |
if (!group->meth->field_mul(group, x1, x1, z2, ctx)) |
142 |
goto err; |
||
143 |
✓✗ | 493473 |
if (!group->meth->field_mul(group, z1, z1, x2, ctx)) |
144 |
goto err; |
||
145 |
✓✗ | 493473 |
if (!group->meth->field_mul(group, t2, x1, z1, ctx)) |
146 |
goto err; |
||
147 |
✓✗ | 493473 |
if (!BN_GF2m_add(z1, z1, x1)) |
148 |
goto err; |
||
149 |
✓✗ | 493473 |
if (!group->meth->field_sqr(group, z1, z1, ctx)) |
150 |
goto err; |
||
151 |
✓✗ | 493473 |
if (!group->meth->field_mul(group, x1, z1, t1, ctx)) |
152 |
goto err; |
||
153 |
✓✗ | 493473 |
if (!BN_GF2m_add(x1, x1, t2)) |
154 |
goto err; |
||
155 |
|||
156 |
493473 |
ret = 1; |
|
157 |
|||
158 |
err: |
||
159 |
493473 |
BN_CTX_end(ctx); |
|
160 |
493473 |
return ret; |
|
161 |
} |
||
162 |
|||
163 |
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) |
||
164 |
* using Montgomery point multiplication algorithm Mxy() in appendix of |
||
165 |
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
||
166 |
* GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
||
167 |
* Returns: |
||
168 |
* 0 on error |
||
169 |
* 1 if return value should be the point at infinity |
||
170 |
* 2 otherwise |
||
171 |
*/ |
||
172 |
static int |
||
173 |
gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, |
||
174 |
BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) |
||
175 |
{ |
||
176 |
BIGNUM *t3, *t4, *t5; |
||
177 |
int ret = 0; |
||
178 |
|||
179 |
✓✓ | 3894 |
if (BN_is_zero(z1)) { |
180 |
263 |
BN_zero(x2); |
|
181 |
263 |
BN_zero(z2); |
|
182 |
263 |
return 1; |
|
183 |
} |
||
184 |
✗✓ | 1684 |
if (BN_is_zero(z2)) { |
185 |
if (!BN_copy(x2, x)) |
||
186 |
return 0; |
||
187 |
if (!BN_GF2m_add(z2, x, y)) |
||
188 |
return 0; |
||
189 |
return 2; |
||
190 |
} |
||
191 |
/* Since Mxy is static we can guarantee that ctx != NULL. */ |
||
192 |
1684 |
BN_CTX_start(ctx); |
|
193 |
✓✗ | 1684 |
if ((t3 = BN_CTX_get(ctx)) == NULL) |
194 |
goto err; |
||
195 |
✓✗ | 1684 |
if ((t4 = BN_CTX_get(ctx)) == NULL) |
196 |
goto err; |
||
197 |
✓✗ | 1684 |
if ((t5 = BN_CTX_get(ctx)) == NULL) |
198 |
goto err; |
||
199 |
|||
200 |
✓✗ | 1684 |
if (!BN_one(t5)) |
201 |
goto err; |
||
202 |
|||
203 |
✓✗ | 1684 |
if (!group->meth->field_mul(group, t3, z1, z2, ctx)) |
204 |
goto err; |
||
205 |
|||
206 |
✓✗ | 1684 |
if (!group->meth->field_mul(group, z1, z1, x, ctx)) |
207 |
goto err; |
||
208 |
✓✗ | 1684 |
if (!BN_GF2m_add(z1, z1, x1)) |
209 |
goto err; |
||
210 |
✓✗ | 1684 |
if (!group->meth->field_mul(group, z2, z2, x, ctx)) |
211 |
goto err; |
||
212 |
✓✗ | 1684 |
if (!group->meth->field_mul(group, x1, z2, x1, ctx)) |
213 |
goto err; |
||
214 |
✓✗ | 1684 |
if (!BN_GF2m_add(z2, z2, x2)) |
215 |
goto err; |
||
216 |
|||
217 |
✓✗ | 1684 |
if (!group->meth->field_mul(group, z2, z2, z1, ctx)) |
218 |
goto err; |
||
219 |
✓✗ | 1684 |
