1  | 
     | 
     | 
    /* @(#)e_j1.c 5.1 93/09/24 */  | 
    
    
    2  | 
     | 
     | 
    /*  | 
    
    
    3  | 
     | 
     | 
     * ====================================================  | 
    
    
    4  | 
     | 
     | 
     * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.  | 
    
    
    5  | 
     | 
     | 
     *  | 
    
    
    6  | 
     | 
     | 
     * Developed at SunPro, a Sun Microsystems, Inc. business.  | 
    
    
    7  | 
     | 
     | 
     * Permission to use, copy, modify, and distribute this  | 
    
    
    8  | 
     | 
     | 
     * software is freely granted, provided that this notice  | 
    
    
    9  | 
     | 
     | 
     * is preserved.  | 
    
    
    10  | 
     | 
     | 
     * ====================================================  | 
    
    
    11  | 
     | 
     | 
     */  | 
    
    
    12  | 
     | 
     | 
     | 
    
    
    13  | 
     | 
     | 
    /* j1(x), y1(x)  | 
    
    
    14  | 
     | 
     | 
     * Bessel function of the first and second kinds of order zero.  | 
    
    
    15  | 
     | 
     | 
     * Method -- j1(x):  | 
    
    
    16  | 
     | 
     | 
     *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...  | 
    
    
    17  | 
     | 
     | 
     *	2. Reduce x to |x| since j1(x)=-j1(-x),  and  | 
    
    
    18  | 
     | 
     | 
     *	   for x in (0,2)  | 
    
    
    19  | 
     | 
     | 
     *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;  | 
    
    
    20  | 
     | 
     | 
     *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )  | 
    
    
    21  | 
     | 
     | 
     *	   for x in (2,inf)  | 
    
    
    22  | 
     | 
     | 
     * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))  | 
    
    
    23  | 
     | 
     | 
     * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))  | 
    
    
    24  | 
     | 
     | 
     * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)  | 
    
    
    25  | 
     | 
     | 
     *	   as follow:  | 
    
    
    26  | 
     | 
     | 
     *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)  | 
    
    
    27  | 
     | 
     | 
     *			=  1/sqrt(2) * (sin(x) - cos(x))  | 
    
    
    28  | 
     | 
     | 
     *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)  | 
    
    
    29  | 
     | 
     | 
     *			= -1/sqrt(2) * (sin(x) + cos(x))  | 
    
    
    30  | 
     | 
     | 
     * 	   (To avoid cancellation, use  | 
    
    
    31  | 
     | 
     | 
     *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))  | 
    
    
    32  | 
     | 
     | 
     * 	    to compute the worse one.)  | 
    
    
    33  | 
     | 
     | 
     *  | 
    
    
    34  | 
     | 
     | 
     *	3 Special cases  | 
    
    
    35  | 
     | 
     | 
     *		j1(nan)= nan  | 
    
    
    36  | 
     | 
     | 
     *		j1(0) = 0  | 
    
    
    37  | 
     | 
     | 
     *		j1(inf) = 0  | 
    
    
    38  | 
     | 
     | 
     *  | 
    
    
    39  | 
     | 
     | 
     * Method -- y1(x):  | 
    
    
    40  | 
     | 
     | 
     *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN  | 
    
    
    41  | 
     | 
     | 
     *	2. For x<2.  | 
    
    
    42  | 
     | 
     | 
     *	   Since  | 
    
    
    43  | 
     | 
     | 
     *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)  | 
    
    
    44  | 
     | 
     | 
     *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.  | 
    
    
    45  | 
     | 
     | 
     *	   We use the following function to approximate y1,  | 
    
    
    46  | 
     | 
     | 
     *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2  | 
    
    
    47  | 
     | 
     | 
     *	   where for x in [0,2] (abs err less than 2**-65.89)  | 
    
    
    48  | 
     | 
     | 
     *		U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4  | 
    
    
    49  | 
     | 
     | 
     *		V(z) = 1  + v0[0]*z + ... + v0[4]*z^5  | 
    
    
    50  | 
     | 
     | 
     *	   Note: For tiny x, 1/x dominate y1 and hence  | 
    
    
    51  | 
     | 
     | 
     *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)  | 
    
