1  | 
     | 
     | 
    /* e_j0f.c -- float version of e_j0.c.  | 
    
    
    2  | 
     | 
     | 
     * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.  | 
    
    
    3  | 
     | 
     | 
     */  | 
    
    
    4  | 
     | 
     | 
     | 
    
    
    5  | 
     | 
     | 
    /*  | 
    
    
    6  | 
     | 
     | 
     * ====================================================  | 
    
    
    7  | 
     | 
     | 
     * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.  | 
    
    
    8  | 
     | 
     | 
     *  | 
    
    
    9  | 
     | 
     | 
     * Developed at SunPro, a Sun Microsystems, Inc. business.  | 
    
    
    10  | 
     | 
     | 
     * Permission to use, copy, modify, and distribute this  | 
    
    
    11  | 
     | 
     | 
     * software is freely granted, provided that this notice  | 
    
    
    12  | 
     | 
     | 
     * is preserved.  | 
    
    
    13  | 
     | 
     | 
     * ====================================================  | 
    
    
    14  | 
     | 
     | 
     */  | 
    
    
    15  | 
     | 
     | 
     | 
    
    
    16  | 
     | 
     | 
    #include "math.h"  | 
    
    
    17  | 
     | 
     | 
    #include "math_private.h"  | 
    
    
    18  | 
     | 
     | 
     | 
    
    
    19  | 
     | 
     | 
    static float pzerof(float), qzerof(float);  | 
    
    
    20  | 
     | 
     | 
     | 
    
    
    21  | 
     | 
     | 
    static const float  | 
    
    
    22  | 
     | 
     | 
    huge 	= 1e30,  | 
    
    
    23  | 
     | 
     | 
    one	= 1.0,  | 
    
    
    24  | 
     | 
     | 
    invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */  | 
    
