1  | 
     | 
     | 
    /*	$OpenBSD: b_tgamma.c,v 1.10 2016/09/12 19:47:02 guenther Exp $	*/  | 
    
    
    2  | 
     | 
     | 
    /*-  | 
    
    
    3  | 
     | 
     | 
     * Copyright (c) 1992, 1993  | 
    
    
    4  | 
     | 
     | 
     *	The Regents of the University of California.  All rights reserved.  | 
    
    
    5  | 
     | 
     | 
     *  | 
    
    
    6  | 
     | 
     | 
     * Redistribution and use in source and binary forms, with or without  | 
    
    
    7  | 
     | 
     | 
     * modification, are permitted provided that the following conditions  | 
    
    
    8  | 
     | 
     | 
     * are met:  | 
    
    
    9  | 
     | 
     | 
     * 1. Redistributions of source code must retain the above copyright  | 
    
    
    10  | 
     | 
     | 
     *    notice, this list of conditions and the following disclaimer.  | 
    
    
    11  | 
     | 
     | 
     * 2. Redistributions in binary form must reproduce the above copyright  | 
    
    
    12  | 
     | 
     | 
     *    notice, this list of conditions and the following disclaimer in the  | 
    
    
    13  | 
     | 
     | 
     *    documentation and/or other materials provided with the distribution.  | 
    
    
    14  | 
     | 
     | 
     * 3. Neither the name of the University nor the names of its contributors  | 
    
    
    15  | 
     | 
     | 
     *    may be used to endorse or promote products derived from this software  | 
    
    
    16  | 
     | 
     | 
     *    without specific prior written permission.  | 
    
    
    17  | 
     | 
     | 
     *  | 
    
    
    18  | 
     | 
     | 
     * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND  | 
    
    
    19  | 
     | 
     | 
     * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE  | 
    
    
    20  | 
     | 
     | 
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE  | 
    
    
    21  | 
     | 
     | 
     * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE  | 
    
    
    22  | 
     | 
     | 
     * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL  | 
    
    
    23  | 
     | 
     | 
     * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS  | 
    
    
    24  | 
     | 
     | 
     * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)  | 
    
    
    25  | 
     | 
     | 
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT  | 
    
    
    26  | 
     | 
     | 
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY  | 
    
    
    27  | 
     | 
     | 
     * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF  | 
    
    
    28  | 
     | 
     | 
     * SUCH DAMAGE.  | 
    
    
    29  | 
     | 
     | 
     */  | 
    
    
    30  | 
     | 
     | 
     | 
    
    
    31  | 
     | 
     | 
    /*  | 
    
    
    32  | 
     | 
     | 
     * This code by P. McIlroy, Oct 1992;  | 
    
    
    33  | 
     | 
     | 
     *  | 
    
    
    34  | 
     | 
     | 
     * The financial support of UUNET Communications Services is greatfully  | 
    
    
    35  | 
     | 
     | 
     * acknowledged.  | 
    
    
    36  | 
     | 
     | 
     */  | 
    
    
    37  | 
     | 
     | 
     | 
    
    
    38  | 
     | 
     | 
    #include <float.h>  | 
    
    
    39  | 
     | 
     | 
    #include <math.h>  | 
    
    
    40  | 
     | 
     | 
     | 
    
    
    41  | 
     | 
     | 
    #include "math_private.h"  | 
    
    
    42  | 
     | 
     | 
     | 
    
    
    43  | 
     | 
     | 
    /* METHOD:  | 
    
    
    44  | 
     | 
     | 
     * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))  | 
    
    
    45  | 
     | 
     | 
     *	At negative integers, return NaN and raise invalid.  | 
    
    
    46  | 
     | 
     | 
     *  | 
    
    
    47  | 
     | 
     | 
     * x < 6.5:  | 
    
    
    48  | 
     | 
     | 
     *	Use argument reduction G(x+1) = xG(x) to reach the  | 
    
    
    49  | 
     | 
     | 
     *	range [1.066124,2.066124].  Use a rational  | 
    
    
    50  | 
     | 
     | 
     *	approximation centered at the minimum (x0+1) to  | 
    
    
    51  | 
     | 
     | 
     *	ensure monotonicity.  | 
    
    
    52  | 
     | 
     | 
     *  | 
    
    
    53  | 
     | 
     | 
     * x >= 6.5: Use the asymptotic approximation (Stirling's formula)  | 
    
