| 1 |  |  | /* e_powf.c -- float version of e_pow.c. | 
    
    | 2 |  |  |  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | 
    
    | 3 |  |  |  */ | 
    
    | 4 |  |  |  | 
    
    | 5 |  |  | /* | 
    
    | 6 |  |  |  * ==================================================== | 
    
    | 7 |  |  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
    
    | 8 |  |  |  * | 
    
    | 9 |  |  |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
    
    | 10 |  |  |  * Permission to use, copy, modify, and distribute this | 
    
    | 11 |  |  |  * software is freely granted, provided that this notice | 
    
    | 12 |  |  |  * is preserved. | 
    
    | 13 |  |  |  * ==================================================== | 
    
    | 14 |  |  |  */ | 
    
    | 15 |  |  |  | 
    
    | 16 |  |  | #include "math.h" | 
    
    | 17 |  |  | #include "math_private.h" | 
    
    | 18 |  |  |  | 
    
    | 19 |  |  | static const volatile float huge = 1.0e+30, tiny = 1.0e-30; | 
    
    | 20 |  |  |  | 
    
    | 21 |  |  | static const float | 
    
    | 22 |  |  | bp[] = {1.0, 1.5,}, | 
    
    | 23 |  |  | dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */ | 
    
    | 24 |  |  | dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */ | 
    
    | 25 |  |  | zero    =  0.0, | 
    
    | 26 |  |  | one	=  1.0, | 
    
    | 27 |  |  | two	=  2.0, | 
    
    | 28 |  |  | two24	=  16777216.0,	/* 0x4b800000 */ | 
    
    | 29 |  |  | 	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ | 
    
    | 30 |  |  | L1  =  6.0000002384e-01, /* 0x3f19999a */ | 
    
    | 31 |  |  | L2  =  4.2857143283e-01, /* 0x3edb6db7 */ | 
    
    | 32 |  |  | L3  =  3.3333334327e-01, /* 0x3eaaaaab */ | 
    
    | 33 |  |  | L4  =  2.7272811532e-01, /* 0x3e8ba305 */ | 
    
    | 34 |  |  | L5  =  2.3066075146e-01, /* 0x3e6c3255 */ | 
    
    | 35 |  |  | L6  =  2.0697501302e-01, /* 0x3e53f142 */ | 
    
    | 36 |  |  | P1   =  1.6666667163e-01, /* 0x3e2aaaab */ | 
    
    | 37 |  |  | P2   = -2.7777778450e-03, /* 0xbb360b61 */ | 
    
    | 38 |  |  | P3   =  6.6137559770e-05, /* 0x388ab355 */ | 
    
    | 39 |  |  | P4   = -1.6533901999e-06, /* 0xb5ddea0e */ | 
    
    | 40 |  |  | P5   =  4.1381369442e-08, /* 0x3331bb4c */ | 
    
    | 41 |  |  | lg2  =  6.9314718246e-01, /* 0x3f317218 */ | 
    
    | 42 |  |  | lg2_h  =  6.93145752e-01, /* 0x3f317200 */ | 
    
    | 43 |  |  | lg2_l  =  1.42860654e-06, /* 0x35bfbe8c */ | 
    
    | 44 |  |  | ovt =  4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */ | 
    
    | 45 |  |  | cp    =  9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */ | 
    
    | 46 |  |  | cp_h  =  9.6179199219e-01, /* 0x3f763800 =head of cp */ | 
    
    | 47 |  |  | cp_l  =  4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */ | 
    
    | 48 |  |  | ivln2    =  1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */ | 
    
    | 49 |  |  | ivln2_h  =  1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/ | 
    
    | 50 |  |  | ivln2_l  =  7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/ | 
    