    
    52  | 
     | 
     | 
     *	3. For x>=2.  | 
    
    
    53  | 
     | 
     | 
     * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))  | 
    
    
    54  | 
     | 
     | 
     * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)  | 
    
    
    55  | 
     | 
     | 
     *	   by method mentioned above.  | 
    
    
    56  | 
     | 
     | 
     */  | 
    
    
    57  | 
     | 
     | 
     | 
    
    
    58  | 
     | 
     | 
    #include "math.h"  | 
    
    
    59  | 
     | 
     | 
    #include "math_private.h"  | 
    
    
    60  | 
     | 
     | 
     | 
    
    
    61  | 
     | 
     | 
    static double pone(double), qone(double);  | 
    
    
    62  | 
     | 
     | 
     | 
    
    
    63  | 
     | 
     | 
    static const double  | 
    
    
    64  | 
     | 
     | 
    huge    = 1e300,  | 
    
    
    65  | 
     | 
     | 
    one	= 1.0,  | 
    
    
    66  | 
     | 
     | 
    invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */  | 
    
    
    67  | 
     | 
     | 
    tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */  | 
    
    
    68  | 
     | 
     | 
    	/* R0/S0 on [0,2] */  | 
    
    
    69  | 
     | 
     | 
    r00  = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */  | 
    
    
    70  | 
     | 
     | 
    r01  =  1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */  | 
    
    
    71  | 
     | 
     | 
    r02  = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */  | 
    
    
    72  | 
     | 
     | 
    r03  =  4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */  | 
    
    
    73  | 
     | 
     | 
    s01  =  1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */  | 
    
    
    74  | 
     | 
     | 
    s02  =  1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */  | 
    
    
    75  | 
     | 
     | 
    s03  =  1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */  | 
    
    
    76  | 
     | 
     | 
    s04  =  5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */  | 
    
    
    77  | 
     | 
     | 
    s05  =  1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */  | 
    
    
    78  | 
     | 
     | 
     | 
    
    
    79  | 
     | 
     | 
    static const double zero    = 0.0;  | 
    
    
    80  | 
     | 
     | 
     | 
    
    
    81  | 
     | 
     | 
    double  | 
    
    
    82  | 
     | 
     | 
    j1(double x)  | 
    
    
    83  | 
     | 
     | 
    { | 
    
    
    84  | 
     | 
     | 
    	double z, s,c,ss,cc,r,u,v,y;  | 
    
    
    85  | 
     | 
     | 
    	int32_t hx,ix;  | 
    
    
    86  | 
     | 
     | 
     | 
    
    
    87  | 
     | 
    15972  | 
    	GET_HIGH_WORD(hx,x);  | 
    
    
    88  | 
     | 
    7986  | 
    	ix = hx&0x7fffffff;  | 
    
    
    89  | 
    ✗✓ | 
    7986  | 
    	if(ix>=0x7ff00000) return one/x;  | 
    
    
    90  | 
     | 
    7986  | 
    	y = fabs(x);  | 
    
    
    91  | 
    ✓✓ | 
    7986  | 
    	if(ix >= 0x40000000) {	/* |x| >= 2.0 */ | 
    
    
    92  | 
     | 
    4236  | 
    		s = sin(y);  | 
    
    
    93  | 
     | 
    4236  | 
    		c = cos(y);  | 
    
    
    94  | 
     | 
    4236  | 
    		ss = -s-c;  | 
    
    
    95  | 
     | 
    4236  | 
    		cc = s-c;  | 
    
    
    96  | 
    ✓✗ | 
    4236  | 
    		if(ix<0x7fe00000) {  /* make sure y+y not overflow */ | 
    
    
    97  | 
     | 
    4236  | 
    		    z = cos(y+y);  | 
    
    
    98  | 
    ✓✓ | 
    7158  | 
    		    if ((s*c)>zero) cc = z/ss;  | 
    
    
    99  | 
     | 
    1314  | 
    		    else 	    ss = z/cc;  | 
    
    
    100  | 
     | 
     | 
    		}  | 
    
    
    101  | 
     | 
     | 
    	/*  | 
    
    
    102  | 
     | 
     | 
    	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)  | 
    
    
    103  | 
     | 
     | 
    	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)  | 
    