    
    54  | 
     | 
     | 
     *	adjusted for equal-ripples:  | 
    
    
    55  | 
     | 
     | 
     *  | 
    
    
    56  | 
     | 
     | 
     *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))  | 
    
    
    57  | 
     | 
     | 
     *  | 
    
    
    58  | 
     | 
     | 
     *	Keep extra precision in multiplying (x-.5)(log(x)-1), to  | 
    
    
    59  | 
     | 
     | 
     *	avoid premature round-off.  | 
    
    
    60  | 
     | 
     | 
     *  | 
    
    
    61  | 
     | 
     | 
     * Special values:  | 
    
    
    62  | 
     | 
     | 
     *	-Inf:			return NaN and raise invalid;  | 
    
    
    63  | 
     | 
     | 
     *	negative integer:	return NaN and raise invalid;  | 
    
    
    64  | 
     | 
     | 
     *	other x ~< -177.79:	return +-0 and raise underflow;  | 
    
    
    65  | 
     | 
     | 
     *	+-0:			return +-Inf and raise divide-by-zero;  | 
    
    
    66  | 
     | 
     | 
     *	finite x ~> 171.63:	return +Inf and raise overflow;  | 
    
    
    67  | 
     | 
     | 
     *	+Inf:			return +Inf;  | 
    
    
    68  | 
     | 
     | 
     *	NaN: 			return NaN.  | 
    
    
    69  | 
     | 
     | 
     *  | 
    
    
    70  | 
     | 
     | 
     * Accuracy: tgamma(x) is accurate to within  | 
    
    
    71  | 
     | 
     | 
     *	x > 0:  error provably < 0.9ulp.  | 
    
    
    72  | 
     | 
     | 
     *	Maximum observed in 1,000,000 trials was .87ulp.  | 
    
    
    73  | 
     | 
     | 
     *	x < 0:  | 
    
    
    74  | 
     | 
     | 
     *	Maximum observed error < 4ulp in 1,000,000 trials.  | 
    
    
    75  | 
     | 
     | 
     */  | 
    
    
    76  | 
     | 
     | 
     | 
    
    
    77  | 
     | 
     | 
    static double neg_gam(double);  | 
    
    
    78  | 
     | 
     | 
    static double small_gam(double);  | 
    
    
    79  | 
     | 
     | 
    static double smaller_gam(double);  | 
    
    
    80  | 
     | 
     | 
    static struct Double large_gam(double);  | 
    
    
    81  | 
     | 
     | 
    static struct Double ratfun_gam(double, double);  | 
    
    
    82  | 
     | 
     | 
     | 
    
    
    83  | 
     | 
     | 
    /*  | 
    
    
    84  | 
     | 
     | 
     * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval  | 
    
    
    85  | 
     | 
     | 
     * [1.066.., 2.066..] accurate to 4.25e-19.  | 
    
    
    86  | 
     | 
     | 
     */  | 
    
    
    87  | 
     | 
     | 
    #define LEFT -.3955078125	/* left boundary for rat. approx */  | 
    
    
    88  | 
     | 
     | 
    #define x0 .461632144968362356785	/* xmin - 1 */  | 
    
    
    89  | 
     | 
     | 
     | 
    
    
    90  | 
     | 
     | 
    #define a0_hi 0.88560319441088874992  | 
    
    
    91  | 
     | 
     | 
    #define a0_lo -.00000000000000004996427036469019695  | 
    
