1 |
|
|
/* $OpenBSD: b_tgamma.c,v 1.10 2016/09/12 19:47:02 guenther Exp $ */ |
2 |
|
|
/*- |
3 |
|
|
* Copyright (c) 1992, 1993 |
4 |
|
|
* The Regents of the University of California. All rights reserved. |
5 |
|
|
* |
6 |
|
|
* Redistribution and use in source and binary forms, with or without |
7 |
|
|
* modification, are permitted provided that the following conditions |
8 |
|
|
* are met: |
9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
10 |
|
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
12 |
|
|
* notice, this list of conditions and the following disclaimer in the |
13 |
|
|
* documentation and/or other materials provided with the distribution. |
14 |
|
|
* 3. Neither the name of the University nor the names of its contributors |
15 |
|
|
* may be used to endorse or promote products derived from this software |
16 |
|
|
* without specific prior written permission. |
17 |
|
|
* |
18 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
19 |
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 |
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
21 |
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
22 |
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 |
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
24 |
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
25 |
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
26 |
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
27 |
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
28 |
|
|
* SUCH DAMAGE. |
29 |
|
|
*/ |
30 |
|
|
|
31 |
|
|
/* |
32 |
|
|
* This code by P. McIlroy, Oct 1992; |
33 |
|
|
* |
34 |
|
|
* The financial support of UUNET Communications Services is greatfully |
35 |
|
|
* acknowledged. |
36 |
|
|
*/ |
37 |
|
|
|
38 |
|
|
#include <float.h> |
39 |
|
|
#include <math.h> |
40 |
|
|
|
41 |
|
|
#include "math_private.h" |
42 |
|
|
|
43 |
|
|
/* METHOD: |
44 |
|
|
* x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)) |
45 |
|
|
* At negative integers, return NaN and raise invalid. |
46 |
|
|
* |
47 |
|
|
* x < 6.5: |
48 |
|
|
* Use argument reduction G(x+1) = xG(x) to reach the |
49 |
|
|
* range [1.066124,2.066124]. Use a rational |
50 |
|
|
* approximation centered at the minimum (x0+1) to |
51 |
|
|
* ensure monotonicity. |
52 |
|
|
* |
53 |
|
|
* x >= 6.5: Use the asymptotic approximation (Stirling's formula) |
54 |
|
|
* adjusted for equal-ripples: |
55 |
|
|
* |
56 |
|
|
* log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x)) |
57 |
|
|
* |
58 |
|
|
* Keep extra precision in multiplying (x-.5)(log(x)-1), to |
59 |
|
|
* avoid premature round-off. |
60 |
|
|
* |
61 |
|
|
* Special values: |
62 |
|
|
* -Inf: return NaN and raise invalid; |
63 |
|
|
* negative integer: return NaN and raise invalid; |
64 |
|
|
* other x ~< -177.79: return +-0 and raise underflow; |
65 |
|
|
* +-0: return +-Inf and raise divide-by-zero; |
66 |
|
|
* finite x ~> 171.63: return +Inf and raise overflow; |
67 |
|
|
* +Inf: return +Inf; |
68 |
|
|
* NaN: return NaN. |
69 |
|
|
* |
70 |
|
|
* Accuracy: tgamma(x) is accurate to within |
71 |
|
|
* x > 0: error provably < 0.9ulp. |