    
    104  | 
     | 
     | 
    	 */  | 
    
    
    105  | 
    ✗✓ | 
    4236  | 
    		if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(y);  | 
    
    
    106  | 
     | 
     | 
    		else { | 
    
    
    107  | 
     | 
    4236  | 
    		    u = pone(y); v = qone(y);  | 
    
    
    108  | 
     | 
    4236  | 
    		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);  | 
    
    
    109  | 
     | 
     | 
    		}  | 
    
    
    110  | 
    ✓✓ | 
    4662  | 
    		if(hx<0) return -z;  | 
    
    
    111  | 
     | 
    3810  | 
    		else  	 return  z;  | 
    
    
    112  | 
     | 
     | 
    	}  | 
    
    
    113  | 
    ✓✓ | 
    3750  | 
    	if(ix<0x3e400000) {	/* |x|<2**-27 */ | 
    
    
    114  | 
    ✓✗ | 
    12  | 
    	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */  | 
    
    
    115  | 
     | 
     | 
    	}  | 
    
    
    116  | 
     | 
    3744  | 
    	z = x*x;  | 
    
    
    117  | 
     | 
    3744  | 
    	r =  z*(r00+z*(r01+z*(r02+z*r03)));  | 
    
    
    118  | 
     | 
    3744  | 
    	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));  | 
    
    
    119  | 
     | 
    3744  | 
    	r *= x;  | 
    
    
    120  | 
     | 
    3744  | 
    	return(x*0.5+r/s);  | 
    
    
    121  | 
     | 
    7986  | 
    }  | 
    
    
    122  | 
     | 
     | 
    DEF_NONSTD(j1);  | 
    
    
    123  | 
     | 
     | 
     | 
    
    
    124  | 
     | 
     | 
    static const double U0[5] = { | 
    
    
    125  | 
     | 
     | 
     -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */  | 
    
    
    126  | 
     | 
     | 
      5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */  | 
    
    
    127  | 
     | 
     | 
     -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */  | 
    
    
    128  | 
     | 
     | 
      2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */  | 
    
    
    129  | 
     | 
     | 
     -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */  | 
    
    
    130  | 
     | 
     | 
    };  | 
    
    
    131  | 
     | 
     | 
    static const double V0[5] = { | 
    
    
    132  | 
     | 
     | 
      1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */  | 
    
    
    133  | 
     | 
     | 
      2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */  | 
    
    
    134  | 
     | 
     | 
      1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */  | 
    
    
    135  | 
     | 
     | 
      6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */  | 
    
    
    136  | 
     | 
     | 
      1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */  | 
    
    
    137  | 
     | 
     | 
    };  | 
    
    
    138  | 
     | 
     | 
     | 
    
    
    139  | 
     | 
     | 
    double  | 
    
    
    140  | 
     | 
     | 
    y1(double x)  | 
    
    
    141  | 
     | 
     | 
    { | 
    
    
    142  | 
     | 
     | 
    	double z, s,c,ss,cc,u,v;  | 
    
    
    143  | 
     | 
     | 
    	int32_t hx,ix,lx;  | 
    
    
    144  | 
     | 
     | 
     | 
    
    
    145  | 
     | 
    11844  | 
    	EXTRACT_WORDS(hx,lx,x);  | 
    
    
    146  | 
     | 
    5922  | 
            ix = 0x7fffffff&hx;  | 
    
    
    147  | 
     | 
     | 
        /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */  | 
    
    
    148  | 
    ✗✓ | 
    5922  | 
    	if(ix>=0x7ff00000) return  one/(x+x*x);  | 
    
    
    149  | 
    ✗✓ | 
    5922  | 
            if((ix|lx)==0) return -one/zero;  | 
    
    
    150  | 
    ✓✓ | 
    5934  | 
            if(hx<0) return zero/zero;  | 
    
    
    151  | 
    ✓✓ | 
    5910  | 
            if(ix >= 0x40000000) {  /* |x| >= 2.0 */ | 
    