    
    92  | 
     | 
     | 
    #define P0	 6.21389571821820863029017800727e-01  | 
    
    
    93  | 
     | 
     | 
    #define P1	 2.65757198651533466104979197553e-01  | 
    
    
    94  | 
     | 
     | 
    #define P2	 5.53859446429917461063308081748e-03  | 
    
    
    95  | 
     | 
     | 
    #define P3	 1.38456698304096573887145282811e-03  | 
    
    
    96  | 
     | 
     | 
    #define P4	 2.40659950032711365819348969808e-03  | 
    
    
    97  | 
     | 
     | 
    #define Q0	 1.45019531250000000000000000000e+00  | 
    
    
    98  | 
     | 
     | 
    #define Q1	 1.06258521948016171343454061571e+00  | 
    
    
    99  | 
     | 
     | 
    #define Q2	-2.07474561943859936441469926649e-01  | 
    
    
    100  | 
     | 
     | 
    #define Q3	-1.46734131782005422506287573015e-01  | 
    
    
    101  | 
     | 
     | 
    #define Q4	 3.07878176156175520361557573779e-02  | 
    
    
    102  | 
     | 
     | 
    #define Q5	 5.12449347980666221336054633184e-03  | 
    
    
    103  | 
     | 
     | 
    #define Q6	-1.76012741431666995019222898833e-03  | 
    
    
    104  | 
     | 
     | 
    #define Q7	 9.35021023573788935372153030556e-05  | 
    
    
    105  | 
     | 
     | 
    #define Q8	 6.13275507472443958924745652239e-06  | 
    
    
    106  | 
     | 
     | 
    /*  | 
    
    
    107  | 
     | 
     | 
     * Constants for large x approximation (x in [6, Inf])  | 
    
    
    108  | 
     | 
     | 
     * (Accurate to 2.8*10^-19 absolute)  | 
    
    
    109  | 
     | 
     | 
     */  | 
    
    
    110  | 
     | 
     | 
    #define lns2pi_hi 0.418945312500000  | 
    
    
    111  | 
     | 
     | 
    #define lns2pi_lo -.000006779295327258219670263595  | 
    
    
    112  | 
     | 
     | 
    #define Pa0	 8.33333333333333148296162562474e-02  | 
    
    
    113  | 
     | 
     | 
    #define Pa1	-2.77777777774548123579378966497e-03  | 
    
    
    114  | 
     | 
     | 
    #define Pa2	 7.93650778754435631476282786423e-04  | 
    
    
    115  | 
     | 
     | 
    #define Pa3	-5.95235082566672847950717262222e-04  | 
    
    
    116  | 
     | 
     | 
    #define Pa4	 8.41428560346653702135821806252e-04  | 
    
    
    117  | 
     | 
     | 
    #define Pa5	-1.89773526463879200348872089421e-03  | 
    
    
    118  | 
     | 
     | 
    #define Pa6	 5.69394463439411649408050664078e-03  | 
    
    
    119  | 
     | 
     | 
    #define Pa7	-1.44705562421428915453880392761e-02  | 
    
    
    120  | 
     | 
     | 
     | 
    
    
    121  | 
     | 
     | 
    static const double zero = 0., one = 1.0, tiny = 1e-300;  | 
    