    
    25  | 
     | 
     | 
    tpi      =  6.3661974669e-01, /* 0x3f22f983 */  | 
    
    
    26  | 
     | 
     | 
     		/* R0/S0 on [0, 2.00] */  | 
    
    
    27  | 
     | 
     | 
    R02  =  1.5625000000e-02, /* 0x3c800000 */  | 
    
    
    28  | 
     | 
     | 
    R03  = -1.8997929874e-04, /* 0xb947352e */  | 
    
    
    29  | 
     | 
     | 
    R04  =  1.8295404516e-06, /* 0x35f58e88 */  | 
    
    
    30  | 
     | 
     | 
    R05  = -4.6183270541e-09, /* 0xb19eaf3c */  | 
    
    
    31  | 
     | 
     | 
    S01  =  1.5619102865e-02, /* 0x3c7fe744 */  | 
    
    
    32  | 
     | 
     | 
    S02  =  1.1692678527e-04, /* 0x38f53697 */  | 
    
    
    33  | 
     | 
     | 
    S03  =  5.1354652442e-07, /* 0x3509daa6 */  | 
    
    
    34  | 
     | 
     | 
    S04  =  1.1661400734e-09; /* 0x30a045e8 */  | 
    
    
    35  | 
     | 
     | 
     | 
    
    
    36  | 
     | 
     | 
    static const float zero = 0.0;  | 
    
    
    37  | 
     | 
     | 
     | 
    
    
    38  | 
     | 
     | 
    float  | 
    
    
    39  | 
     | 
     | 
    j0f(float x)  | 
    
    
    40  | 
     | 
     | 
    { | 
    
    
    41  | 
     | 
     | 
    	float z, s,c,ss,cc,r,u,v;  | 
    
    
    42  | 
     | 
     | 
    	int32_t hx,ix;  | 
    
    
    43  | 
     | 
     | 
     | 
    
    
    44  | 
     | 
     | 
    	GET_FLOAT_WORD(hx,x);  | 
    
    
    45  | 
     | 
     | 
    	ix = hx&0x7fffffff;  | 
    
    
    46  | 
     | 
     | 
    	if(ix>=0x7f800000) return one/(x*x);  | 
    
    
    47  | 
     | 
     | 
    	x = fabsf(x);  | 
    
    
    48  | 
     | 
     | 
    	if(ix >= 0x40000000) {	/* |x| >= 2.0 */ | 
    
    
    49  | 
     | 
     | 
    		s = sinf(x);  | 
    
    
    50  | 
     | 
     | 
    		c = cosf(x);  | 
    
    
    51  | 
     | 
     | 
    		ss = s-c;  | 
    
    
    52  | 
     | 
     | 
    		cc = s+c;  | 
    
    
    53  | 
     | 
     | 
    		if(ix<0x7f000000) {  /* make sure x+x not overflow */ | 
    
    
    54  | 
     | 
     | 
    		    z = -cosf(x+x);  | 
    
    
    55  | 
     | 
     | 
    		    if ((s*c)<zero) cc = z/ss;  | 
    
    
    56  | 
     | 
     | 
    		    else 	    ss = z/cc;  | 
    
    
    57  | 
     | 
     | 
    		}  | 
    
    
    58  | 
     | 
     | 
    	/*  | 
    
    
    59  | 
     | 
     | 
    	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)  | 
    
    
    60  | 
     | 
     | 
    	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)  | 
    
    
    61  | 
     | 
     | 
    	 */  | 
    
    
    62  | 
     | 
     | 
    		if(ix>0x80000000U) z = (invsqrtpi*cc)/sqrtf(x);  | 
    
    
    63  | 
     | 
     | 
    		else { | 
    
    
    64  | 
     | 
     | 
    		    u = pzerof(x); v = qzerof(x);  | 
    
    
    65  | 
     | 
     | 
    		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);  | 
    
    
    66  | 
     | 
     | 
    		}  | 
    
    
    67  | 
     | 
     | 
    		return z;  | 
    
    
    68  | 
     | 
     | 
    	}  | 
    
    
    69  | 
     | 
     | 
    	if(ix<0x39000000) {	/* |x| < 2**-13 */ | 
    
    
    70  | 
     | 
     | 
    	    if(huge+x>one) {	/* raise inexact if x != 0 */ | 
    
    
    71  | 
     | 
     | 
    	        if(ix<0x32000000) return one;	/* |x|<2**-27 */  | 
    
    
    72  | 
     | 
     | 
    	        else 	      return one - (float)0.25*x*x;  | 
    
    
    73  | 
     | 
     | 
    	    }  | 
    
    
    74  | 
     | 
     | 
    	}  | 
    
    
    75  | 
     | 
     | 
    	z = x*x;  | 
    
    
    76  | 
     | 
     | 
    	r =  z*(R02+z*(R03+z*(R04+z*R05)));  | 
    
    
    77  | 
     | 
     | 
    	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));  | 
    
