1  | 
     | 
     | 
    /* @(#)er_lgamma.c 5.1 93/09/24 */  | 
    
    
    2  | 
     | 
     | 
    /*  | 
    
    
    3  | 
     | 
     | 
     * ====================================================  | 
    
    
    4  | 
     | 
     | 
     * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.  | 
    
    
    5  | 
     | 
     | 
     *  | 
    
    
    6  | 
     | 
     | 
     * Developed at SunPro, a Sun Microsystems, Inc. business.  | 
    
    
    7  | 
     | 
     | 
     * Permission to use, copy, modify, and distribute this  | 
    
    
    8  | 
     | 
     | 
     * software is freely granted, provided that this notice  | 
    
    
    9  | 
     | 
     | 
     * is preserved.  | 
    
    
    10  | 
     | 
     | 
     * ====================================================  | 
    
    
    11  | 
     | 
     | 
     */  | 
    
    
    12  | 
     | 
     | 
     | 
    
    
    13  | 
     | 
     | 
    /* lgamma_r(x, signgamp)  | 
    
    
    14  | 
     | 
     | 
     * Reentrant version of the logarithm of the Gamma function  | 
    
    
    15  | 
     | 
     | 
     * with user provide pointer for the sign of Gamma(x).  | 
    
    
    16  | 
     | 
     | 
     *  | 
    
    
    17  | 
     | 
     | 
     * Method:  | 
    
    
    18  | 
     | 
     | 
     *   1. Argument Reduction for 0 < x <= 8  | 
    
    
    19  | 
     | 
     | 
     * 	Since gamma(1+s)=s*gamma(s), for x in [0,8], we may  | 
    
    
    20  | 
     | 
     | 
     * 	reduce x to a number in [1.5,2.5] by  | 
    
    
    21  | 
     | 
     | 
     * 		lgamma(1+s) = log(s) + lgamma(s)  | 
    
    
    22  | 
     | 
     | 
     *	for example,  | 
    
    
    23  | 
     | 
     | 
     *		lgamma(7.3) = log(6.3) + lgamma(6.3)  | 
    
    
    24  | 
     | 
     | 
     *			    = log(6.3*5.3) + lgamma(5.3)  | 
    
    
    25  | 
     | 
     | 
     *			    = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)  | 
    
    
    26  | 
     | 
     | 
     *   2. Polynomial approximation of lgamma around its  | 
    
    
    27  | 
     | 
     | 
     *	minimun ymin=1.461632144968362245 to maintain monotonicity.  | 
    
    
    28  | 
     | 
     | 
     *	On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use  | 
    
    
    29  | 
     | 
     | 
     *		Let z = x-ymin;  | 
    
    
    30  | 
     | 
     | 
     *		lgamma(x) = -1.214862905358496078218 + z^2*poly(z)  | 
    
    
    31  | 
     | 
     | 
     *	where  | 
    
    
    32  | 
     | 
     | 
     *		poly(z) is a 14 degree polynomial.  | 
    
    
    33  | 
     | 
     | 
     *   2. Rational approximation in the primary interval [2,3]  | 
    
    
    34  | 
     | 
     | 
     *	We use the following approximation:  | 
    
    
    35  | 
     | 
     | 
     *		s = x-2.0;  | 
    
    
    36  | 
     | 
     | 
     *		lgamma(x) = 0.5*s + s*P(s)/Q(s)  | 
    
    
    37  | 
     | 
     | 
     *	with accuracy  | 
    
    
    38  | 
     | 
     | 
     *		|P/Q - (lgamma(x)-0.5s)| < 2**-61.71  | 
    
    
    39  | 
     | 
     | 
     *	Our algorithms are based on the following observation  | 
    
    
    40  | 
     | 
     | 
     *  | 
    
    
    41  | 
     | 
     | 
     *                             zeta(2)-1    2    zeta(3)-1    3  | 
    
    
    42  | 
     | 
     | 
     * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...  | 
    
    
    43  | 
     | 
     | 
     *                                 2                 3  | 
    
    
    44  | 
     | 
     | 
     *  | 
    
    
    45  | 
     | 
     | 
     *	where Euler = 0.5771... is the Euler constant, which is very  | 
    
