GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libcrypto/pem/pvkfmt.c Lines: 0 451 0.0 %
Date: 2017-11-13 Branches: 0 257 0.0 %

Line Branch Exec Source
1
/* $OpenBSD: pvkfmt.c,v 1.19 2017/05/02 03:59:44 deraadt Exp $ */
2
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3
 * project 2005.
4
 */
5
/* ====================================================================
6
 * Copyright (c) 2005 The OpenSSL Project.  All rights reserved.
7
 *
8
 * Redistribution and use in source and binary forms, with or without
9
 * modification, are permitted provided that the following conditions
10
 * are met:
11
 *
12
 * 1. Redistributions of source code must retain the above copyright
13
 *    notice, this list of conditions and the following disclaimer.
14
 *
15
 * 2. Redistributions in binary form must reproduce the above copyright
16
 *    notice, this list of conditions and the following disclaimer in
17
 *    the documentation and/or other materials provided with the
18
 *    distribution.
19
 *
20
 * 3. All advertising materials mentioning features or use of this
21
 *    software must display the following acknowledgment:
22
 *    "This product includes software developed by the OpenSSL Project
23
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24
 *
25
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26
 *    endorse or promote products derived from this software without
27
 *    prior written permission. For written permission, please contact
28
 *    licensing@OpenSSL.org.
29
 *
30
 * 5. Products derived from this software may not be called "OpenSSL"
31
 *    nor may "OpenSSL" appear in their names without prior written
32
 *    permission of the OpenSSL Project.
33
 *
34
 * 6. Redistributions of any form whatsoever must retain the following
35
 *    acknowledgment:
36
 *    "This product includes software developed by the OpenSSL Project
37
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38
 *
39
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50
 * OF THE POSSIBILITY OF SUCH DAMAGE.
51
 * ====================================================================
52
 *
53
 * This product includes cryptographic software written by Eric Young
54
 * (eay@cryptsoft.com).  This product includes software written by Tim
55
 * Hudson (tjh@cryptsoft.com).
56
 *
57
 */
58
59
/* Support for PVK format keys and related structures (such a PUBLICKEYBLOB
60
 * and PRIVATEKEYBLOB).
61
 */
62
63
#include <stdlib.h>
64
#include <string.h>
65
66
#include <openssl/opensslconf.h>
67
68
#include <openssl/bn.h>
69
#include <openssl/err.h>
70
#include <openssl/pem.h>
71
72
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
73
#include <openssl/dsa.h>
74
#include <openssl/rsa.h>
75
76
#include "bn_lcl.h"
77
78
/* Utility function: read a DWORD (4 byte unsigned integer) in little endian
79
 * format
80
 */
81
82
static unsigned int
83
read_ledword(const unsigned char **in)
84
{
85
	const unsigned char *p = *in;
86
	unsigned int ret;
87
88
	ret = *p++;
89
	ret |= (*p++ << 8);
90
	ret |= (*p++ << 16);
91
	ret |= (*p++ << 24);
92
	*in = p;
93
	return ret;
94
}
95
96
/* Read a BIGNUM in little endian format. The docs say that this should take up
97
 * bitlen/8 bytes.