72 |
|
|
* Maximum observed in 1,000,000 trials was .87ulp. |
73 |
|
|
* x < 0: |
74 |
|
|
* Maximum observed error < 4ulp in 1,000,000 trials. |
75 |
|
|
*/ |
76 |
|
|
|
77 |
|
|
static double neg_gam(double); |
78 |
|
|
static double small_gam(double); |
79 |
|
|
static double smaller_gam(double); |
80 |
|
|
static struct Double large_gam(double); |
81 |
|
|
static struct Double ratfun_gam(double, double); |
82 |
|
|
|
83 |
|
|
/* |
84 |
|
|
* Rational approximation, A0 + x*x*P(x)/Q(x), on the interval |
85 |
|
|
* [1.066.., 2.066..] accurate to 4.25e-19. |
86 |
|
|
*/ |
87 |
|
|
#define LEFT -.3955078125 /* left boundary for rat. approx */ |
88 |
|
|
#define x0 .461632144968362356785 /* xmin - 1 */ |
89 |
|
|
|
90 |
|
|
#define a0_hi 0.88560319441088874992 |
91 |
|
|
#define a0_lo -.00000000000000004996427036469019695 |
92 |
|
|
#define P0 6.21389571821820863029017800727e-01 |
93 |
|
|
#define P1 2.65757198651533466104979197553e-01 |
94 |
|
|
#define P2 5.53859446429917461063308081748e-03 |
95 |
|
|
#define P3 1.38456698304096573887145282811e-03 |
96 |
|
|
#define P4 2.40659950032711365819348969808e-03 |
97 |
|
|
#define Q0 1.45019531250000000000000000000e+00 |
98 |
|
|
#define Q1 1.06258521948016171343454061571e+00 |
99 |
|
|
#define Q2 -2.07474561943859936441469926649e-01 |
100 |
|
|
#define Q3 -1.46734131782005422506287573015e-01 |
101 |
|
|
#define Q4 3.07878176156175520361557573779e-02 |
102 |
|
|
#define Q5 5.12449347980666221336054633184e-03 |
103 |
|
|
#define Q6 -1.76012741431666995019222898833e-03 |
104 |
|
|
#define Q7 9.35021023573788935372153030556e-05 |
105 |
|
|
#define Q8 6.13275507472443958924745652239e-06 |
106 |
|
|
/* |
107 |
|
|
* Constants for large x approximation (x in [6, Inf]) |
108 |
|
|
* (Accurate to 2.8*10^-19 absolute) |
109 |
|
|
*/ |
110 |
|
|
#define lns2pi_hi 0.418945312500000 |
111 |
|
|
#define lns2pi_lo -.000006779295327258219670263595 |
112 |
|
|
#define Pa0 8.33333333333333148296162562474e-02 |
113 |
|
|
#define Pa1 -2.77777777774548123579378966497e-03 |
114 |
|
|
#define Pa2 7.93650778754435631476282786423e-04 |
115 |
|
|
#define Pa3 -5.95235082566672847950717262222e-04 |
116 |
|
|
#define Pa4 8.41428560346653702135821806252e-04 |
117 |
|
|
#define Pa5 -1.89773526463879200348872089421e-03 |
118 |
|
|
#define Pa6 5.69394463439411649408050664078e-03 |
119 |
|
|
#define Pa7 -1.44705562421428915453880392761e-02 |
120 |
|
|
|
121 |
|
|
static const double zero = 0., one = 1.0, tiny = 1e-300; |
122 |
|
|
|
123 |
|
|
double |
124 |
|
|
tgamma(double x) |
125 |
|
|
{ |
126 |
|
|
struct Double u; |
127 |
|
|
|
128 |
✓✓ |
72 |
if (x >= 6) { |
129 |
✓✓ |
9 |
if(x > 171.63) |
130 |
|
6 |
return(x/zero); |
131 |
|
3 |
u = large_gam(x); |
132 |
|
3 |
return(__exp__D(u.a, u.b)); |
133 |
✓✓ |
27 |
} else if (x >= 1.0 + LEFT + x0) |
134 |
|
6 |
return (small_gam(x)); |
135 |
✗✓ |
21 |
else if (x > 1.e-17) |
136 |
|
|
return (smaller_gam(x)); |
137 |
✓✓ |
21 |
else if (x > -1.e-17) { |
138 |
✗✓ |
6 |
if (x != 0.0) |
139 |
|
|
u.a = one - tiny; /* raise inexact */ |
140 |
|
6 |
return (one/x); |
141 |
✓✓ |
15 |
} else if (!isfinite(x)) { |