    
    78  | 
     | 
     | 
    	if(ix < 0x3F800000) {	/* |x| < 1.00 */ | 
    
    
    79  | 
     | 
     | 
    	    return one + z*((float)-0.25+(r/s));  | 
    
    
    80  | 
     | 
     | 
    	} else { | 
    
    
    81  | 
     | 
     | 
    	    u = (float)0.5*x;  | 
    
    
    82  | 
     | 
     | 
    	    return((one+u)*(one-u)+z*(r/s));  | 
    
    
    83  | 
     | 
     | 
    	}  | 
    
    
    84  | 
     | 
     | 
    }  | 
    
    
    85  | 
     | 
     | 
    DEF_NONSTD(j0f);  | 
    
    
    86  | 
     | 
     | 
     | 
    
    
    87  | 
     | 
     | 
    static const float  | 
    
    
    88  | 
     | 
     | 
    u00  = -7.3804296553e-02, /* 0xbd9726b5 */  | 
    
    
    89  | 
     | 
     | 
    u01  =  1.7666645348e-01, /* 0x3e34e80d */  | 
    
    
    90  | 
     | 
     | 
    u02  = -1.3818567619e-02, /* 0xbc626746 */  | 
    
    
    91  | 
     | 
     | 
    u03  =  3.4745343146e-04, /* 0x39b62a69 */  | 
    
    
    92  | 
     | 
     | 
    u04  = -3.8140706238e-06, /* 0xb67ff53c */  | 
    
    
    93  | 
     | 
     | 
    u05  =  1.9559013964e-08, /* 0x32a802ba */  | 
    
    
    94  | 
     | 
     | 
    u06  = -3.9820518410e-11, /* 0xae2f21eb */  | 
    
    
    95  | 
     | 
     | 
    v01  =  1.2730483897e-02, /* 0x3c509385 */  | 
    
    
    96  | 
     | 
     | 
    v02  =  7.6006865129e-05, /* 0x389f65e0 */  | 
    
    
    97  | 
     | 
     | 
    v03  =  2.5915085189e-07, /* 0x348b216c */  | 
    
    
    98  | 
     | 
     | 
    v04  =  4.4111031494e-10; /* 0x2ff280c2 */  | 
    
    
    99  | 
     | 
     | 
     | 
    
    
    100  | 
     | 
     | 
    float  | 
    
    
    101  | 
     | 
     | 
    y0f(float x)  | 
    
    
    102  | 
     | 
     | 
    { | 
    
    
    103  | 
     | 
     | 
    	float z, s,c,ss,cc,u,v;  | 
    
    
    104  | 
     | 
     | 
    	int32_t hx,ix;  | 
    
    
    105  | 
     | 
     | 
     | 
    
    
    106  | 
     | 
     | 
    	GET_FLOAT_WORD(hx,x);  | 
    
    
    107  | 
     | 
     | 
            ix = 0x7fffffff&hx;  | 
    
    
    108  | 
     | 
     | 
        /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */  | 
    
    
    109  | 
     | 
     | 
    	if(ix>=0x7f800000) return  one/(x+x*x);  | 
    
    
    110  | 
     | 
     | 
            if(ix==0) return -one/zero;  | 
    
    
    111  | 
     | 
     | 
            if(hx<0) return zero/zero;  | 
    
    
    112  | 
     | 
     | 
            if(ix >= 0x40000000) {  /* |x| >= 2.0 */ | 
    
    
    113  | 
     | 
     | 
            /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))  | 
    
    
    114  | 
     | 
     | 
             * where x0 = x-pi/4  | 
    
    
    115  | 
     | 
     | 
             *      Better formula:  | 
    
    
    116  | 
     | 
     | 
             *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)  | 
    
    
    117  | 
     | 
     | 
             *                      =  1/sqrt(2) * (sin(x) + cos(x))  | 
    
    
    118  | 
     | 
     | 
             *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)  | 
    
    
    119  | 
     | 
     | 
             *                      =  1/sqrt(2) * (sin(x) - cos(x))  | 
    
    
    120  | 
     | 
     | 
             * To avoid cancellation, use  | 
    
    
    121  | 
     | 
     | 
             *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))  | 
    
    
    122  | 
     | 
     | 
             * to compute the worse one.  | 
    
    
    123  | 
     | 
     | 
             */  | 
    
    
    124  | 
     | 
     | 
                    s = sinf(x);  | 
    
    
    125  | 
     | 
     | 
                    c = cosf(x);  | 
    
    
    126  | 
     | 
     | 
                    ss = s-c;  | 
    
    
    127  | 
     | 
     | 
                    cc = s+c;  | 
    
    
    128  | 
     | 
     | 
    	/*  | 
    
    
    129  | 
     | 
     | 
    	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)  | 
    
    
    130  | 
     | 
     | 
    	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)  | 
    
    
    131  | 
     | 
     | 
    	 */  | 
    
    
    132  | 
     | 
     | 
                    if(ix<0x7f000000) {  /* make sure x+x not overflow */ | 
    