    
    122  | 
     | 
     | 
     | 
    
    
    123  | 
     | 
     | 
    double  | 
    
    
    124  | 
     | 
     | 
    tgamma(double x)  | 
    
    
    125  | 
     | 
     | 
    { | 
    
    
    126  | 
     | 
     | 
    	struct Double u;  | 
    
    
    127  | 
     | 
     | 
     | 
    
    
    128  | 
    ✓✓ | 
    72  | 
    	if (x >= 6) { | 
    
    
    129  | 
    ✓✓ | 
    9  | 
    		if(x > 171.63)  | 
    
    
    130  | 
     | 
    6  | 
    			return(x/zero);  | 
    
    
    131  | 
     | 
    3  | 
    		u = large_gam(x);  | 
    
    
    132  | 
     | 
    3  | 
    		return(__exp__D(u.a, u.b));  | 
    
    
    133  | 
    ✓✓ | 
    27  | 
    	} else if (x >= 1.0 + LEFT + x0)  | 
    
    
    134  | 
     | 
    6  | 
    		return (small_gam(x));  | 
    
    
    135  | 
    ✗✓ | 
    21  | 
    	else if (x > 1.e-17)  | 
    
    
    136  | 
     | 
     | 
    		return (smaller_gam(x));  | 
    
    
    137  | 
    ✓✓ | 
    21  | 
    	else if (x > -1.e-17) { | 
    
    
    138  | 
    ✗✓ | 
    6  | 
    		if (x != 0.0)  | 
    
    
    139  | 
     | 
     | 
    			u.a = one - tiny;	/* raise inexact */  | 
    
    
    140  | 
     | 
    6  | 
    		return (one/x);  | 
    
    
    141  | 
    ✓✓ | 
    15  | 
    	} else if (!isfinite(x)) { | 
    
    
    142  | 
     | 
    6  | 
    		return (x - x);			/* x = NaN, -Inf */  | 
    
    
    143  | 
     | 
     | 
    	 } else  | 
    
    
    144  | 
     | 
    9  | 
    		return (neg_gam(x));  | 
    
    
    145  | 
     | 
    36  | 
    }  | 
    
    
    146  | 
     | 
     | 
    DEF_STD(tgamma);  | 
    
    
    147  | 
     | 
     | 
    LDBL_MAYBE_UNUSED_CLONE(tgamma);  | 
    
    
    148  | 
     | 
     | 
     | 
    
    
    149  | 
     | 
     | 
    /*  | 
    
    
    150  | 
     | 
     | 
     * We simply call tgamma() rather than bloating the math library  | 
    
    
    151  | 
     | 
     | 
     * with a float-optimized version of it.  The reason is that tgammaf()  | 
    
    
    152  | 
     | 
     | 
     * is essentially useless, since the function is superexponential  | 
    
    
    153  | 
     | 
     | 
     * and floats have very limited range.  -- das@freebsd.org  | 
    
    
    154  | 
     | 
     | 
     */  | 
    
    
    155  | 
     | 
     | 
     | 
    
    
    156  | 
     | 
     | 
    float  | 
    
    
    157  | 
     | 
     | 
    tgammaf(float x)  | 
    
    
    158  | 
     | 
     | 
    { | 
    
    
    159  | 
     | 
     | 
    	return tgamma(x);  | 
    
    
    160  | 
     | 
     | 
    }  | 
    
    
    161  | 
     | 
     | 
     | 
    
    
    162  | 
     | 
     | 
    /*  | 
    
    
    163  | 
     | 
     | 
     * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.  | 
    
    
    164  | 
     | 
     | 
     */  | 
    
    
    165  | 
     | 
     | 
     | 
    
    
    166  | 
     | 
     | 
    static struct Double  | 
    
    
    167  | 
     | 
     | 
    large_gam(double x)  | 
    
    
    168  | 
     | 
     | 
    { | 
    
    
    169  | 
     | 
     | 
    	double z, p;  | 
    
    
    170  | 
     | 
    12  | 
    	struct Double t, u, v;  | 
    
    
    171  | 
     | 
     | 
     | 
    
    
    172  | 
     | 
    6  | 
    	z = one/(x*x);  | 
    
    
    173  | 
     | 
    6  | 
    	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));  | 
    
    
    174  | 
     | 
    6  | 
    	p = p/x;  | 
    
    
    175  | 
     | 
     | 
     | 
    
    
    176  | 
     | 
    6  | 
    	u = __log__D(x);  | 
    
    
    177  | 
     | 
    6  | 
    	u.a -= one;  | 
    
    
    178  | 
     | 
    6  | 
    	v.a = (x -= .5);  | 
    
    
    179  | 
     | 
    6  | 
    	TRUNC(v.a);  | 
    
    
    180  | 
     | 
    6  | 
    	v.b = x - v.a;  | 
    
    
    181  | 
     | 
    6  | 
    	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */  | 
    
    
    182  | 
     | 
    6  | 
    	t.b = v.b*u.a + x*u.b;  | 
    
    
    183  | 
     | 
     | 
    	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */  | 
    
    
    184  | 
     | 
    6  | 
    	t.b += lns2pi_lo; t.b += p;  | 
    
    
    185  | 
     | 
    6  | 
    	u.a = lns2pi_hi + t.b; u.a += t.a;  | 
    
    
    186  | 
     | 
    6  | 
    	u.b = t.a - u.a;  | 
    
    
    187  | 
     | 
    6  | 
    	u.b += lns2pi_hi; u.b += t.b;  | 
    
    
    188  | 
     | 
     | 
    	return (u);  | 
    
    
    189  | 
     | 
    6  | 
    }  | 
    
    
    190  | 
     | 
     | 
     | 
    
    
    191  | 
     | 
     | 
    /*  | 
    
    
    192  | 
     | 
     | 
     * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)  | 
    