    
    46  | 
     | 
     | 
     *	close to 0.5.  | 
    
    
    47  | 
     | 
     | 
     *  | 
    
    
    48  | 
     | 
     | 
     *   3. For x>=8, we have  | 
    
    
    49  | 
     | 
     | 
     *	lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....  | 
    
    
    50  | 
     | 
     | 
     *	(better formula:  | 
    
    
    51  | 
     | 
     | 
     *	   lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)  | 
    
    
    52  | 
     | 
     | 
     *	Let z = 1/x, then we approximation  | 
    
    
    53  | 
     | 
     | 
     *		f(z) = lgamma(x) - (x-0.5)(log(x)-1)  | 
    
    
    54  | 
     | 
     | 
     *	by  | 
    
    
    55  | 
     | 
     | 
     *	  			    3       5             11  | 
    
    
    56  | 
     | 
     | 
     *		w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z  | 
    
    
    57  | 
     | 
     | 
     *	where  | 
    
    
    58  | 
     | 
     | 
     *		|w - f(z)| < 2**-58.74  | 
    
    
    59  | 
     | 
     | 
     *  | 
    
    
    60  | 
     | 
     | 
     *   4. For negative x, since (G is gamma function)  | 
    
    
    61  | 
     | 
     | 
     *		-x*G(-x)*G(x) = pi/sin(pi*x),  | 
    
    
    62  | 
     | 
     | 
     * 	we have  | 
    
    
    63  | 
     | 
     | 
     * 		G(x) = pi/(sin(pi*x)*(-x)*G(-x))  | 
    
    
    64  | 
     | 
     | 
     *	since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0  | 
    
    
    65  | 
     | 
     | 
     *	Hence, for x<0, signgam = sign(sin(pi*x)) and  | 
    
    
    66  | 
     | 
     | 
     *		lgamma(x) = log(|Gamma(x)|)  | 
    
    
    67  | 
     | 
     | 
     *			  = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);  | 
    
    
    68  | 
     | 
     | 
     *	Note: one should avoid compute pi*(-x) directly in the  | 
    
    
    69  | 
     | 
     | 
     *	      computation of sin(pi*(-x)).  | 
    
    
    70  | 
     | 
     | 
     *  | 
    
    
    71  | 
     | 
     | 
     *   5. Special Cases  | 
    
    
    72  | 
     | 
     | 
     *		lgamma(2+s) ~ s*(1-Euler) for tiny s  | 
    
    
    73  | 
     | 
     | 
     *		lgamma(1)=lgamma(2)=0  | 
    
    
    74  | 
     | 
     | 
     *		lgamma(x) ~ -log(x) for tiny x  | 
    
    
    75  | 
     | 
     | 
     *		lgamma(0) = lgamma(inf) = inf  | 
    
    
    76  | 
     | 
     | 
     *	 	lgamma(-integer) = +-inf  | 
    
    
    77  | 
     | 
     | 
     *  | 
    
    
    78  | 
     | 
     | 
     */  | 
    
    
    79  | 
     | 
     | 
     | 
    
    
    80  | 
     | 
     | 
    #include "math.h"  | 
    
    
    81  | 
     | 
     | 
    #include "math_private.h"  | 
    
    
    82  | 
     | 
     | 
     | 
    
    
    83  | 
     | 
     | 
    static const double  | 
    
    
    84  | 
     | 
     | 
    two52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */  | 
    
    
    85  | 
     | 
     | 
    half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */  | 
    
    
    86  | 
     | 
     | 
    one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */  | 
    
    
    87  | 
     | 
     | 
    pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */  | 
    
    
    88  | 
     | 
     | 
    a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */  | 
    
    
    89  | 
     | 
     | 
    a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */  | 
    
    
    90  | 
     | 
     | 
    a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */  | 
    
    
    91  | 
     | 
     | 
    a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */  | 
    
    
    92  | 
     | 
     | 
    a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */  | 
    
    
    93  | 
     | 
     | 
    a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */  | 
    
    
    94  | 
     | 
     | 
    a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */  | 
    
    
    95  | 
     | 
     | 
    a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */  | 
    
    
    96  | 
     | 
     | 
    a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */  | 
    
    
    97  | 
     | 
     | 
    a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */  | 
    
    
    98  | 
     | 
     | 
    a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */  | 
    
    
    99  | 
     | 
     | 
    a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */  | 
    