    
    133  | 
     | 
     | 
                        z = -cosf(x+x);  | 
    
    
    134  | 
     | 
     | 
                        if ((s*c)<zero) cc = z/ss;  | 
    
    
    135  | 
     | 
     | 
                        else            ss = z/cc;  | 
    
    
    136  | 
     | 
     | 
                    }  | 
    
    
    137  | 
     | 
     | 
                    if(ix>0x80000000U) z = (invsqrtpi*ss)/sqrtf(x);  | 
    
    
    138  | 
     | 
     | 
                    else { | 
    
    
    139  | 
     | 
     | 
                        u = pzerof(x); v = qzerof(x);  | 
    
    
    140  | 
     | 
     | 
                        z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);  | 
    
    
    141  | 
     | 
     | 
                    }  | 
    
    
    142  | 
     | 
     | 
                    return z;  | 
    
    
    143  | 
     | 
     | 
    	}  | 
    
    
    144  | 
     | 
     | 
    	if(ix<=0x32000000) {	/* x < 2**-27 */ | 
    
    
    145  | 
     | 
     | 
    	    return(u00 + tpi*logf(x));  | 
    
    
    146  | 
     | 
     | 
    	}  | 
    
    
    147  | 
     | 
     | 
    	z = x*x;  | 
    
    
    148  | 
     | 
     | 
    	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));  | 
    
    
    149  | 
     | 
     | 
    	v = one+z*(v01+z*(v02+z*(v03+z*v04)));  | 
    
    
    150  | 
     | 
     | 
    	return(u/v + tpi*(j0f(x)*logf(x)));  | 
    
    
    151  | 
     | 
     | 
    }  | 
    
    
    152  | 
     | 
     | 
    DEF_NONSTD(y0f);  | 
    
    
    153  | 
     | 
     | 
     | 
    
    
    154  | 
     | 
     | 
    /* The asymptotic expansions of pzero is  | 
    
    
    155  | 
     | 
     | 
     *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.  | 
    
    
    156  | 
     | 
     | 
     * For x >= 2, We approximate pzero by  | 
    
    
    157  | 
     | 
     | 
     * 	pzero(x) = 1 + (R/S)  | 
    
    
    158  | 
     | 
     | 
     * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10  | 
    
    
    159  | 
     | 
     | 
     * 	  S = 1 + pS0*s^2 + ... + pS4*s^10  | 
    
    
    160  | 
     | 
     | 
     * and  | 
    
    
    161  | 
     | 
     | 
     *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)  | 
    
    
    162  | 
     | 
     | 
     */  | 
    
    
    163  | 
     | 
     | 
    static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ | 
    
    
    164  | 
     | 
     | 
      0.0000000000e+00, /* 0x00000000 */  | 
    
    
    165  | 
     | 
     | 
     -7.0312500000e-02, /* 0xbd900000 */  | 
    
    
    166  | 
     | 
     | 
     -8.0816707611e+00, /* 0xc1014e86 */  | 
    
    
    167  | 
     | 
     | 
     -2.5706311035e+02, /* 0xc3808814 */  | 
    
    
    168  | 
     | 
     | 
     -2.4852163086e+03, /* 0xc51b5376 */  | 
    
    
    169  | 
     | 
     | 
     -5.2530439453e+03, /* 0xc5a4285a */  | 
    
    
    170  | 
     | 
     | 
    };  | 
    
    
    171  | 
     | 
     | 
    static const float pS8[5] = { | 
    
    
    172  | 
     | 
     | 
      1.1653436279e+02, /* 0x42e91198 */  | 
    
    
    173  | 
     | 
     | 
      3.8337448730e+03, /* 0x456f9beb */  | 
    
    
    174  | 
     | 
     | 
      4.0597855469e+04, /* 0x471e95db */  | 
    
    
    175  | 
     | 
     | 
      1.1675296875e+05, /* 0x47e4087c */  | 
    
    
    176  | 
     | 
     | 
      4.7627726562e+04, /* 0x473a0bba */  | 
    
    
    177  | 
     | 
     | 
    };  | 
    
    
    178  | 
     | 
     | 
    static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ | 
    