    
    193  | 
     | 
     | 
     * It also has correct monotonicity.  | 
    
    
    194  | 
     | 
     | 
     */  | 
    
    
    195  | 
     | 
     | 
     | 
    
    
    196  | 
     | 
     | 
    static double  | 
    
    
    197  | 
     | 
     | 
    small_gam(double x)  | 
    
    
    198  | 
     | 
     | 
    { | 
    
    
    199  | 
     | 
     | 
    	double y, ym1, t;  | 
    
    
    200  | 
     | 
    12  | 
    	struct Double yy, r;  | 
    
    
    201  | 
     | 
    6  | 
    	y = x - one;  | 
    
    
    202  | 
     | 
    6  | 
    	ym1 = y - one;  | 
    
    
    203  | 
    ✓✓ | 
    6  | 
    	if (y <= 1.0 + (LEFT + x0)) { | 
    
    
    204  | 
     | 
    3  | 
    		yy = ratfun_gam(y - x0, 0);  | 
    
    
    205  | 
     | 
    3  | 
    		return (yy.a + yy.b);  | 
    
    
    206  | 
     | 
     | 
    	}  | 
    
    
    207  | 
     | 
    3  | 
    	r.a = y;  | 
    
    
    208  | 
     | 
    3  | 
    	TRUNC(r.a);  | 
    
    
    209  | 
     | 
    3  | 
    	yy.a = r.a - one;  | 
    
    
    210  | 
     | 
     | 
    	y = ym1;  | 
    
    
    211  | 
     | 
    3  | 
    	yy.b = r.b = y - yy.a;  | 
    
    
    212  | 
     | 
     | 
    	/* Argument reduction: G(x+1) = x*G(x) */  | 
    
    
    213  | 
    ✓✓ | 
    12  | 
    	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) { | 
    
    
    214  | 
     | 
    3  | 
    		t = r.a*yy.a;  | 
    
    
    215  | 
     | 
    3  | 
    		r.b = r.a*yy.b + y*r.b;  | 
    
    
    216  | 
     | 
    3  | 
    		r.a = t;  | 
    
    
    217  | 
     | 
    3  | 
    		TRUNC(r.a);  | 
    
    
    218  | 
     | 
    3  | 
    		r.b += (t - r.a);  | 
    
    
    219  | 
     | 
     | 
    	}  | 
    
    
    220  | 
     | 
     | 
    	/* Return r*tgamma(y). */  | 
    
    
    221  | 
     | 
    3  | 
    	yy = ratfun_gam(y - x0, 0);  | 
    
    
    222  | 
     | 
    3  | 
    	y = r.b*(yy.a + yy.b) + r.a*yy.b;  | 
    
    
    223  | 
     | 
    3  | 
    	y += yy.a*r.a;  | 
    
    
    224  | 
     | 
    3  | 
    	return (y);  | 
    
    
    225  | 
     | 
    6  | 
    }  | 
    
    
    226  | 
     | 
     | 
     | 
    
    
    227  | 
     | 
     | 
    /*  | 
    
    
    228  | 
     | 
     | 
     * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.  | 
    