    
    152  | 
     | 
    4056  | 
                    s = sin(x);  | 
    
    
    153  | 
     | 
    4056  | 
                    c = cos(x);  | 
    
    
    154  | 
     | 
    4056  | 
                    ss = -s-c;  | 
    
    
    155  | 
     | 
    4056  | 
                    cc = s-c;  | 
    
    
    156  | 
    ✓✗ | 
    4056  | 
                    if(ix<0x7fe00000) {  /* make sure x+x not overflow */ | 
    
    
    157  | 
     | 
    4056  | 
                        z = cos(x+x);  | 
    
    
    158  | 
    ✓✓ | 
    5664  | 
                        if ((s*c)>zero) cc = z/ss;  | 
    
    
    159  | 
     | 
    2448  | 
                        else            ss = z/cc;  | 
    
    
    160  | 
     | 
     | 
                    }  | 
    
    
    161  | 
     | 
     | 
            /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))  | 
    
    
    162  | 
     | 
     | 
             * where x0 = x-3pi/4  | 
    
    
    163  | 
     | 
     | 
             *      Better formula:  | 
    
    
    164  | 
     | 
     | 
             *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)  | 
    
    
    165  | 
     | 
     | 
             *                      =  1/sqrt(2) * (sin(x) - cos(x))  | 
    
    
    166  | 
     | 
     | 
             *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)  | 
    
    
    167  | 
     | 
     | 
             *                      = -1/sqrt(2) * (cos(x) + sin(x))  | 
    
    
    168  | 
     | 
     | 
             * To avoid cancellation, use  | 
    
    
    169  | 
     | 
     | 
             *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))  | 
    
    
    170  | 
     | 
     | 
             * to compute the worse one.  | 
    
    
    171  | 
     | 
     | 
             */  | 
    
    
    172  | 
    ✗✓ | 
    4056  | 
                    if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);  | 
    
    
    173  | 
     | 
     | 
                    else { | 
    
    
    174  | 
     | 
    4056  | 
                        u = pone(x); v = qone(x);  | 
    
    
    175  | 
     | 
    4056  | 
                        z = invsqrtpi*(u*ss+v*cc)/sqrt(x);  | 
    
    
    176  | 
     | 
     | 
                    }  | 
    
    
    177  | 
     | 
    4056  | 
                    return z;  | 
    
    
    178  | 
     | 
     | 
            }  | 
    
    
    179  | 
    ✓✓ | 
    1854  | 
            if(ix<=0x3c900000) {    /* x < 2**-54 */ | 
    
    
    180  | 
     | 
    12  | 
                return(-tpi/x);  | 
    
    
    181  | 
     | 
     | 
            }  | 
    
    
    182  | 
     | 
    1842  | 
            z = x*x;  | 
    
    
    183  | 
     | 
    1842  | 
            u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));  | 
    
    
    184  | 
     | 
    1842  | 
            v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));  | 
    
    
    185  | 
     | 
    1842  | 
            return(x*(u/v) + tpi*(j1(x)*log(x)-one/x));  | 
    
    
    186  | 
     | 
    5922  | 
    }  | 
    
    
    187  | 
     | 
     | 
    DEF_NONSTD(y1);  | 
    
    
    188  | 
     | 
     | 
     | 
    
    
    189  | 
     | 
     | 
    /* For x >= 8, the asymptotic expansions of pone is  | 
    
    
    190  | 
     | 
     | 
     *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.  | 
    
    
    191  | 
     | 
     | 
     * We approximate pone by  | 
    
    
    192  | 
     | 
     | 
     * 	pone(x) = 1 + (R/S)  | 
    
    
    193  | 
     | 
     | 
     * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10  | 
    
    
    194  | 
     | 
     | 
     * 	  S = 1 + ps0*s^2 + ... + ps4*s^10  | 
    
    
    195  | 
     | 
     | 
     * and  | 
    
    
    196  | 
     | 
     | 
     *	| pone(x)-1-R/S | <= 2  ** ( -60.06)  | 
    
    
    197  | 
     | 
     | 
     */  | 
    
    
    198  | 
     | 
     | 
     | 
    
    
    199  | 
     | 
     | 
    static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ | 
    
    
    200  | 
     | 
     | 
      0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */  | 
    
    
    201  | 
     | 
     | 
      1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */  | 
    
    
    202  | 
     | 
     | 
      1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */  | 
    
    
    203  | 
     | 
     | 
      4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */  | 
    