98
 */
99
100
static int
101
read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
102
{
103
	const unsigned char *p;
104
	unsigned char *tmpbuf, *q;
105
	unsigned int i;
106
107
	p = *in + nbyte - 1;
108
	tmpbuf = malloc(nbyte);
109
	if (!tmpbuf)
110
		return 0;
111
	q = tmpbuf;
112
	for (i = 0; i < nbyte; i++)
113
		*q++ = *p--;
114
	*r = BN_bin2bn(tmpbuf, nbyte, NULL);
115
	free(tmpbuf);
116
	if (*r) {
117
		*in += nbyte;
118
		return 1;
119
	} else
120
		return 0;
121
}
122
123
124
/* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
125
126
#define MS_PUBLICKEYBLOB	0x6
127
#define MS_PRIVATEKEYBLOB	0x7
128
#define MS_RSA1MAGIC		0x31415352L
129
#define MS_RSA2MAGIC		0x32415352L
130
#define MS_DSS1MAGIC		0x31535344L
131
#define MS_DSS2MAGIC		0x32535344L
132
133
#define MS_KEYALG_RSA_KEYX	0xa400
134
#define MS_KEYALG_DSS_SIGN	0x2200
135
136
#define MS_KEYTYPE_KEYX		0x1
137
#define MS_KEYTYPE_SIGN		0x2
138
139
/* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
140
#define MS_PVKMAGIC		0xb0b5f11eL
141
/* Salt length for PVK files */
142
#define PVK_SALTLEN		0x10
143
144
static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
145
    unsigned int bitlen, int ispub);
146
static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
147
    unsigned int bitlen, int ispub);
148
149
static int
150
do_blob_header(const unsigned char **in, unsigned int length,
151
    unsigned int *pmagic, unsigned int *pbitlen, int *pisdss, int *pispub)
152
{
153
	const unsigned char *p = *in;
154
155
	if (length < 16)
156
		return 0;
157
	/* bType */
158
	if (*p == MS_PUBLICKEYBLOB) {
159
		if (*pispub == 0) {
160
			PEMerror(PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
161
			return 0;
162
		}
163
		*pispub = 1;
164
	} else if (*p == MS_PRIVATEKEYBLOB) {
165
		if (*pispub == 1) {
166
			PEMerror(PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
167
			return 0;
168
		}
169
		*pispub = 0;
170
	} else
171
		return 0;
172
	p++;
173
	/* Version */
174
	if (*p++ != 0x2) {
175
		PEMerror(PEM_R_BAD_VERSION_NUMBER);
176
		return 0;
177
	}
178
	/* Ignore reserved, aiKeyAlg */
179
	p += 6;
180
	*pmagic = read_ledword(&p);
181
	*pbitlen = read_ledword(&p);
182
	if (*pbitlen > 65536) {
183
		PEMerror(PEM_R_INCONSISTENT_HEADER);
184
		return 0;
185
	}
186
	*pisdss = 0;
187
	switch (*pmagic) {
188
189
	case MS_DSS1MAGIC:
190
		*pisdss = 1;
191
	case MS_RSA1MAGIC:
192
		if (*pispub == 0) {
193
			PEMerror(PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
194
			return 0;
195
		}
196
		break;
197
198
	case MS_DSS2MAGIC:
199
		*pisdss = 1;
200
	case MS_RSA2MAGIC:
201
		if (*pispub == 1) {
202
			PEMerror(PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
203
			return 0;
204
		}
205
		break;
206
207
	default:
208
		PEMerror(PEM_R_BAD_MAGIC_NUMBER);
209
		return -1;
210
	}
211
	*in = p;
212
	return 1;
213
}
214
215
static unsigned int
216
blob_length(unsigned bitlen, int isdss, int ispub)
217
{
218
	unsigned int nbyte, hnbyte;
219
220
	nbyte = (bitlen + 7) >> 3;
221
	hnbyte = (bitlen + 15) >> 4;
222
	if (isdss) {
223
224
		/* Expected length: 20 for q + 3 components bitlen each + 24
225
		 * for seed structure.
226
		 */
227
		if (ispub)
228
			return 44 + 3 * nbyte;
229
		/* Expected length: 20 for q, priv, 2 bitlen components + 24
230
		 * for seed structure.
231
		 */
232
		else
233
			return 64 + 2 * nbyte;
234
	} else {
235
		/* Expected length: 4 for 'e' + 'n' */
236
		if (ispub)
237
			return 4 + nbyte;
238
		else
239
		/* Expected length: 4 for 'e' and 7 other components.