    
    179  | 
     | 
     | 
     -1.1412546255e-11, /* 0xad48c58a */  | 
    
    
    180  | 
     | 
     | 
     -7.0312492549e-02, /* 0xbd8fffff */  | 
    
    
    181  | 
     | 
     | 
     -4.1596107483e+00, /* 0xc0851b88 */  | 
    
    
    182  | 
     | 
     | 
     -6.7674766541e+01, /* 0xc287597b */  | 
    
    
    183  | 
     | 
     | 
     -3.3123129272e+02, /* 0xc3a59d9b */  | 
    
    
    184  | 
     | 
     | 
     -3.4643338013e+02, /* 0xc3ad3779 */  | 
    
    
    185  | 
     | 
     | 
    };  | 
    
    
    186  | 
     | 
     | 
    static const float pS5[5] = { | 
    
    
    187  | 
     | 
     | 
      6.0753936768e+01, /* 0x42730408 */  | 
    
    
    188  | 
     | 
     | 
      1.0512523193e+03, /* 0x44836813 */  | 
    
    
    189  | 
     | 
     | 
      5.9789707031e+03, /* 0x45bad7c4 */  | 
    
    
    190  | 
     | 
     | 
      9.6254453125e+03, /* 0x461665c8 */  | 
    
    
    191  | 
     | 
     | 
      2.4060581055e+03, /* 0x451660ee */  | 
    
    
    192  | 
     | 
     | 
    };  | 
    
    
    193  | 
     | 
     | 
     | 
    
    
    194  | 
     | 
     | 
    static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ | 
    
    
    195  | 
     | 
     | 
     -2.5470459075e-09, /* 0xb12f081b */  | 
    
    
    196  | 
     | 
     | 
     -7.0311963558e-02, /* 0xbd8fffb8 */  | 
    
    
    197  | 
     | 
     | 
     -2.4090321064e+00, /* 0xc01a2d95 */  | 
    
    
    198  | 
     | 
     | 
     -2.1965976715e+01, /* 0xc1afba52 */  | 
    
    
    199  | 
     | 
     | 
     -5.8079170227e+01, /* 0xc2685112 */  | 
    
    
    200  | 
     | 
     | 
     -3.1447946548e+01, /* 0xc1fb9565 */  | 
    
    
    201  | 
     | 
     | 
    };  | 
    
    
    202  | 
     | 
     | 
    static const float pS3[5] = { | 
    
    
    203  | 
     | 
     | 
      3.5856033325e+01, /* 0x420f6c94 */  | 
    
    
    204  | 
     | 
     | 
      3.6151397705e+02, /* 0x43b4c1ca */  | 
    
    
    205  | 
     | 
     | 
      1.1936077881e+03, /* 0x44953373 */  | 
    
    
    206  | 
     | 
     | 
      1.1279968262e+03, /* 0x448cffe6 */  | 
    
    
    207  | 
     | 
     | 
      1.7358093262e+02, /* 0x432d94b8 */  | 
    
    
    208  | 
     | 
     | 
    };  | 
    
    
    209  | 
     | 
     | 
     | 
    
    
    210  | 
     | 
     | 
    static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ | 
    