    
    204  | 
     | 
     | 
      3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */  | 
    
    
    205  | 
     | 
     | 
      7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */  | 
    
    
    206  | 
     | 
     | 
    };  | 
    
    
    207  | 
     | 
     | 
    static const double ps8[5] = { | 
    
    
    208  | 
     | 
     | 
      1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */  | 
    
    
    209  | 
     | 
     | 
      3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */  | 
    
    
    210  | 
     | 
     | 
      3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */  | 
    
    
    211  | 
     | 
     | 
      9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */  | 
    
    
    212  | 
     | 
     | 
      3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */  | 
    
    
    213  | 
     | 
     | 
    };  | 
    
    
    214  | 
     | 
     | 
     | 
    
    
    215  | 
     | 
     | 
    static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ | 
    
    
    216  | 
     | 
     | 
      1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */  | 
    
    
    217  | 
     | 
     | 
      1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */  | 
    
    
    218  | 
     | 
     | 
      6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */  | 
    
    
    219  | 
     | 
     | 
      1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */  | 
    
    
    220  | 
     | 
     | 
      5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */  | 
    
    
    221  | 
     | 
     | 
      5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */  | 
    
    
    222  | 
     | 
     | 
    };  | 
    
    
    223  | 
     | 
     | 
    static const double ps5[5] = { | 
    
    
    224  | 
     | 
     | 
      5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */  | 
    
    
    225  | 
     | 
     | 
      9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */  | 
    
    
    226  | 
     | 
     | 
      5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */  | 
    
    
    227  | 
     | 
     | 
      7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */  | 
    
    
    228  | 
     | 
     | 
      1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */  | 
    
    
    229  | 
     | 
     | 
    };  | 
    
    
    230  | 
     | 
     | 
     | 
    
    
    231  | 
     | 
     | 
    static const double pr3[6] = { | 
    
    
    232  | 
     | 
     | 
      3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */  | 
    
    
    233  | 
     | 
     | 
      1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */  | 
    
    
    234  | 
     | 
     | 
      3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */  | 
    
    
    235  | 
     | 
     | 
      3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */  | 
    
    
    236  | 
     | 
     | 
      9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */  | 
    
    
    237  | 
     | 
     | 
      4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */  | 
    
    
    238  | 
     | 
     | 
    };  | 
    
    
    239  | 
     | 
     | 
    static const double ps3[5] = { | 
    
    
    240  | 
     | 
     | 
      3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */  | 
    
    
    241  | 
     | 
     | 
      3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */  | 
    
    
    242  | 
     | 
     | 
      1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */  | 
    
    
    243  | 
     | 
     | 
      8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */  | 
    
    
    244  | 
     | 
     | 
      1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */  | 
    
    
    245  | 
     | 
     | 
    };  | 
    
    
    246  | 
     | 
     | 
     | 
    
    
    247  | 
     | 
     | 
    static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ | 
    
    
    248  | 
     | 
     | 
      1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */  | 
    
    
    249  | 
     | 
     | 
      1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */  | 
    
    
    250  | 
     | 
     | 
      2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */  | 
    
    
    251  | 
     | 
     | 
      1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */  | 
    
    
    252  | 
     | 
     | 
      1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */  | 
    
    
    253  | 
     | 
     | 
      5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */  | 
    
    
    254  | 
     | 
     | 
    };  | 
    
    
    255  | 
     | 
     | 
    static const double ps2[5] = { | 
    
    
    256  | 
     | 
     | 
      2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */  | 
    
    
    257  | 
     | 
     | 
      1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */  | 
    
    
    258  | 
     | 
     | 
      2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */  | 
    
    
    259  | 
     | 
     | 
      1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */  | 
    
    
    260  | 
     | 
     | 
      8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */  | 
    