    
    229  | 
     | 
     | 
     */  | 
    
    
    230  | 
     | 
     | 
     | 
    
    
    231  | 
     | 
     | 
    static double  | 
    
    
    232  | 
     | 
     | 
    smaller_gam(double x)  | 
    
    
    233  | 
     | 
     | 
    { | 
    
    
    234  | 
     | 
     | 
    	double t, d;  | 
    
    
    235  | 
     | 
     | 
    	struct Double r, xx;  | 
    
    
    236  | 
     | 
     | 
    	if (x < x0 + LEFT) { | 
    
    
    237  | 
     | 
     | 
    		t = x;  | 
    
    
    238  | 
     | 
     | 
    		TRUNC(t);  | 
    
    
    239  | 
     | 
     | 
    		d = (t+x)*(x-t);  | 
    
    
    240  | 
     | 
     | 
    		t *= t;  | 
    
    
    241  | 
     | 
     | 
    		xx.a = (t + x);  | 
    
    
    242  | 
     | 
     | 
    		TRUNC(xx.a);  | 
    
    
    243  | 
     | 
     | 
    		xx.b = x - xx.a; xx.b += t; xx.b += d;  | 
    
    
    244  | 
     | 
     | 
    		t = (one-x0); t += x;  | 
    
    
    245  | 
     | 
     | 
    		d = (one-x0); d -= t; d += x;  | 
    
    
    246  | 
     | 
     | 
    		x = xx.a + xx.b;  | 
    
    
    247  | 
     | 
     | 
    	} else { | 
    
    
    248  | 
     | 
     | 
    		xx.a =  x;  | 
    
    
    249  | 
     | 
     | 
    		TRUNC(xx.a);  | 
    
    
    250  | 
     | 
     | 
    		xx.b = x - xx.a;  | 
    
    
    251  | 
     | 
     | 
    		t = x - x0;  | 
    
    
    252  | 
     | 
     | 
    		d = (-x0 -t); d += x;  | 
    
    
    253  | 
     | 
     | 
    	}  | 
    
    
    254  | 
     | 
     | 
    	r = ratfun_gam(t, d);  | 
    
    
    255  | 
     | 
     | 
    	d = r.a/x;  | 
    
    
    256  | 
     | 
     | 
    	TRUNC(d);  | 
    
    
    257  | 
     | 
     | 
    	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;  | 
    
    
    258  | 
     | 
     | 
    	return (d + r.a/x);  | 
    
    
    259  | 
     | 
     | 
    }  | 
    
    
    260  | 
     | 
     | 
     | 
    
    
    261  | 
     | 
     | 
    /*  | 
    
    
    262  | 
     | 
     | 
     * returns (z+c)^2 * P(z)/Q(z) + a0  | 
    
    
    263  | 
     | 
     | 
     */  | 
    
    
    264  | 
     | 
     | 
     | 
    
    
    265  | 
     | 
     | 
    static struct Double  | 
    
    
    266  | 
     | 
     | 
    ratfun_gam(double z, double c)  | 
    
    
    267  | 
     | 
     | 
    { | 
    
    
    268  | 
     | 
     | 
    	double p, q;  | 
    
    
    269  | 
     | 
    12  | 
    	struct Double r, t;  | 
    
    
    270  | 
     | 
     | 
     | 
    
    
    271  | 
     | 
    6  | 
    	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));  | 
    
    
    272  | 
     | 
    6  | 
    	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));  | 
    
    
    273  | 
     | 
     | 
     | 
    
    
    274  | 
     | 
     | 
    	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */  | 
    
    
    275  | 
     | 
    6  | 
    	p = p/q;  | 
    
    
    276  | 
     | 
    6  | 
    	t.a = z;  | 
    
    
    277  | 
     | 
    6  | 
    	TRUNC(t.a);			/* t ~= z + c */  | 
    
    
    278  | 
     | 
    6  | 
    	t.b = (z - t.a) + c;  | 
    
    
    279  | 
     | 
    6  | 
    	t.b *= (t.a + z);  | 
    
    
    280  | 
     | 
    6  | 
    	q = (t.a *= t.a);		/* t = (z+c)^2 */  | 
    
    
    281  | 
     | 
    6  | 
    	TRUNC(t.a);  | 
    
    
    282  | 
     | 
    6  | 
    	t.b += (q - t.a);  | 
    
    
    283  | 
     | 
    6  | 
    	r.a = p;  | 
    
    
    284  | 
     | 
    6  | 
    	TRUNC(r.a);			/* r = P/Q */  | 
    
    
    285  | 
     | 
    6  | 
    	r.b = p - r.a;  | 
    
    
    286  | 
     | 
    6  | 
    	t.b = t.b*p + t.a*r.b + a0_lo;  | 
    
    
    287  | 
     | 
    6  | 
    	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */  | 
    