    
    100  | 
     | 
     | 
    tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */  | 
    
    
    101  | 
     | 
     | 
    tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */  | 
    
    
    102  | 
     | 
     | 
    /* tt = -(tail of tf) */  | 
    
    
    103  | 
     | 
     | 
    tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */  | 
    
    
    104  | 
     | 
     | 
    t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */  | 
    
    
    105  | 
     | 
     | 
    t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */  | 
    
    
    106  | 
     | 
     | 
    t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */  | 
    
    
    107  | 
     | 
     | 
    t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */  | 
    
    
    108  | 
     | 
     | 
    t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */  | 
    
    
    109  | 
     | 
     | 
    t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */  | 
    
    
    110  | 
     | 
     | 
    t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */  | 
    
    
    111  | 
     | 
     | 
    t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */  | 
    
    
    112  | 
     | 
     | 
    t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */  | 
    
    
    113  | 
     | 
     | 
    t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */  | 
    
    
    114  | 
     | 
     | 
    t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */  | 
    
    
    115  | 
     | 
     | 
    t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */  | 
    
    
    116  | 
     | 
     | 
    t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */  | 
    
    
    117  | 
     | 
     | 
    t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */  | 
    
    
    118  | 
     | 
     | 
    t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */  | 
    
    
    119  | 
     | 
     | 
    u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */  | 
    
    
    120  | 
     | 
     | 
    u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */  | 
    
    
    121  | 
     | 
     | 
    u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */  | 
    
    
    122  | 
     | 
     | 
    u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */  | 
    
    
    123  | 
     | 
     | 
    u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */  | 
    
    
    124  | 
     | 
     | 
    u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */  | 
    
    
    125  | 
     | 
     | 
    v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */  | 
    
    
    126  | 
     | 
     | 
    v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */  | 
    
    
    127  | 
     | 
     | 
    v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */  | 
    
    
    128  | 
     | 
     | 
    v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */  | 
    
    
    129  | 
     | 
     | 
    v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */  | 
    
    
    130  | 
     | 
     | 
    s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */  | 
    
    
    131  | 
     | 
     | 
    s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */  | 
    
    
    132  | 
     | 
     | 
    s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */  | 
    
    
    133  | 
     | 
     | 
    s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */  | 
    
    
    134  | 
     | 
     | 
    s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */  | 
    
    
    135  | 
     | 
     | 
    s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */  | 
    
    
    136  | 
     | 
     | 
    s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */  | 
    
    
    137  | 
     | 
     | 
    r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */  | 
    
    
    138  | 
     | 
     | 
    r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */  | 
    
    
    139  | 
     | 
     | 
    r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */  | 
    
    
    140  | 
     | 
     | 
    r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */  | 
    
    
    141  | 
     | 
     | 
    r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */  | 
    
    
    142  | 
     | 
     | 
    r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */  | 
    
    
    143  | 
     | 
     | 
    w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */  | 
    
    
    144  | 
     | 
     | 
    w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */  | 
    
    
    145  | 
     | 
     | 
    w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */  | 
    
    
    146  | 
     | 
     | 
    w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */  | 
    
    
    147  | 
     | 
     | 
    w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */  | 
    
    
    148  | 
     | 
     | 
    w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */  | 
    
    
    149  | 
     | 
     | 
    w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */  | 
    
    
    150  | 
     | 
     | 
     | 
    
    
    151  | 
     | 
     | 
    static const double zero=  0.00000000000000000000e+00;  | 
    
    
    152  | 
     | 
     | 
     | 
    
    
    153  | 
     | 
     | 
    static double  | 
    
    
    154  | 
     | 
     | 
    sin_pi(double x)  | 
    
    
    155  | 
     | 
     | 
    { | 
    
    
    156  | 
     | 
     | 
    	double y,z;  | 
    
    
    157  | 
     | 
     | 
    	int n,ix;  | 
    
    
    158  | 
     | 
     | 
     | 
    
    
    159  | 
     | 
    6948  | 
    	GET_HIGH_WORD(ix,x);  | 
    
    
    160  | 
     | 
    3474  | 
    	ix &= 0x7fffffff;  | 
    
    
    161  | 
     | 
     | 
     | 
    
    
    162  | 
    ✓✓ | 
    4524  | 
    	if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);  | 
    