if (!group->meth->field_sqr(group, t4, x, ctx)) |
220 |
goto err; |
||
221 |
✓✗ | 1684 |
if (!BN_GF2m_add(t4, t4, y)) |
222 |
goto err; |
||
223 |
✓✗ | 1684 |
if (!group->meth->field_mul(group, t4, t4, t3, ctx)) |
224 |
goto err; |
||
225 |
✓✗ | 1684 |
if (!BN_GF2m_add(t4, t4, z2)) |
226 |
goto err; |
||
227 |
|||
228 |
✓✗ | 1684 |
if (!group->meth->field_mul(group, t3, t3, x, ctx)) |
229 |
goto err; |
||
230 |
✓✗ | 1684 |
if (!group->meth->field_div(group, t3, t5, t3, ctx)) |
231 |
goto err; |
||
232 |
✓✗ | 1684 |
if (!group->meth->field_mul(group, t4, t3, t4, ctx)) |
233 |
goto err; |
||
234 |
✓✗ | 1684 |
if (!group->meth->field_mul(group, x2, x1, t3, ctx)) |
235 |
goto err; |
||
236 |
✓✗ | 1684 |
if (!BN_GF2m_add(z2, x2, x)) |
237 |
goto err; |
||
238 |
|||
239 |
✓✗ | 1684 |
if (!group->meth->field_mul(group, z2, z2, t4, ctx)) |
240 |
goto err; |
||
241 |
✓✗ | 1684 |
if (!BN_GF2m_add(z2, z2, y)) |
242 |
goto err; |
||
243 |
|||
244 |
1684 |
ret = 2; |
|
245 |
|||
246 |
err: |
||
247 |
1684 |
BN_CTX_end(ctx); |
|
248 |
1684 |
return ret; |
|
249 |
1947 |
} |
|
250 |
|||
251 |
|||
252 |
/* Computes scalar*point and stores the result in r. |
||
253 |
* point can not equal r. |
||
254 |
* Uses a modified algorithm 2P of |
||
255 |
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
||
256 |
* GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
||
257 |
* |
||
258 |
* To protect against side-channel attack the function uses constant time swap, |
||
259 |
* avoiding conditional branches. |
||
260 |
*/ |
||
261 |
static int |
||
262 |
ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, |
||
263 |
const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) |
||
264 |
{ |
||
265 |
BIGNUM *x1, *x2, *z1, *z2; |
||
266 |
int ret = 0, i; |
||
267 |
BN_ULONG mask, word; |
||
268 |
|||
269 |
✗✓ | 4074 |
if (r == point) { |
270 |
ECerror(EC_R_INVALID_ARGUMENT); |
||
271 |
return 0; |
||
272 |
} |
||
273 |
/* if result should be point at infinity */ |
||
274 |
✓✗✓✗ ✓✓ |
6111 |
if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || |
275 |
2037 |
EC_POINT_is_at_infinity(group, point) > 0) { |
|
276 |
90 |
return EC_POINT_set_to_infinity(group, r); |
|
277 |
} |
||
278 |
/* only support affine coordinates */ |
||
279 |
✗✓ | 1947 |
if (!point->Z_is_one) |
280 |
return 0; |
||
281 |
|||
282 |
/* Since point_multiply is static we can guarantee that ctx != NULL. */ |
||
283 |
1947 |
BN_CTX_start(ctx); |
|
284 |
✓✗ | 1947 |
if ((x1 = BN_CTX_get(ctx)) == NULL) |
285 |
goto err; |
||
286 |
✓✗ | 1947 |
if ((z1 = BN_CTX_get(ctx)) == NULL) |
287 |
goto err; |
||
288 |
|||
289 |
1947 |
x2 = &r->X; |
|
290 |
1947 |
z2 = &r->Y; |
|
291 |
|||
292 |
✓✓✓✗ ✓✗ |
3894 |
if (!bn_wexpand(x1, group->field.top)) |
293 |
goto err; |
||
294 |
✓✓✓✗ ✓✗ |
3894 |
if (!bn_wexpand(z1, group->field.top)) |
295 |