142 |
|
6 |
return (x - x); /* x = NaN, -Inf */ |
143 |
|
|
} else |
144 |
|
9 |
return (neg_gam(x)); |
145 |
|
36 |
} |
146 |
|
|
DEF_STD(tgamma); |
147 |
|
|
LDBL_MAYBE_UNUSED_CLONE(tgamma); |
148 |
|
|
|
149 |
|
|
/* |
150 |
|
|
* We simply call tgamma() rather than bloating the math library |
151 |
|
|
* with a float-optimized version of it. The reason is that tgammaf() |
152 |
|
|
* is essentially useless, since the function is superexponential |
153 |
|
|
* and floats have very limited range. -- das@freebsd.org |
154 |
|
|
*/ |
155 |
|
|
|
156 |
|
|
float |
157 |
|
|
tgammaf(float x) |
158 |
|
|
{ |
159 |
|
|
return tgamma(x); |
160 |
|
|
} |
161 |
|
|
|
162 |
|
|
/* |
163 |
|
|
* Accurate to max(ulp(1/128) absolute, 2^-66 relative) error. |
164 |
|
|
*/ |
165 |
|
|
|
166 |
|
|
static struct Double |
167 |
|
|
large_gam(double x) |
168 |
|
|
{ |
169 |
|
|
double z, p; |
170 |
|
12 |
struct Double t, u, v; |
171 |
|
|
|
172 |
|
6 |
z = one/(x*x); |
173 |
|
6 |
p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7)))))); |
174 |
|
6 |
p = p/x; |
175 |
|
|
|
176 |
|
6 |
u = __log__D(x); |
177 |
|
6 |
u.a -= one; |
178 |
|
6 |
v.a = (x -= .5); |
179 |
|
6 |
TRUNC(v.a); |
180 |
|
6 |
v.b = x - v.a; |
181 |
|
6 |
t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */ |
182 |
|
6 |
t.b = v.b*u.a + x*u.b; |
183 |
|
|
/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */ |
184 |
|
6 |
t.b += lns2pi_lo; t.b += p; |
185 |
|
6 |
u.a = lns2pi_hi + t.b; u.a += t.a; |
186 |
|
6 |
u.b = t.a - u.a; |
187 |
|
6 |
u.b += lns2pi_hi; u.b += t.b; |
188 |
|
|
return (u); |
189 |
|
6 |
} |
190 |
|
|
|
191 |
|
|
/* |
192 |
|
|
* Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.) |
193 |
|
|
* It also has correct monotonicity. |
194 |
|
|
*/ |
195 |
|
|
|
196 |
|
|
static double |
197 |
|
|
small_gam(double x) |
198 |
|
|
{ |
199 |
|
|
double y, ym1, t; |
200 |
|
12 |
struct Double yy, r; |
201 |
|
6 |
y = x - one; |
202 |
|
6 |
ym1 = y - one; |
203 |
✓✓ |
6 |
if (y <= 1.0 + (LEFT + x0)) { |
204 |
|
3 |
yy = ratfun_gam(y - x0, 0); |
205 |
|
3 |
return (yy.a + yy.b); |
206 |
|
|
} |
207 |
|
3 |
r.a = y; |
208 |
|
3 |
TRUNC(r.a); |
209 |
|
3 |
yy.a = r.a - one; |
210 |
|
|
y = ym1; |
211 |
|
3 |
yy.b = r.b = y - yy.a; |
212 |
|
|
/* Argument reduction: G(x+1) = x*G(x) */ |
213 |
✓✓ |
12 |
for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) { |
214 |
|
3 |
t = r.a*yy.a; |
215 |
|
3 |
r.b = r.a*yy.b + y*r.b; |
216 |
|
3 |
r.a = t; |
217 |
|
3 |
TRUNC(r.a); |
218 |
|
3 |
r.b += (t - r.a); |
219 |
|
|
} |
220 |
|
|
/* Return r*tgamma(y). */ |
221 |
|
3 |
yy = ratfun_gam(y - x0, 0); |
222 |
|
3 |
y = r.b*(yy.a + yy.b) + r.a*yy.b; |
223 |
|
3 |
y += yy.a*r.a; |
224 |
|
3 |
return (y); |
225 |
|
6 |
} |
226 |
|
|
|
227 |
|
|
/* |
228 |
|
|
* Good on (0, 1+x0+LEFT]. Accurate to 1ulp. |
229 |
|
|
*/ |
230 |
|
|
|
231 |
|
|
static double |
232 |
|
|
smaller_gam(double x) |
233 |
|
|
{ |
234 |
|
|
double t, d; |
235 |
|
|
struct Double r, xx; |
236 |
|
|
if (x < x0 + LEFT) { |
237 |
|
|
t = x; |
238 |
|
|
TRUNC(t); |
239 |
|
|
d = (t+x)*(x-t); |
240 |
|
|
t *= t; |