    
    163  | 
     | 
    2424  | 
    	y = -x;		/* x is assume negative */  | 
    
    
    164  | 
     | 
     | 
     | 
    
    
    165  | 
     | 
     | 
        /*  | 
    
    
    166  | 
     | 
     | 
         * argument reduction, make sure inexact flag not raised if input  | 
    
    
    167  | 
     | 
     | 
         * is an integer  | 
    
    
    168  | 
     | 
     | 
         */  | 
    
    
    169  | 
     | 
    2424  | 
    	z = floor(y);  | 
    
    
    170  | 
    ✓✗ | 
    2424  | 
    	if(z!=y) {				/* inexact anyway */ | 
    
    
    171  | 
     | 
    2424  | 
    	    y  *= 0.5;  | 
    
    
    172  | 
     | 
    2424  | 
    	    y   = 2.0*(y - floor(y));		/* y = |x| mod 2.0 */  | 
    
    
    173  | 
     | 
    2424  | 
    	    n   = (int) (y*4.0);  | 
    
    
    174  | 
     | 
    2424  | 
    	} else { | 
    
    
    175  | 
     | 
     | 
                if(ix>=0x43400000) { | 
    
    
    176  | 
     | 
     | 
                    y = zero; n = 0;                 /* y must be even */  | 
    
    
    177  | 
     | 
     | 
                } else { | 
    
    
    178  | 
     | 
     | 
                    if(ix<0x43300000) z = y+two52;	/* exact */  | 
    
    
    179  | 
     | 
     | 
    		GET_LOW_WORD(n,z);  | 
    
    
    180  | 
     | 
     | 
    		n &= 1;  | 
    
    
    181  | 
     | 
     | 
                    y  = n;  | 
    
    
    182  | 
     | 
     | 
                    n<<= 2;  | 
    
    
    183  | 
     | 
     | 
                }  | 
    
    
    184  | 
     | 
     | 
            }  | 
    
    
    185  | 
    ✓✗✓✗ ✓✗✓✓
  | 
    2424  | 
    	switch (n) { | 
    
    
    186  | 
     | 
    78  | 
    	    case 0:   y =  __kernel_sin(pi*y,zero,0); break;  | 
    
    
    187  | 
     | 
     | 
    	    case 1:  | 
    
    
    188  | 
     | 
    276  | 
    	    case 2:   y =  __kernel_cos(pi*(0.5-y),zero); break;  | 
    
    
    189  | 
     | 
     | 
    	    case 3:  | 
    
    
    190  | 
     | 
    972  | 
    	    case 4:   y =  __kernel_sin(pi*(one-y),zero,0); break;  | 
    
    
    191  | 
     | 
     | 
    	    case 5:  | 
    
    
    192  | 
     | 
    630  | 
    	    case 6:   y = -__kernel_cos(pi*(y-1.5),zero); break;  | 
    
    
    193  | 
     | 
    468  | 
    	    default:  y =  __kernel_sin(pi*(y-2.0),zero,0); break;  | 
    
    
    194  | 
     | 
     | 
    	    }  | 
    
    
    195  | 
     | 
    2424  | 
    	return -y;  | 
    
    
    196  | 
     | 
    3474  | 
    }  | 
    
    
    197  | 
     | 
     | 
     | 
    
    
    198  | 
     | 
     | 
     | 
    
    
    199  | 
     | 
     | 
    double  | 
    
    
    200  | 
     | 
     | 
    lgamma_r(double x, int *signgamp)  | 
    
    
    201  | 
     | 
     | 
    { | 
    
    
    202  | 
     | 
     | 
    	double t,y,z,nadj,p,p1,p2,p3,q,r,w;  | 
    
    
    203  | 
     | 
     | 
    	int i,hx,lx,ix;  | 
    
    
    204  | 
     | 
     | 
     | 
    
    
    205  | 
     | 
    35838  | 
    	EXTRACT_WORDS(hx,lx,x);  | 
    
    
    206  | 
     | 
     | 
     | 
    
    
    207  | 
     | 
     | 
        /* purge off +-inf, NaN, +-0, and negative arguments */  | 
    