    
    211  | 
     | 
     | 
     -8.8753431271e-08, /* 0xb3be98b7 */  | 
    
    
    212  | 
     | 
     | 
     -7.0303097367e-02, /* 0xbd8ffb12 */  | 
    
    
    213  | 
     | 
     | 
     -1.4507384300e+00, /* 0xbfb9b1cc */  | 
    
    
    214  | 
     | 
     | 
     -7.6356959343e+00, /* 0xc0f4579f */  | 
    
    
    215  | 
     | 
     | 
     -1.1193166733e+01, /* 0xc1331736 */  | 
    
    
    216  | 
     | 
     | 
     -3.2336456776e+00, /* 0xc04ef40d */  | 
    
    
    217  | 
     | 
     | 
    };  | 
    
    
    218  | 
     | 
     | 
    static const float pS2[5] = { | 
    
    
    219  | 
     | 
     | 
      2.2220300674e+01, /* 0x41b1c32d */  | 
    
    
    220  | 
     | 
     | 
      1.3620678711e+02, /* 0x430834f0 */  | 
    
    
    221  | 
     | 
     | 
      2.7047027588e+02, /* 0x43873c32 */  | 
    
    
    222  | 
     | 
     | 
      1.5387539673e+02, /* 0x4319e01a */  | 
    
    
    223  | 
     | 
     | 
      1.4657617569e+01, /* 0x416a859a */  | 
    
    
    224  | 
     | 
     | 
    };  | 
    
    
    225  | 
     | 
     | 
     | 
    
    
    226  | 
     | 
     | 
    static float  | 
    
    
    227  | 
     | 
     | 
    pzerof(float x)  | 
    
    
    228  | 
     | 
     | 
    { | 
    
    
    229  | 
     | 
     | 
    	const float *p,*q;  | 
    
    
    230  | 
     | 
     | 
    	float z,r,s;  | 
    
    
    231  | 
     | 
     | 
    	int32_t ix;  | 
    
    
    232  | 
     | 
     | 
    	GET_FLOAT_WORD(ix,x);  | 
    
    
    233  | 
     | 
     | 
    	ix &= 0x7fffffff;  | 
    
    
    234  | 
     | 
     | 
    	if(ix>=0x41000000)     {p = pR8; q= pS8;} | 
    
    
    235  | 
     | 
     | 
    	else if(ix>=0x40f71c58){p = pR5; q= pS5;} | 
    
    
    236  | 
     | 
     | 
    	else if(ix>=0x4036db68){p = pR3; q= pS3;} | 
    
    
    237  | 
     | 
     | 
    	else if(ix>=0x40000000){p = pR2; q= pS2;} | 
    
    
    238  | 
     | 
     | 
    	z = one/(x*x);  | 
    
    
    239  | 
     | 
     | 
    	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));  | 
    
    
    240  | 
     | 
     | 
    	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));  | 
    
    
    241  | 
     | 
     | 
    	return one+ r/s;  | 
    
    
    242  | 
     | 
     | 
    }  | 
    
    
    243  | 
     | 
     | 
     | 
    
    
    244  | 
     | 
     | 
     | 
    
    
    245  | 
     | 
     | 
    /* For x >= 8, the asymptotic expansions of qzero is  | 
    
    
    246  | 
     | 
     | 
     *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.  | 
    
    
    247  | 
     | 
     | 
     * We approximate pzero by  | 
    
    
    248  | 
     | 
     | 
     * 	qzero(x) = s*(-1.25 + (R/S))  | 
    
    
    249  | 
     | 
     | 
     * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10  | 
    
    
    250  | 
     | 
     | 
     * 	  S = 1 + qS0*s^2 + ... + qS5*s^12  | 
    
    
    251  | 
     | 
     | 
     * and  | 
    
    
    252  | 
     | 
     | 
     *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)  | 
    
    
    253  | 
     | 
     | 
     */  | 
    
    
    254  | 
     | 
     | 
    static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ | 
    