    
    261  | 
     | 
     | 
    };  | 
    
    
    262  | 
     | 
     | 
     | 
    
    
    263  | 
     | 
     | 
    static double  | 
    
    
    264  | 
     | 
     | 
    pone(double x)  | 
    
    
    265  | 
     | 
     | 
    { | 
    
    
    266  | 
     | 
     | 
    	const double *p,*q;  | 
    
    
    267  | 
     | 
     | 
    	double z,r,s;  | 
    
    
    268  | 
     | 
     | 
            int32_t ix;  | 
    
    
    269  | 
     | 
    16584  | 
    	GET_HIGH_WORD(ix,x);  | 
    
    
    270  | 
     | 
    8292  | 
    	ix &= 0x7fffffff;  | 
    
    
    271  | 
    ✓✓ | 
    14052  | 
            if(ix>=0x40200000)     {p = pr8; q= ps8;} | 
    
    
    272  | 
    ✓✓ | 
    3624  | 
            else if(ix>=0x40122E8B){p = pr5; q= ps5;} | 
    
    
    273  | 
    ✓✓ | 
    2292  | 
            else if(ix>=0x4006DB6D){p = pr3; q= ps3;} | 
    
    
    274  | 
    ✓✗ | 
    1176  | 
            else if(ix>=0x40000000){p = pr2; q= ps2;} | 
    
    
    275  | 
     | 
    8292  | 
            z = one/(x*x);  | 
    
    
    276  | 
     | 
    8292  | 
            r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));  | 
    
    
    277  | 
     | 
    8292  | 
            s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));  | 
    
    
    278  | 
     | 
    8292  | 
            return one+ r/s;  | 
    
    
    279  | 
     | 
     | 
    }  | 
    
    
    280  | 
     | 
     | 
     | 
    
    
    281  | 
     | 
     | 
     | 
    
    
    282  | 
     | 
     | 
    /* For x >= 8, the asymptotic expansions of qone is  | 
    
    
    283  | 
     | 
     | 
     *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.  | 
    
    
    284  | 
     | 
     | 
     * We approximate pone by  | 
    
    
    285  | 
     | 
     | 
     * 	qone(x) = s*(0.375 + (R/S))  | 
    
    
    286  | 
     | 
     | 
     * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10  | 
    
    
    287  | 
     | 
     | 
     * 	  S = 1 + qs1*s^2 + ... + qs6*s^12  | 
    
    
    288  | 
     | 
     | 
     * and  | 
    
    
    289  | 
     | 
     | 
     *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)  | 
    
    
    290  | 
     | 
     | 
     */  | 
    
    
    291  | 
     | 
     | 
     | 
    
    
    292  | 
     | 
     | 
    static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ | 
    
    
    293  | 
     | 
     | 
      0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */  | 
    
    
    294  | 
     | 
     | 
     -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */  | 
    
    
    295  | 
     | 
     | 
     -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */  | 
    
    
    296  | 
     | 
     | 
     -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */  | 
    
    
    297  | 
     | 
     | 
     -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */  | 
    
    
    298  | 
     | 
     | 
     -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */  | 
    
    
    299  | 
     | 
     | 
    };  | 
    
    
    300  | 
     | 
     | 
    static const double qs8[6] = { | 
    
    
    301  | 
     | 
     | 
      1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */  | 
    
    
    302  | 
     | 
     | 
      7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */  | 
    
    
    303  | 
     | 
     | 
      1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */  | 
    
    
    304  | 
     | 
     | 
      7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */  | 
    
    
    305  | 
     | 
     | 
      6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */  | 
    
    
    306  | 
     | 
     | 
     -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */  | 
    
    
    307  | 
     | 
     | 
    };  | 
    
    
    308  | 
     | 
     | 
     | 
    
    
    309  | 
     | 
     | 
    static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ | 
    
    
    310  | 
     | 
     | 
     -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */  | 
    
    
    311  | 
     | 
     | 
     -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */  | 
    
    
    312  | 
     | 
     | 
     -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */  | 
    
    
    313  | 
     | 
     | 
     -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */  | 
    
    
    314  | 
     | 
     | 
     -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */  | 
    
    
    315  | 
     | 
     | 
     -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */  | 
    
    
    316  | 
     | 
     | 
    };  | 
    
    
    317  | 
     | 
     | 
    static const double qs5[6] = { | 
    
    
    318  | 
     | 
     | 
      8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */  | 
    
    
    319  | 
     | 
     | 
      1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */  | 
    
    
    320  | 
     | 
     | 
      1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */  | 
    