goto err; |
||
296 |
✓✓✓✗ ✓✗ |
3894 |
if (!bn_wexpand(x2, group->field.top)) |
297 |
goto err; |
||
298 |
✓✓✓✗ ✓✗ |
3894 |
if (!bn_wexpand(z2, group->field.top)) |
299 |
goto err; |
||
300 |
|||
301 |
✓✗ | 1947 |
if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) |
302 |
goto err; /* x1 = x */ |
||
303 |
✓✗ | 1947 |
if (!BN_one(z1)) |
304 |
goto err; /* z1 = 1 */ |
||
305 |
✓✗ | 1947 |
if (!group->meth->field_sqr(group, z2, x1, ctx)) |
306 |
goto err; /* z2 = x1^2 = x^2 */ |
||
307 |
✓✗ | 1947 |
if (!group->meth->field_sqr(group, x2, z2, ctx)) |
308 |
goto err; |
||
309 |
✓✗ | 1947 |
if (!BN_GF2m_add(x2, x2, &group->b)) |
310 |
goto err; /* x2 = x^4 + b */ |
||
311 |
|||
312 |
/* find top most bit and go one past it */ |
||
313 |
1947 |
i = scalar->top - 1; |
|
314 |
mask = BN_TBIT; |
||
315 |
1947 |
word = scalar->d[i]; |
|
316 |
✓✓ | 99006 |
while (!(word & mask)) |
317 |
mask >>= 1; |
||
318 |
mask >>= 1; |
||
319 |
/* if top most bit was at word break, go to next word */ |
||
320 |
✓✓ | 1947 |
if (!mask) { |
321 |
25 |
i--; |
|
322 |
mask = BN_TBIT; |
||
323 |
25 |
} |
|
324 |
✓✓ | 20812 |
for (; i >= 0; i--) { |
325 |
8459 |
word = scalar->d[i]; |
|
326 |
✓✓ | 1003864 |
while (mask) { |
327 |
493473 |
BN_consttime_swap(word & mask, x1, x2, group->field.top); |
|
328 |
493473 |
BN_consttime_swap(word & mask, z1, z2, group->field.top); |
|
329 |
✓✗ | 493473 |
if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) |
330 |
goto err; |
||
331 |
✓✗ | 493473 |
if (!gf2m_Mdouble(group, x1, z1, ctx)) |
332 |
goto err; |
||
333 |
493473 |
BN_consttime_swap(word & mask, x1, x2, group->field.top); |
|
334 |
493473 |
BN_consttime_swap(word & mask, z1, z2, group->field.top); |
|
335 |
493473 |
mask >>= 1; |
|
336 |
} |
||
337 |
mask = BN_TBIT; |
||
338 |
} |
||
339 |
|||
340 |
/* convert out of "projective" coordinates */ |
||
341 |
1947 |
i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); |
|
342 |
✓✗ | 1947 |
if (i == 0) |
343 |
goto err; |
||
344 |
✓✓ | 1947 |
else if (i == 1) { |
345 |
✓✗ | 263 |
if (!EC_POINT_set_to_infinity(group, r)) |
346 |
goto err; |
||
347 |
} else { |
||
348 |
✓✗ | 1684 |
if (!BN_one(&r->Z)) |
349 |
goto err; |
||
350 |
1684 |
r->Z_is_one = 1; |
|
351 |
} |
||
352 |
|||
353 |
/* GF(2^m) field elements should always have BIGNUM::neg = 0 */ |
||
354 |
1947 |
BN_set_negative(&r->X, 0); |
|
355 |
1947 |
BN_set_negative(&r->Y, 0); |
|
356 |
|||
357 |
1947 |
ret = 1; |
|
358 |
|||
359 |
err: |
||
360 |
1947 |
BN_CTX_end(ctx); |
|
361 |
1947 |
return ret; |
|
362 |
2037 |
} |
|
363 |
|||
364 |
|||
365 |
/* Computes the sum |
||
366 |
* scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] |
||
367 |
* gracefully ignoring NULL scalar values. |
||
368 |
*/ |
||
369 |
int |
||
370 |
ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
||