    
    255  | 
     | 
     | 
      0.0000000000e+00, /* 0x00000000 */  | 
    
    
    256  | 
     | 
     | 
      7.3242187500e-02, /* 0x3d960000 */  | 
    
    
    257  | 
     | 
     | 
      1.1768206596e+01, /* 0x413c4a93 */  | 
    
    
    258  | 
     | 
     | 
      5.5767340088e+02, /* 0x440b6b19 */  | 
    
    
    259  | 
     | 
     | 
      8.8591972656e+03, /* 0x460a6cca */  | 
    
    
    260  | 
     | 
     | 
      3.7014625000e+04, /* 0x471096a0 */  | 
    
    
    261  | 
     | 
     | 
    };  | 
    
    
    262  | 
     | 
     | 
    static const float qS8[6] = { | 
    
    
    263  | 
     | 
     | 
      1.6377603149e+02, /* 0x4323c6aa */  | 
    
    
    264  | 
     | 
     | 
      8.0983447266e+03, /* 0x45fd12c2 */  | 
    
    
    265  | 
     | 
     | 
      1.4253829688e+05, /* 0x480b3293 */  | 
    
    
    266  | 
     | 
     | 
      8.0330925000e+05, /* 0x49441ed4 */  | 
    
    
    267  | 
     | 
     | 
      8.4050156250e+05, /* 0x494d3359 */  | 
    
    
    268  | 
     | 
     | 
     -3.4389928125e+05, /* 0xc8a7eb69 */  | 
    
    
    269  | 
     | 
     | 
    };  | 
    
    
    270  | 
     | 
     | 
     | 
    
    
    271  | 
     | 
     | 
    static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ | 
    
    
    272  | 
     | 
     | 
      1.8408595828e-11, /* 0x2da1ec79 */  | 
    
    
    273  | 
     | 
     | 
      7.3242180049e-02, /* 0x3d95ffff */  | 
    
    
    274  | 
     | 
     | 
      5.8356351852e+00, /* 0x40babd86 */  | 
    
    
    275  | 
     | 
     | 
      1.3511157227e+02, /* 0x43071c90 */  | 
    
    
    276  | 
     | 
     | 
      1.0272437744e+03, /* 0x448067cd */  | 
    
    
    277  | 
     | 
     | 
      1.9899779053e+03, /* 0x44f8bf4b */  | 
    
    
    278  | 
     | 
     | 
    };  | 
    
    
    279  | 
     | 
     | 
    static const float qS5[6] = { | 
    
    
    280  | 
     | 
     | 
      8.2776611328e+01, /* 0x42a58da0 */  | 
    
    
    281  | 
     | 
     | 
      2.0778142090e+03, /* 0x4501dd07 */  | 
    
    
    282  | 
     | 
     | 
      1.8847289062e+04, /* 0x46933e94 */  | 
    
    
    283  | 
     | 
     | 
      5.6751113281e+04, /* 0x475daf1d */  | 
    
    
    284  | 
     | 
     | 
      3.5976753906e+04, /* 0x470c88c1 */  | 
    
    
    285  | 
     | 
     | 
     -5.3543427734e+03, /* 0xc5a752be */  | 
    
    
    286  | 
     | 
     | 
    };  | 
    
    
    287  | 
     | 
     | 
     | 
    
    
    288  | 
     | 
     | 
    static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ | 
    