    
    288  | 
     | 
    6  | 
    	r.a = t.a + a0_hi;  | 
    
    
    289  | 
     | 
    6  | 
    	TRUNC(r.a);  | 
    
    
    290  | 
     | 
    6  | 
    	r.b = ((a0_hi-r.a) + t.a) + t.b;  | 
    
    
    291  | 
     | 
    6  | 
    	return (r);			/* r = a0 + t */  | 
    
    
    292  | 
     | 
    6  | 
    }  | 
    
    
    293  | 
     | 
     | 
     | 
    
    
    294  | 
     | 
     | 
    static double  | 
    
    
    295  | 
     | 
     | 
    neg_gam(double x)  | 
    
    
    296  | 
     | 
     | 
    { | 
    
    
    297  | 
     | 
     | 
    	int sgn = 1;  | 
    
    
    298  | 
     | 
     | 
    	struct Double lg, lsine;  | 
    
    
    299  | 
     | 
     | 
    	double y, z;  | 
    
    
    300  | 
     | 
     | 
     | 
    
    
    301  | 
     | 
    18  | 
    	y = ceil(x);  | 
    
    
    302  | 
    ✓✓ | 
    9  | 
    	if (y == x)		/* Negative integer. */  | 
    
    
    303  | 
     | 
    3  | 
    		return ((x - x) / zero);  | 
    
    
    304  | 
     | 
    6  | 
    	z = y - x;  | 
    
    
    305  | 
    ✓✓ | 
    6  | 
    	if (z > 0.5)  | 
    
    
    306  | 
     | 
    3  | 
    		z = one - z;  | 
    
    
    307  | 
     | 
    6  | 
    	y = 0.5 * y;  | 
    
    
    308  | 
    ✓✓ | 
    6  | 
    	if (y == ceil(y))  | 
    
    
    309  | 
     | 
    3  | 
    		sgn = -1;  | 
    
    
    310  | 
    ✓✓ | 
    6  | 
    	if (z < .25)  | 
    
    
    311  | 
     | 
    3  | 
    		z = sin(M_PI*z);  | 
    
    
    312  | 
     | 
     | 
    	else  | 
    
    
    313  | 
     | 
    3  | 
    		z = cos(M_PI*(0.5-z));  | 
    
    
    314  | 
     | 
     | 
    	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */  | 
    
    
    315  | 
    ✓✓ | 
    6  | 
    	if (x < -170) { | 
    
    
    316  | 
    ✗✓ | 
    3  | 
    		if (x < -190)  | 
    
    
    317  | 
     | 
     | 
    			return ((double)sgn*tiny*tiny);  | 
    
    
    318  | 
     | 
    3  | 
    		y = one - x;		/* exact: 128 < |x| < 255 */  | 
    
    
    319  | 
     | 
    3  | 
    		lg = large_gam(y);  | 
    
    
    320  | 
     | 
    3  | 
    		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */  | 
    
    
    321  | 
     | 
    3  | 
    		lg.a -= lsine.a;		/* exact (opposite signs) */  | 
    
    
    322  | 
     | 
    3  | 
    		lg.b -= lsine.b;  | 
    
    
    323  | 
     | 
    3  | 
    		y = -(lg.a + lg.b);  | 
    
    
    324  | 
     | 
    3  | 
    		z = (y + lg.a) + lg.b;  | 
    
    
    325  | 
     | 
    3  | 
    		y = __exp__D(y, z);  | 
    
    
    326  | 
    ✗✓ | 
    3  | 
    		if (sgn < 0) y = -y;  | 
    
    
    327  | 
     | 
    3  | 
    		return (y);  | 
    
    
    328  | 
     | 
     | 
    	}  | 
    
    
    329  | 
     | 
    3  | 
    	y = one-x;  | 
    
    
    330  | 
    ✓✗ | 
    3  | 
    	if (one-y == x)  | 
    
    
    331  | 
     | 
    3  | 
    		y = tgamma(y);  | 
    
    
    332  | 
     | 
     | 
    	else		/* 1-x is inexact */  | 
    
    
    333  | 
     | 
     | 
    		y = -x*tgamma(-x);  | 
    
    
    334  | 
    ✓✗ | 
    6  | 
    	if (sgn < 0) y = -y;  | 
    
    
    335  | 
     | 
    3  | 
    	return (M_PI / (y*z));  | 
    
    
    336  | 
     | 
    9  | 
    }  |