241 |
|
|
xx.a = (t + x); |
242 |
|
|
TRUNC(xx.a); |
243 |
|
|
xx.b = x - xx.a; xx.b += t; xx.b += d; |
244 |
|
|
t = (one-x0); t += x; |
245 |
|
|
d = (one-x0); d -= t; d += x; |
246 |
|
|
x = xx.a + xx.b; |
247 |
|
|
} else { |
248 |
|
|
xx.a = x; |
249 |
|
|
TRUNC(xx.a); |
250 |
|
|
xx.b = x - xx.a; |
251 |
|
|
t = x - x0; |
252 |
|
|
d = (-x0 -t); d += x; |
253 |
|
|
} |
254 |
|
|
r = ratfun_gam(t, d); |
255 |
|
|
d = r.a/x; |
256 |
|
|
TRUNC(d); |
257 |
|
|
r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b; |
258 |
|
|
return (d + r.a/x); |
259 |
|
|
} |
260 |
|
|
|
261 |
|
|
/* |
262 |
|
|
* returns (z+c)^2 * P(z)/Q(z) + a0 |
263 |
|
|
*/ |
264 |
|
|
|
265 |
|
|
static struct Double |
266 |
|
|
ratfun_gam(double z, double c) |
267 |
|
|
{ |
268 |
|
|
double p, q; |
269 |
|
12 |
struct Double r, t; |
270 |
|
|
|
271 |
|
6 |
q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8))))))); |
272 |
|
6 |
p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4))); |
273 |
|
|
|
274 |
|
|
/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */ |
275 |
|
6 |
p = p/q; |
276 |
|
6 |
t.a = z; |
277 |
|
6 |
TRUNC(t.a); /* t ~= z + c */ |
278 |
|
6 |
t.b = (z - t.a) + c; |
279 |
|
6 |
t.b *= (t.a + z); |
280 |
|
6 |
q = (t.a *= t.a); /* t = (z+c)^2 */ |
281 |
|
6 |
TRUNC(t.a); |
282 |
|
6 |
t.b += (q - t.a); |
283 |
|
6 |
r.a = p; |
284 |
|
6 |
TRUNC(r.a); /* r = P/Q */ |
285 |
|
6 |
r.b = p - r.a; |
286 |
|
6 |
t.b = t.b*p + t.a*r.b + a0_lo; |
287 |
|
6 |
t.a *= r.a; /* t = (z+c)^2*(P/Q) */ |
288 |
|
6 |
r.a = t.a + a0_hi; |
289 |
|
6 |
TRUNC(r.a); |
290 |
|
6 |
r.b = ((a0_hi-r.a) + t.a) + t.b; |
291 |
|
6 |
return (r); /* r = a0 + t */ |
292 |
|
6 |
} |
293 |
|
|
|
294 |
|
|
static double |
295 |
|
|
neg_gam(double x) |
296 |
|
|
{ |
297 |
|
|
int sgn = 1; |
298 |
|
|
struct Double lg, lsine; |
299 |
|
|
double y, z; |
300 |
|
|
|
301 |
|
18 |
y = ceil(x); |
302 |
✓✓ |
9 |
if (y == x) /* Negative integer. */ |
303 |
|
3 |
return ((x - x) / zero); |
304 |
|
6 |
z = y - x; |
305 |
✓✓ |
6 |
if (z > 0.5) |
306 |
|
3 |
z = one - z; |
307 |
|
6 |
y = 0.5 * y; |
308 |
✓✓ |
6 |
if (y == ceil(y)) |
309 |
|
3 |
sgn = -1; |
310 |
✓✓ |
6 |
if (z < .25) |
311 |
|
3 |
z = sin(M_PI*z); |
312 |
|
|
else |
313 |
|
3 |
z = cos(M_PI*(0.5-z)); |
314 |
|
|
/* Special case: G(1-x) = Inf; G(x) may be nonzero. */ |
315 |
✓✓ |
6 |
if (x < -170) { |
316 |
✗✓ |
3 |
if (x < -190) |
317 |
|
|
return ((double)sgn*tiny*tiny); |
318 |
|
3 |
y = one - x; /* exact: 128 < |x| < 255 */ |
319 |
|
3 |
lg = large_gam(y); |
320 |
|
3 |
lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */ |
321 |
|
3 |
lg.a -= lsine.a; /* exact (opposite signs) */ |
322 |
|
3 |
lg.b -= lsine.b; |
323 |
|
3 |
y = -(lg.a + lg.b); |
324 |
|
3 |
z = (y + lg.a) + lg.b; |
325 |
|
3 |
y = __exp__D(y, z); |
326 |
✗✓ |
3 |
if (sgn < 0) y = -y; |
327 |
|
3 |
return (y); |
328 |
|
|
} |
329 |
|
3 |
y = one-x; |
330 |
✓✗ |
3 |
if (one-y == x) |
331 |
|
3 |
y = tgamma(y); |
332 |
|
|
else /* 1-x is inexact */ |
333 |
|
|
y = -x*tgamma(-x); |
334 |
✓✗ |
6 |
if (sgn < 0) y = -y; |
335 |
|
3 |
return (M_PI / (y*z)); |
336 |
|
9 |
} |