    
    289  | 
     | 
     | 
      4.3774099900e-09, /* 0x3196681b */  | 
    
    
    290  | 
     | 
     | 
      7.3241114616e-02, /* 0x3d95ff70 */  | 
    
    
    291  | 
     | 
     | 
      3.3442313671e+00, /* 0x405607e3 */  | 
    
    
    292  | 
     | 
     | 
      4.2621845245e+01, /* 0x422a7cc5 */  | 
    
    
    293  | 
     | 
     | 
      1.7080809021e+02, /* 0x432acedf */  | 
    
    
    294  | 
     | 
     | 
      1.6673394775e+02, /* 0x4326bbe4 */  | 
    
    
    295  | 
     | 
     | 
    };  | 
    
    
    296  | 
     | 
     | 
    static const float qS3[6] = { | 
    
    
    297  | 
     | 
     | 
      4.8758872986e+01, /* 0x42430916 */  | 
    
    
    298  | 
     | 
     | 
      7.0968920898e+02, /* 0x44316c1c */  | 
    
    
    299  | 
     | 
     | 
      3.7041481934e+03, /* 0x4567825f */  | 
    
    
    300  | 
     | 
     | 
      6.4604252930e+03, /* 0x45c9e367 */  | 
    
    
    301  | 
     | 
     | 
      2.5163337402e+03, /* 0x451d4557 */  | 
    
    
    302  | 
     | 
     | 
     -1.4924745178e+02, /* 0xc3153f59 */  | 
    
    
    303  | 
     | 
     | 
    };  | 
    
    
    304  | 
     | 
     | 
     | 
    
    
    305  | 
     | 
     | 
    static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ | 
    
    
    306  | 
     | 
     | 
      1.5044444979e-07, /* 0x342189db */  | 
    
    
    307  | 
     | 
     | 
      7.3223426938e-02, /* 0x3d95f62a */  | 
    
    
    308  | 
     | 
     | 
      1.9981917143e+00, /* 0x3fffc4bf */  | 
    
    
    309  | 
     | 
     | 
      1.4495602608e+01, /* 0x4167edfd */  | 
    
    
    310  | 
     | 
     | 
      3.1666231155e+01, /* 0x41fd5471 */  | 
    
    
    311  | 
     | 
     | 
      1.6252708435e+01, /* 0x4182058c */  | 
    
    
    312  | 
     | 
     | 
    };  | 
    
    
    313  | 
     | 
     | 
    static const float qS2[6] = { | 
    
    
    314  | 
     | 
     | 
      3.0365585327e+01, /* 0x41f2ecb8 */  | 
    
    
    315  | 
     | 
     | 
      2.6934811401e+02, /* 0x4386ac8f */  | 
    
    
    316  | 
     | 
     | 
      8.4478375244e+02, /* 0x44533229 */  | 
    
    
    317  | 
     | 
     | 
      8.8293585205e+02, /* 0x445cbbe5 */  | 
    
    
    318  | 
     | 
     | 
      2.1266638184e+02, /* 0x4354aa98 */  | 
    
    
    319  | 
     | 
     | 
     -5.3109550476e+00, /* 0xc0a9f358 */  | 
    
    
    320  | 
     | 
     | 
    };  | 
    
    
    321  | 
     | 
     | 
     | 
    
    
    322  | 
     | 
     | 
    static float  | 
    
    
    323  | 
     | 
     | 
    qzerof(float x)  | 
    
    
    324  | 
     | 
     | 
    { | 
    
    
    325  | 
     | 
     | 
    	const float *p,*q;  | 
    
    
    326  | 
     | 
     | 
    	float s,r,z;  | 
    
    
    327  | 
     | 
     | 
    	int32_t ix;  | 
    
    
    328  | 
     | 
     | 
    	GET_FLOAT_WORD(ix,x);  | 
    
    
    329  | 
     | 
     | 
    	ix &= 0x7fffffff;  | 
    
    
    330  | 
     | 
     | 
    	if(ix>=0x41000000)     {p = qR8; q= qS8;} | 
    
    
    331  | 
     | 
     | 
    	else if(ix>=0x40f71c58){p = qR5; q= qS5;} | 
    
    
    332  | 
     | 
     | 
    	else if(ix>=0x4036db68){p = qR3; q= qS3;} | 
    
    
    333  | 
     | 
     | 
    	else if(ix>=0x40000000){p = qR2; q= qS2;} | 
    
    
    334  | 
     | 
     | 
    	z = one/(x*x);  | 
    
    
    335  | 
     | 
     | 
    	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));  | 
    
    
    336  | 
     | 
     | 
    	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));  | 
    
    
    337  | 
     | 
     | 
    	return (-(float).125 + r/s)/x;  | 
    
    
    338  | 
     | 
     | 
    }  |