240
		 * 2 components are bitlen size, 5 are bitlen/2
241
		 */
242
				return 4 + 2*nbyte + 5*hnbyte;
243
	}
244
245
}
246
247
static EVP_PKEY *
248
do_b2i(const unsigned char **in, unsigned int length, int ispub)
249
{
250
	const unsigned char *p = *in;
251
	unsigned int bitlen, magic;
252
	int isdss;
253
254
	if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) {
255
		PEMerror(PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
256
		return NULL;
257
	}
258
	length -= 16;
259
	if (length < blob_length(bitlen, isdss, ispub)) {
260
		PEMerror(PEM_R_KEYBLOB_TOO_SHORT);
261
		return NULL;
262
	}
263
	if (isdss)
264
		return b2i_dss(&p, length, bitlen, ispub);
265
	else
266
		return b2i_rsa(&p, length, bitlen, ispub);
267
}
268
269
static EVP_PKEY *
270
do_b2i_bio(BIO *in, int ispub)
271
{
272
	const unsigned char *p;
273
	unsigned char hdr_buf[16], *buf = NULL;
274
	unsigned int bitlen, magic, length;
275
	int isdss;
276
	EVP_PKEY *ret = NULL;
277
278
	if (BIO_read(in, hdr_buf, 16) != 16) {
279
		PEMerror(PEM_R_KEYBLOB_TOO_SHORT);
280
		return NULL;
281
	}
282
	p = hdr_buf;
283
	if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
284
		return NULL;
285
286
	length = blob_length(bitlen, isdss, ispub);
287
	buf = malloc(length);
288
	if (!buf) {
289
		PEMerror(ERR_R_MALLOC_FAILURE);
290
		goto err;
291
	}
292
	p = buf;
293
	if (BIO_read(in, buf, length) != (int)length) {
294
		PEMerror(PEM_R_KEYBLOB_TOO_SHORT);
295
		goto err;
296
	}
297
298
	if (isdss)
299
		ret = b2i_dss(&p, length, bitlen, ispub);
300
	else
301
		ret = b2i_rsa(&p, length, bitlen, ispub);
302
303
err:
304
	free(buf);
305
	return ret;
306
}
307
308
static EVP_PKEY *
309
b2i_dss(const unsigned char **in, unsigned int length, unsigned int bitlen,
310
    int ispub)
311
{
312
	const unsigned char *p = *in;
313
	EVP_PKEY *ret = NULL;
314
	DSA *dsa = NULL;
315
	BN_CTX *ctx = NULL;
316
	unsigned int nbyte;
317
318
	nbyte = (bitlen + 7) >> 3;
319
320
	dsa = DSA_new();
321
	ret = EVP_PKEY_new();
322
	if (!dsa || !ret)
323
		goto memerr;
324
	if (!read_lebn(&p, nbyte, &dsa->p))
325
		goto memerr;
326
	if (!read_lebn(&p, 20, &dsa->q))
327
		goto memerr;
328
	if (!read_lebn(&p, nbyte, &dsa->g))
329
		goto memerr;
330
	if (ispub) {
331
		if (!read_lebn(&p, nbyte, &dsa->pub_key))
332
			goto memerr;
333
	} else {
334
		if (!read_lebn(&p, 20, &dsa->priv_key))
335
			goto memerr;
336
		/* Calculate public key */
337
		if (!(dsa->pub_key = BN_new()))
338
			goto memerr;
339
		if (!(ctx = BN_CTX_new()))
340
			goto memerr;
341
		if (!BN_mod_exp_ct(dsa->pub_key, dsa->g,
342
		    dsa->priv_key, dsa->p, ctx))
343
			goto memerr;
344
		BN_CTX_free(ctx);
345
	}
346
347
	EVP_PKEY_set1_DSA(ret, dsa);
348
	DSA_free(dsa);
349
	*in = p;
350
	return ret;
351
352
memerr:
353
	PEMerror(ERR_R_MALLOC_FAILURE);
354
	DSA_free(dsa);
355
	EVP_PKEY_free(ret);
356
	BN_CTX_free(ctx);
357
	return NULL;
358
}
359
360
static EVP_PKEY *
361
b2i_rsa(const unsigned char **in, unsigned int length, unsigned int bitlen,
362
    int ispub)
363
{
364
	const unsigned char *p = *in;
365
	EVP_PKEY *ret = NULL;
366
	RSA *rsa = NULL;
367
	unsigned int nbyte, hnbyte;
368
369
	nbyte = (bitlen + 7) >> 3;
370
	hnbyte = (bitlen + 15) >> 4;
371
	rsa = RSA_new();
372
	ret = EVP_PKEY_new();
373
	if (!rsa || !ret)
374
		goto memerr;
375
	rsa->e = BN_new();
376
	if (!rsa->e)
377
		goto memerr;
378
	if (!BN_set_word(rsa->e, read_ledword(&p)))
379
		goto memerr;
380
	if (!read_lebn(&p, nbyte, &rsa->n))