371 |
size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) |
||
372 |
{ |
||
373 |
BN_CTX *new_ctx = NULL; |
||
374 |
int ret = 0; |
||
375 |
size_t i; |
||
376 |
EC_POINT *p = NULL; |
||
377 |
EC_POINT *acc = NULL; |
||
378 |
|||
379 |
✓✓ | 3176 |
if (ctx == NULL) { |
380 |
16 |
ctx = new_ctx = BN_CTX_new(); |
|
381 |
✗✓ | 16 |
if (ctx == NULL) |
382 |
return 0; |
||
383 |
} |
||
384 |
/* |
||
385 |
* This implementation is more efficient than the wNAF implementation |
||
386 |
* for 2 or fewer points. Use the ec_wNAF_mul implementation for 3 |
||
387 |
* or more points, or if we can perform a fast multiplication based |
||
388 |
* on precomputation. |
||
389 |
*/ |
||
390 |
✓✓✓✓ |
2358 |
if ((scalar && (num > 1)) || (num > 2) || |
391 |
✓✓ | 2352 |
(num == 0 && EC_GROUP_have_precompute_mult(group))) { |
392 |
63 |
ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); |
|
393 |
63 |
goto err; |
|
394 |
} |
||
395 |
✓✗ | 1525 |
if ((p = EC_POINT_new(group)) == NULL) |
396 |
goto err; |
||
397 |
✓✗ | 1525 |
if ((acc = EC_POINT_new(group)) == NULL) |
398 |
goto err; |
||
399 |
|||
400 |
✓✗ | 1525 |
if (!EC_POINT_set_to_infinity(group, acc)) |
401 |
goto err; |
||
402 |
|||
403 |
✓✓ | 1525 |
if (scalar) { |
404 |
✓✗ | 1219 |
if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) |
405 |
goto err; |
||
406 |
✗✓ | 1219 |
if (BN_is_negative(scalar)) |
407 |
if (!group->meth->invert(group, p, ctx)) |
||
408 |
goto err; |
||
409 |
✓✗ | 1219 |
if (!group->meth->add(group, acc, acc, p, ctx)) |
410 |
goto err; |
||
411 |
} |
||
412 |
✓✓ | 4686 |
for (i = 0; i < num; i++) { |
413 |
✓✗ | 818 |
if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) |
414 |
goto err; |
||
415 |
✓✓ | 818 |
if (BN_is_negative(scalars[i])) |
416 |
✓✗ | 63 |
if (!group->meth->invert(group, p, ctx)) |
417 |
goto err; |
||
418 |
✓✗ | 818 |
if (!group->meth->add(group, acc, acc, p, ctx)) |
419 |
goto err; |
||
420 |
} |
||
421 |
|||
422 |
✓✗ | 1525 |
if (!EC_POINT_copy(r, acc)) |
423 |
goto err; |
||
424 |
|||
425 |
1525 |
ret = 1; |
|
426 |
|||
427 |
err: |
||
428 |
1588 |
EC_POINT_free(p); |
|
429 |
1588 |
EC_POINT_free(acc); |
|
430 |
1588 |
BN_CTX_free(new_ctx); |
|
431 |
1588 |
return ret; |
|
432 |
1588 |
} |
|
433 |
|||
434 |
|||
435 |
/* Precomputation for point multiplication: fall back to wNAF methods |
||
436 |
* because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ |
||
437 |
|||
438 |
int |
||
439 |
ec_GF2m_precompute_mult(EC_GROUP * group, BN_CTX * ctx) |
||
440 |
{ |
||
441 |
60 |
return ec_wNAF_precompute_mult(group, ctx); |
|
442 |
} |
||
443 |
|||
444 |
int |
||
445 |
ec_GF2m_have_precompute_mult(const EC_GROUP * group) |
||
446 |
{ |
||
447 |
1540 |
return ec_wNAF_have_precompute_mult(group); |
|
448 |
} |
||
449 |
|||
450 |
#endif |
Generated by: GCOVR (Version 3.3) |