    
    208  | 
     | 
    17919  | 
    	*signgamp = 1;  | 
    
    
    209  | 
     | 
    17919  | 
    	ix = hx&0x7fffffff;  | 
    
    
    210  | 
    ✓✓ | 
    17928  | 
    	if(ix>=0x7ff00000) return x*x;  | 
    
    
    211  | 
    ✓✓ | 
    17910  | 
    	if((ix|lx)==0) { | 
    
    
    212  | 
    ✓✓ | 
    6  | 
    	    if(hx<0)  | 
    
    
    213  | 
     | 
    3  | 
    		*signgamp = -1;  | 
    
    
    214  | 
     | 
    6  | 
    	    return one/zero;  | 
    
    
    215  | 
     | 
     | 
    	}  | 
    
    
    216  | 
    ✓✓ | 
    17904  | 
    	if(ix<0x3b900000) {	/* |x|<2**-70, return -log(|x|) */ | 
    
    
    217  | 
    ✓✓ | 
    48  | 
    	    if(hx<0) { | 
    
    
    218  | 
     | 
    24  | 
    	        *signgamp = -1;  | 
    
    
    219  | 
     | 
    24  | 
    	        return - log(-x);  | 
    
    
    220  | 
     | 
    24  | 
    	    } else return - log(x);  | 
    
    
    221  | 
     | 
     | 
    	}  | 
    
    
    222  | 
    ✓✓ | 
    17856  | 
    	if(hx<0) { | 
    
    
    223  | 
    ✗✓ | 
    3474  | 
    	    if(ix>=0x43300000) 	/* |x|>=2**52, must be -integer */  | 
    
    
    224  | 
     | 
     | 
    		return one/zero;  | 
    
    
    225  | 
     | 
    3474  | 
    	    t = sin_pi(x);  | 
    
    
    226  | 
    ✗✓ | 
    3474  | 
    	    if(t==zero) return one/zero; /* -integer */  | 
    
    
    227  | 
     | 
    3474  | 
    	    nadj = log(pi/fabs(t*x));  | 
    
    
    228  | 
    ✓✓ | 
    5166  | 
    	    if(t<zero) *signgamp = -1;  | 
    
    
    229  | 
     | 
    3474  | 
    	    x = -x;  | 
    
    
    230  | 
     | 
    3474  | 
    	}  | 
    
    
    231  | 
     | 
     | 
     | 
    
    
    232  | 
     | 
     | 
        /* purge off 1 and 2 */  | 
    
    
    233  | 
    ✓✓✓✓
  | 
    35718  | 
    	if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;  | 
    
    
    234  | 
     | 
     | 
        /* for x < 2.0 */  | 
    
    
    235  | 
    ✓✓ | 
    17841  | 
    	else if(ix<0x40000000) { | 
    
    
    236  | 
    ✓✓ | 
    11094  | 
    	    if(ix<=0x3feccccc) { 	/* lgamma(x) = lgamma(x+1)-log(x) */ | 
    
    
    237  | 
     | 
    4284  | 
    		r = - log(x);  | 
    
    
    238  | 
    ✓✓ | 
    4548  | 
    		if(ix>=0x3FE76944) {y = one-x; i= 0;} | 
    
    
    239  | 
    ✓✓ | 
    5412  | 
    		else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;} | 
    
    
    240  | 
     | 
     | 
    	  	else {y = x; i=2;} | 
    
    
    241  | 
     | 
     | 
    	    } else { | 
    
    
    242  | 
     | 
     | 
    	  	r = zero;  | 
    
    
    243  | 
    ✓✓ | 
    8568  | 
    	        if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */ | 
    
    
    244  | 
    ✓✓ | 
    6588  | 
    	        else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */ | 
    
    
    245  | 
     | 
    3516  | 
    		else {y=x-one;i=2;} | 
    
    
    246  | 
     | 
     | 
    	    }  | 
    
    
    247  | 
    ✓✓✓✓
  | 
    22200  | 
    	    switch(i) { | 
    
    
    248  | 
     | 
     | 
    	      case 0:  | 
    
    
    249  | 
     | 
    2022  | 
    		z = y*y;  | 
    
    
    250  | 
     | 
    2022  | 
    		p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));  | 
    
    
    251  | 
     | 
    2022  | 
    		p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));  | 
    