381
		goto memerr;
382
	if (!ispub) {
383
		if (!read_lebn(&p, hnbyte, &rsa->p))
384
			goto memerr;
385
		if (!read_lebn(&p, hnbyte, &rsa->q))
386
			goto memerr;
387
		if (!read_lebn(&p, hnbyte, &rsa->dmp1))
388
			goto memerr;
389
		if (!read_lebn(&p, hnbyte, &rsa->dmq1))
390
			goto memerr;
391
		if (!read_lebn(&p, hnbyte, &rsa->iqmp))
392
			goto memerr;
393
		if (!read_lebn(&p, nbyte, &rsa->d))
394
			goto memerr;
395
	}
396
397
	EVP_PKEY_set1_RSA(ret, rsa);
398
	RSA_free(rsa);
399
	*in = p;
400
	return ret;
401
402
memerr:
403
	PEMerror(ERR_R_MALLOC_FAILURE);
404
	RSA_free(rsa);
405
	EVP_PKEY_free(ret);
406
	return NULL;
407
}
408
409
EVP_PKEY *
410
b2i_PrivateKey(const unsigned char **in, long length)
411
{
412
	return do_b2i(in, length, 0);
413
}
414
415
EVP_PKEY *
416
b2i_PublicKey(const unsigned char **in, long length)
417
{
418
	return do_b2i(in, length, 1);
419
}
420
421
EVP_PKEY *
422
b2i_PrivateKey_bio(BIO *in)
423
{
424
	return do_b2i_bio(in, 0);
425
}
426
427
EVP_PKEY *
428
b2i_PublicKey_bio(BIO *in)
429
{
430
	return do_b2i_bio(in, 1);
431
}
432
433
static void
434
write_ledword(unsigned char **out, unsigned int dw)
435
{
436
	unsigned char *p = *out;
437
438
	*p++ = dw & 0xff;
439
	*p++ = (dw >> 8) & 0xff;
440
	*p++ = (dw >> 16) & 0xff;
441
	*p++ = (dw >> 24) & 0xff;
442
	*out = p;
443
}
444
445
static void
446
write_lebn(unsigned char **out, const BIGNUM *bn, int len)
447
{
448
	int nb, i;
449
	unsigned char *p = *out, *q, c;
450
451
	nb = BN_num_bytes(bn);
452
	BN_bn2bin(bn, p);
453
	q = p + nb - 1;
454
	/* In place byte order reversal */
455
	for (i = 0; i < nb / 2; i++) {
456
		c = *p;
457
		*p++ = *q;
458
		*q-- = c;
459
	}
460
	*out += nb;
461
	/* Pad with zeroes if we have to */
462
	if (len > 0) {
463
		len -= nb;
464
		if (len > 0) {
465
			memset(*out, 0, len);
466
			*out += len;
467
		}
468
	}
469
}
470
471
472
static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
473
static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
474
475
static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
476
static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
477
478
static int
479
do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
480
{
481
	unsigned char *p;
482
	unsigned int bitlen, magic = 0, keyalg;
483
	int outlen, noinc = 0;
484
485
	if (pk->type == EVP_PKEY_DSA) {
486
		bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
487
		keyalg = MS_KEYALG_DSS_SIGN;
488
	} else if (pk->type == EVP_PKEY_RSA) {
489
		bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
490
		keyalg = MS_KEYALG_RSA_KEYX;
491
	} else
492
		return -1;
493
	if (bitlen == 0)
494
		return -1;
495
	outlen = 16 + blob_length(bitlen,
496
	    keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
497
	if (out == NULL)
498
		return outlen;
499
	if (*out)
500
		p = *out;
501
	else {
502
		p = malloc(outlen);
503
		if (!p)
504
			return -1;
505
		*out = p;
506
		noinc = 1;
507
	}
508
	if (ispub)
509
		*p++ = MS_PUBLICKEYBLOB;
510
	else
511
		*p++ = MS_PRIVATEKEYBLOB;
512
	*p++ = 0x2;
513
	*p++ = 0;
514
	*p++ = 0;
515
	write_ledword(&p, keyalg);
516
	write_ledword(&p, magic);
517
	write_ledword(&p, bitlen);
518
	if (keyalg == MS_KEYALG_DSS_SIGN)
519
		write_dsa(&p, pk->pkey.dsa, ispub);
520
	else
521
		write_rsa(&p, pk->pkey.rsa, ispub);
522
	if (!noinc)
523
		*out += outlen;
524
	return outlen;
525
}
526
527
static int
528
do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
529
{
530