    
    321  | 
     | 
     | 
      4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */  | 
    
    
    322  | 
     | 
     | 
      2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */  | 
    
    
    323  | 
     | 
     | 
     -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */  | 
    
    
    324  | 
     | 
     | 
    };  | 
    
    
    325  | 
     | 
     | 
     | 
    
    
    326  | 
     | 
     | 
    static const double qr3[6] = { | 
    
    
    327  | 
     | 
     | 
     -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */  | 
    
    
    328  | 
     | 
     | 
     -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */  | 
    
    
    329  | 
     | 
     | 
     -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */  | 
    
    
    330  | 
     | 
     | 
     -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */  | 
    
    
    331  | 
     | 
     | 
     -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */  | 
    
    
    332  | 
     | 
     | 
     -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */  | 
    
    
    333  | 
     | 
     | 
    };  | 
    
    
    334  | 
     | 
     | 
    static const double qs3[6] = { | 
    
    
    335  | 
     | 
     | 
      4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */  | 
    
    
    336  | 
     | 
     | 
      6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */  | 
    
    
    337  | 
     | 
     | 
      3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */  | 
    
    
    338  | 
     | 
     | 
      5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */  | 
    
    
    339  | 
     | 
     | 
      1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */  | 
    
    
    340  | 
     | 
     | 
     -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */  | 
    
    
    341  | 
     | 
     | 
    };  | 
    
    
    342  | 
     | 
     | 
     | 
    
    
    343  | 
     | 
     | 
    static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ | 
    
    
    344  | 
     | 
     | 
     -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */  | 
    
    
    345  | 
     | 
     | 
     -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */  | 
    
    
    346  | 
     | 
     | 
     -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */  | 
    
    
    347  | 
     | 
     | 
     -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */  | 
    
    
    348  | 
     | 
     | 
     -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */  | 
    
    
    349  | 
     | 
     | 
     -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */  | 
    
    
    350  | 
     | 
     | 
    };  | 
    
    
    351  | 
     | 
     | 
    static const double qs2[6] = { | 
    
    
    352  | 
     | 
     | 
      2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */  | 
    
    
    353  | 
     | 
     | 
      2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */  | 
    
    
    354  | 
     | 
     | 
      7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */  | 
    
    
    355  | 
     | 
     | 
      7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */  | 
    
    
    356  | 
     | 
     | 
      1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */  | 
    
    
    357  | 
     | 
     | 
     -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */  | 
    
    
    358  | 
     | 
     | 
    };  | 
    
    
    359  | 
     | 
     | 
     | 
    
    
    360  | 
     | 
     | 
    static double  | 
    
    
    361  | 
     | 
     | 
    qone(double x)  | 
    
    
    362  | 
     | 
     | 
    { | 
    
    
    363  | 
     | 
     | 
    	const double *p,*q;  | 
    
    
    364  | 
     | 
     | 
    	double  s,r,z;  | 
    
    
    365  | 
     | 
     | 
    	int32_t ix;  | 
    
    
    366  | 
     | 
    16584  | 
    	GET_HIGH_WORD(ix,x);  | 
    
    
    367  | 
     | 
    8292  | 
    	ix &= 0x7fffffff;  | 
    
    
    368  | 
    ✓✓ | 
    14052  | 
    	if(ix>=0x40200000)     {p = qr8; q= qs8;} | 
    
    
    369  | 
    ✓✓ | 
    3624  | 
    	else if(ix>=0x40122E8B){p = qr5; q= qs5;} | 
    
    
    370  | 
    ✓✓ | 
    2292  | 
    	else if(ix>=0x4006DB6D){p = qr3; q= qs3;} | 
    
    
    371  | 
    ✓✗ | 
    1176  | 
    	else if(ix>=0x40000000){p = qr2; q= qs2;} | 
    
    
    372  | 
     | 
    8292  | 
    	z = one/(x*x);  | 
    
    
    373  | 
     | 
    8292  | 
    	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));  | 
    
    
    374  | 
     | 
    8292  | 
    	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));  | 
    
    
    375  | 
     | 
    8292  | 
    	return (.375 + r/s)/x;  | 
    
    
    376  | 
     | 
     | 
    }  |