    
    252  | 
     | 
    2022  | 
    		p  = y*p1+p2;  | 
    
    
    253  | 
     | 
    2022  | 
    		r  += (p-0.5*y); break;  | 
    
    
    254  | 
     | 
     | 
    	      case 1:  | 
    
    
    255  | 
     | 
    2928  | 
    		z = y*y;  | 
    
    
    256  | 
     | 
    2928  | 
    		w = z*y;  | 
    
    
    257  | 
     | 
    2928  | 
    		p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));	/* parallel comp */  | 
    
    
    258  | 
     | 
    2928  | 
    		p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));  | 
    
    
    259  | 
     | 
    2928  | 
    		p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));  | 
    
    
    260  | 
     | 
    2928  | 
    		p  = z*p1-(tt-w*(p2+y*p3));  | 
    
    
    261  | 
     | 
    2928  | 
    		r += (tf + p); break;  | 
    
    
    262  | 
     | 
     | 
    	      case 2:  | 
    
    
    263  | 
     | 
    6144  | 
    		p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));  | 
    
    
    264  | 
     | 
    6144  | 
    		p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));  | 
    
    
    265  | 
     | 
    6144  | 
    		r += (-0.5*y + p1/p2);  | 
    
    
    266  | 
     | 
    6144  | 
    	    }  | 
    
    
    267  | 
     | 
     | 
    	}  | 
    
    
    268  | 
    ✓✓ | 
    6747  | 
    	else if(ix<0x40200000) { 			/* x < 8.0 */ | 
    
    
    269  | 
     | 
    9906  | 
    	    i = (int)x;  | 
    
    
    270  | 
     | 
     | 
    	    t = zero;  | 
    
    
    271  | 
     | 
    9906  | 
    	    y = x-(double)i;  | 
    
    
    272  | 
     | 
    9906  | 
    	    p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));  | 
    
    
    273  | 
     | 
    9906  | 
    	    q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));  | 
    
    
    274  | 
     | 
    9906  | 
    	    r = half*y+p/q;  | 
    
    
    275  | 
     | 
     | 
    	    z = one;	/* lgamma(1+s) = log(s) + lgamma(s) */  | 
    
    
    276  | 
    ✓✓✓✓ ✓✓ | 
    9906  | 
    	    switch(i) { | 
    
    
    277  | 
     | 
    192  | 
    	    case 7: z *= (y+6.0);	/* FALLTHRU */  | 
    
    
    278  | 
     | 
    258  | 
    	    case 6: z *= (y+5.0);	/* FALLTHRU */  | 
    
    
    279  | 
     | 
    414  | 
    	    case 5: z *= (y+4.0);	/* FALLTHRU */  | 
    
    
    280  | 
     | 
    582  | 
    	    case 4: z *= (y+3.0);	/* FALLTHRU */  | 
    
    
    281  | 
     | 
    1713  | 
    	    case 3: z *= (y+2.0);	/* FALLTHRU */  | 
    
    
    282  | 
     | 
    1713  | 
    		    r += log(z); break;  | 
    
    
    283  | 
     | 
     | 
    	    }  | 
    
    
    284  | 
     | 
     | 
        /* 8.0 <= x < 2**58 */  | 
    
    
    285  | 
    ✓✗ | 
    3450  | 
    	} else if (ix < 0x43900000) { | 
    
    
    286  | 
     | 
    3450  | 
    	    t = log(x);  | 
    
    
    287  | 
     | 
    3450  | 
    	    z = one/x;  | 
    
    
    288  | 
     | 
    3450  | 
    	    y = z*z;  | 
    
    
    289  | 
     | 
    3450  | 
    	    w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));  | 
    
    
    290  | 
     | 
    3450  | 
    	    r = (x-half)*(t-one)+w;  | 
    
    
    291  | 
     | 
    3450  | 
    	} else  | 
    
    
    292  | 
     | 
     | 
        /* 2**58 <= x <= inf */  | 
    
    
    293  | 
     | 
     | 
    	    r =  x*(log(x)-one);  | 
    
    
    294  | 
    ✓✓ | 
    21330  | 
    	if(hx<0) r = nadj - r;  | 
    
    
    295  | 
     | 
    17856  | 
    	return r;  | 
    
    
    296  | 
     | 
    17919  | 
    }  | 
    
    
    297  | 
     | 
     | 
    DEF_NONSTD(lgamma_r);  |