	unsigned char *tmp = NULL;
531
	int outlen, wrlen;
532
533
	outlen = do_i2b(&tmp, pk, ispub);
534
	if (outlen < 0)
535
		return -1;
536
	wrlen = BIO_write(out, tmp, outlen);
537
	free(tmp);
538
	if (wrlen == outlen)
539
		return outlen;
540
	return -1;
541
}
542
543
static int
544
check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
545
{
546
	int bitlen;
547
548
	bitlen = BN_num_bits(dsa->p);
549
	if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160) ||
550
	    (BN_num_bits(dsa->g) > bitlen))
551
		goto badkey;
552
	if (ispub) {
553
		if (BN_num_bits(dsa->pub_key) > bitlen)
554
			goto badkey;
555
		*pmagic = MS_DSS1MAGIC;
556
	} else {
557
		if (BN_num_bits(dsa->priv_key) > 160)
558
			goto badkey;
559
		*pmagic = MS_DSS2MAGIC;
560
	}
561
562
	return bitlen;
563
564
badkey:
565
	PEMerror(PEM_R_UNSUPPORTED_KEY_COMPONENTS);
566
	return 0;
567
}
568
569
static int
570
check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
571
{
572
	int nbyte, hnbyte, bitlen;
573
574
	if (BN_num_bits(rsa->e) > 32)
575
		goto badkey;
576
	bitlen = BN_num_bits(rsa->n);
577
	nbyte = BN_num_bytes(rsa->n);
578
	hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
579
	if (ispub) {
580
		*pmagic = MS_RSA1MAGIC;
581
		return bitlen;
582
	} else {
583
		*pmagic = MS_RSA2MAGIC;
584
		/* For private key each component must fit within nbyte or
585
		 * hnbyte.
586
		 */
587
		if (BN_num_bytes(rsa->d) > nbyte)
588
			goto badkey;
589
		if ((BN_num_bytes(rsa->iqmp) > hnbyte) ||
590
		    (BN_num_bytes(rsa->p) > hnbyte) ||
591
		    (BN_num_bytes(rsa->q) > hnbyte) ||
592
		    (BN_num_bytes(rsa->dmp1) > hnbyte) ||
593
		    (BN_num_bytes(rsa->dmq1) > hnbyte))
594
			goto badkey;
595
	}
596
	return bitlen;
597
598
badkey:
599
	PEMerror(PEM_R_UNSUPPORTED_KEY_COMPONENTS);
600
	return 0;
601
}
602
603
static void
604
write_rsa(unsigned char **out, RSA *rsa, int ispub)
605
{
606
	int nbyte, hnbyte;
607
608
	nbyte = BN_num_bytes(rsa->n);
609
	hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
610
	write_lebn(out, rsa->e, 4);
611
	write_lebn(out, rsa->n, -1);
612
	if (ispub)
613
		return;
614
	write_lebn(out, rsa->p, hnbyte);
615
	write_lebn(out, rsa->q, hnbyte);
616
	write_lebn(out, rsa->dmp1, hnbyte);
617
	write_lebn(out, rsa->dmq1, hnbyte);
618
	write_lebn(out, rsa->iqmp, hnbyte);
619
	write_lebn(out, rsa->d, nbyte);
620
}
621
622
static void
623
write_dsa(unsigned char **out, DSA *dsa, int ispub)
624
{
625
	int nbyte;
626
627
	nbyte = BN_num_bytes(dsa->p);
628
	write_lebn(out, dsa->p, nbyte);
629
	write_lebn(out, dsa->q, 20);
630
	write_lebn(out, dsa->g, nbyte);
631
	if (ispub)
632
		write_lebn(out, dsa->pub_key, nbyte);
633
	else
634
		write_lebn(out, dsa->priv_key, 20);
635
	/* Set "invalid" for seed structure values */
636
	memset(*out, 0xff, 24);
637
	*out += 24;
638
	return;
639
}
640
641
int
642
i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
643
{
644
	return do_i2b_bio(out, pk, 0);
645
}
646
647
int
648
i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
649
{
650
	return do_i2b_bio(out, pk, 1);
651
}
652
653
#ifndef OPENSSL_NO_RC4
654
655
static int
656
do_PVK_header(const unsigned char **in, unsigned int length, int skip_magic,
657
    unsigned int *psaltlen, unsigned int *pkeylen)
658
{
659
	const unsigned char *p = *in;
660
	unsigned int pvk_magic, is_encrypted;
661
662
	if (skip_magic) {
663
		if (length < 20) {
664
			PEMerror(PEM_R_PVK_TOO_SHORT);
665
			return 0;
666
		}
667
		length -= 20;
668
	} else {
669
		if (length < 24) {
670
			PEMerror(PEM_R_PVK_TOO_SHORT);
671
			return 0;
672
		}
673
		length -= 24;
674
		pvk_magic = read_ledword(&p);
675
		if (pvk_magic != MS_PVKMAGIC) {
676
			PEMerror(PEM_R_BAD_MAGIC_NUMBER);
677
			return 0;
678
		}
679
	}
680
	/* Skip reserved */
681
	p += 4;
682
	/*keytype = */read_ledword(&p);
683
	is_encrypted = read_ledword(&p);
684
	*psaltlen = read_ledword(&p);
685
	*pkeylen = read_ledword(&p);
686
	if (*psaltlen > 65536 || *pkeylen > 65536) {
687
		PEMerror(PEM_R_ERROR_CONVERTING_PRIVATE_KEY);
688
		return 0;
689
	}
690
691
	if (is_encrypted && !*psaltlen) {
692
		PEMerror(PEM_R_INCONSISTENT_HEADER);
693
		return 0;
694
	}
695
696
	*in = p;
697
	return 1;
698
}
699
700
static int
701
derive_pvk_key(unsigned char *key, const unsigned char *salt,
702
    unsigned int saltlen, const unsigned char *pass, int passlen)
703
{
704
	EVP_MD_CTX mctx;
705
	int rv = 1;
706
707
	EVP_MD_CTX_init(&mctx);
708
	if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL) ||
709
	    !EVP_DigestUpdate(&mctx, salt, saltlen) ||
710
	    !EVP_DigestUpdate(&mctx, pass, passlen) ||
711
	    !EVP_DigestFinal_ex(&mctx, key, NULL))
712
		rv = 0;
713
714
	EVP_MD_CTX_cleanup(&mctx);
715
	return rv;
716
}
717
718
static EVP_PKEY *
719
do_PVK_body(const unsigned char **in, unsigned int saltlen,
720
    unsigned int keylen, pem_password_cb *cb, void *u)
721
{
722
	EVP_PKEY *ret = NULL;
723
	const unsigned char *p = *in;
724
	unsigned int magic;
725
	unsigned char *enctmp = NULL, *q;
726
	EVP_CIPHER_CTX cctx;
727
728
	EVP_CIPHER_CTX_init(&cctx);
729
	if (saltlen) {
730
		char psbuf[PEM_BUFSIZE];
731
		unsigned char keybuf[20];
732
		int enctmplen, inlen;
733
734
		if (cb)
735
			inlen = cb(psbuf, PEM_BUFSIZE, 0, u);
736
		else
737
			inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u);
738
		if (inlen <= 0) {
739
			PEMerror(PEM_R_BAD_PASSWORD_READ);
740
			goto err;
741
		}
742
		enctmp = malloc(keylen + 8);
743
		if (!enctmp) {
744
			PEMerror(ERR_R_MALLOC_FAILURE);
745
			goto err;
746
		}
747
		if (!derive_pvk_key(keybuf, p, saltlen, (unsigned char *)psbuf,
748
		    inlen)) {
749
			goto err;
750
		}
751
		p += saltlen;
752
		/* Copy BLOBHEADER across, decrypt rest */
753
		memcpy(enctmp, p, 8);
754
		p += 8;
755
		if (keylen < 8) {
756
			PEMerror(PEM_R_PVK_TOO_SHORT);
757
			goto err;
758
		}
759
		inlen = keylen - 8;
760
		q = enctmp + 8;
761
		if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
762
			goto err;
763
		if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
764
			goto err;
765
		if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
766
			goto err;
767
		magic = read_ledword((const unsigned char **)&q);
768
		if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) {
769
			q = enctmp + 8;
770
			memset(keybuf + 5, 0, 11);
771
			if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf,
772
			    NULL))
773
				goto err;
774
			explicit_bzero(keybuf, 20);
775
			if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
776
				goto err;
777
			if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen,
778
			    &enctmplen))
779
				goto err;
780
			magic = read_ledword((const unsigned char **)&q);
781
			if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) {
782
				PEMerror(PEM_R_BAD_DECRYPT);
783
				goto err;
784
			}
785
		} else
786
			explicit_bzero(keybuf, 20);
787
		p = enctmp;
788
	}
789
790
	ret = b2i_PrivateKey(&p, keylen);
791
792
err:
793
	EVP_CIPHER_CTX_cleanup(&cctx);
794
	if (enctmp && saltlen)
795
		free(enctmp);
796
	return ret;
797
}
798
799
800
EVP_PKEY *
801
b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
802
{
803
	unsigned char pvk_hdr[24], *buf = NULL;
804
	const unsigned char *p;
805
	size_t buflen;
806
	EVP_PKEY *ret = NULL;
807
	unsigned int saltlen, keylen;
808
809
	if (BIO_read(in, pvk_hdr, 24) != 24) {
810
		PEMerror(PEM_R_PVK_DATA_TOO_SHORT);
811
		return NULL;
812
	}
813
	p = pvk_hdr;
814
815
	if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
816
		return 0;
817
	buflen = keylen + saltlen;
818
	buf = malloc(buflen);
819
	if (!buf) {
820
		PEMerror(ERR_R_MALLOC_FAILURE);
821
		return 0;
822
	}
823
	p = buf;
824
	if (BIO_read(in, buf, buflen) != buflen) {
825
		PEMerror(PEM_R_PVK_DATA_TOO_SHORT);
826
		goto err;
827
	}
828
	ret = do_PVK_body(&p, saltlen, keylen, cb, u);
829
830
err:
831
	freezero(buf, buflen);
832
	return ret;
833
}
834
835
static int
836
i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, pem_password_cb *cb,
837
    void *u)
838
{
839
	int outlen = 24, pklen;
840
	unsigned char *p, *salt = NULL;
841
	EVP_CIPHER_CTX cctx;
842
843
	EVP_CIPHER_CTX_init(&cctx);
844
	if (enclevel)
845
		outlen += PVK_SALTLEN;
846
	pklen = do_i2b(NULL, pk, 0);
847
	if (pklen < 0)
848
		return -1;
849
	outlen += pklen;
850
	if (!out)
851
		return outlen;
852
	if (*out)
853
		p = *out;
854
	else {
855
		p = malloc(outlen);
856
		if (!p) {
857
			PEMerror(ERR_R_MALLOC_FAILURE);
858
			return -1;
859
		}
860
		*out = p;
861
	}
862
863
	write_ledword(&p, MS_PVKMAGIC);
864
	write_ledword(&p, 0);
865
	if (pk->type == EVP_PKEY_DSA)
866
		write_ledword(&p, MS_KEYTYPE_SIGN);
867
	else
868
		write_ledword(&p, MS_KEYTYPE_KEYX);
869
	write_ledword(&p, enclevel ? 1 : 0);
870
	write_ledword(&p, enclevel ? PVK_SALTLEN : 0);
871
	write_ledword(&p, pklen);
872
	if (enclevel) {
873
		arc4random_buf(p, PVK_SALTLEN);
874
		salt = p;
875
		p += PVK_SALTLEN;
876
	}
877
	do_i2b(&p, pk, 0);
878
	if (enclevel == 0)
879
		return outlen;
880
	else {
881
		char psbuf[PEM_BUFSIZE];
882
		unsigned char keybuf[20];
883
		int enctmplen, inlen;
884
		if (cb)
885
			inlen = cb(psbuf, PEM_BUFSIZE, 1, u);
886
		else
887
			inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u);
888
		if (inlen <= 0) {
889
			PEMerror(PEM_R_BAD_PASSWORD_READ);
890
			goto error;
891
		}
892
		if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
893
		    (unsigned char *)psbuf, inlen))
894
			goto error;
895
		if (enclevel == 1)
896
			memset(keybuf + 5, 0, 11);
897
		p = salt + PVK_SALTLEN + 8;
898
		if (!EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
899
			goto error;
900
		explicit_bzero(keybuf, 20);
901
		if (!EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8))
902
			goto error;
903
		if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen))
904
			goto error;
905
	}
906
	EVP_CIPHER_CTX_cleanup(&cctx);
907
	return outlen;
908
909
error:
910
	EVP_CIPHER_CTX_cleanup(&cctx);
911
	return -1;
912
}
913
914
int
915
i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, void *u)
916
{
917
	unsigned char *tmp = NULL;
918
	int outlen, wrlen;
919
920
	outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
921
	if (outlen < 0)
922
		return -1;
923
	wrlen = BIO_write(out, tmp, outlen);
924
	free(tmp);
925
	if (wrlen == outlen) {
926
		PEMerror(PEM_R_BIO_WRITE_FAILURE);
927
		return outlen;
928
	}
929
	return -1;
930
}
931
932
#endif
933
934
#endif