    | 51 |  |  |  | 
    
    | 52 |  |  | float | 
    
    | 53 |  |  | powf(float x, float y) | 
    
    | 54 |  |  | { | 
    
    | 55 |  |  | 	float z,ax,z_h,z_l,p_h,p_l; | 
    
    | 56 |  |  | 	float yy1,t1,t2,r,s,t,u,v,w; | 
    
    | 57 |  |  | 	int32_t i,j,k,yisint,n; | 
    
    | 58 |  |  | 	int32_t hx,hy,ix,iy,is; | 
    
    | 59 |  |  |  | 
    
    | 60 |  |  | 	GET_FLOAT_WORD(hx,x); | 
    
    | 61 |  |  | 	GET_FLOAT_WORD(hy,y); | 
    
    | 62 |  |  | 	ix = hx&0x7fffffff;  iy = hy&0x7fffffff; | 
    
    | 63 |  |  |  | 
    
    | 64 |  |  |     /* y==zero: x**0 = 1 */ | 
    
    | 65 |  |  | 	if(iy==0) return one; | 
    
    | 66 |  |  |  | 
    
    | 67 |  |  |     /* x==1: 1**y = 1, even if y is NaN */ | 
    
    | 68 |  |  | 	if (hx==0x3f800000) return one; | 
    
    | 69 |  |  |  | 
    
    | 70 |  |  |     /* +-NaN return x+y */ | 
    
    | 71 |  |  | 	if(ix > 0x7f800000 || | 
    
    | 72 |  |  | 	   iy > 0x7f800000) | 
    
    | 73 |  |  | 		return x+y; | 
    
    | 74 |  |  |  | 
    
    | 75 |  |  |     /* determine if y is an odd int when x < 0 | 
    
    | 76 |  |  |      * yisint = 0	... y is not an integer | 
    
    | 77 |  |  |      * yisint = 1	... y is an odd int | 
    
    | 78 |  |  |      * yisint = 2	... y is an even int | 
    
    | 79 |  |  |      */ | 
    
    | 80 |  |  | 	yisint  = 0; | 
    
    | 81 |  |  | 	if(hx<0) { | 
    
    | 82 |  |  | 	    if(iy>=0x4b800000) yisint = 2; /* even integer y */ | 
    
    | 83 |  |  | 	    else if(iy>=0x3f800000) { | 
    
    | 84 |  |  | 		k = (iy>>23)-0x7f;	   /* exponent */ | 
    
    | 85 |  |  | 		j = iy>>(23-k); | 
    
    | 86 |  |  | 		if((j<<(23-k))==iy) yisint = 2-(j&1); | 
    
    | 87 |  |  | 	    } | 
    
    | 88 |  |  | 	} | 
    
    | 89 |  |  |  | 
    
    | 90 |  |  |     /* special value of y */ | 
    
    | 91 |  |  | 	if (iy==0x7f800000) {	/* y is +-inf */ | 
    
    | 92 |  |  | 	    if (ix==0x3f800000) | 
    
    | 93 |  |  | 	        return  one;	/* (-1)**+-inf is NaN */ | 
    
    | 94 |  |  | 	    else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */ | 
    
    | 95 |  |  | 	        return (hy>=0)? y: zero; | 
    
    | 96 |  |  | 	    else			/* (|x|<1)**-,+inf = inf,0 */ | 
    
    | 97 |  |  | 	        return (hy<0)?-y: zero; | 
    
    | 98 |  |  | 	} | 
    
    | 99 |  |  | 	if(iy==0x3f800000) {	/* y is  +-1 */ | 
    
    | 100 |  |  | 	    if(hy<0) return one/x; else return x; | 
    
    | 101 |  |  | 	} | 
    
    | 102 |  |  | 	if(hy==0x40000000) return x*x; /* y is  2 */ | 
    
    | 103 |  |  | 	if(hy==0x3f000000) {	/* y is  0.5 */ | 
    
    | 104 |  |  | 	    if(hx>=0)	/* x >= +0 */ | 
    
    | 105 |  |  | 	    return sqrtf(x); | 
    
    | 106 |  |  | 	} | 
    
    | 107 |  |  |  | 
    
    | 108 |  |  | 	ax   = fabsf(x); | 
    
    | 109 |  |  |     /* special value of x */ | 
    
    | 110 |  |  | 	if(ix==0x7f800000||ix==0||ix==0x3f800000){ | 
    
    | 111 |  |  | 	    z = ax;			/*x is +-0,+-inf,+-1*/ | 
    
    | 112 |  |  | 	    if(hy<0) z = one/z;	/* z = (1/|x|) */ | 
    
    | 113 |  |  | 	    if(hx<0) { | 
    
    | 114 |  |  | 		if(((ix-0x3f800000)|yisint)==0) { | 
    
    | 115 |  |  | 		    z = (z-z)/(z-z); /* (-1)**non-int is NaN */ | 
    
    | 116 |  |  | 		} else if(yisint==1) | 
    
    | 117 |  |  | 		    z = -z;		/* (x<0)**odd = -(|x|**odd) */ | 
    
    | 118 |  |  | 	    } | 
    
    | 119 |  |  | 	    return z; | 
    
    | 120 |  |  | 	} | 
    
    | 121 |  |  |  | 
    
    | 122 |  |  |     /* (x<0)**(non-int) is NaN */ | 
    
    | 123 |  |  | 	if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); | 
    
    | 124 |  |  |  | 
    
    | 125 |  |  |     /* |y| is huge */ | 
    
    | 126 |  |  | 	if(iy>0x4d000000) { /* if |y| > 2**27 */ | 
    
    | 127 |  |  | 	/* over/underflow if x is not close to one */ | 
    
    | 128 |  |  | 	    if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny; | 
    
    | 129 |  |  | 	    if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny; | 
    
    | 130 |  |  | 	/* now |1-x| is tiny <= 2**-20, suffice to compute | 
    
    | 131 |  |  | 	   log(x) by x-x^2/2+x^3/3-x^4/4 */ | 
    
    | 132 |  |  | 	    t = ax-one;		/* t has 20 trailing zeros */ | 
    
    | 133 |  |  | 	    w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25)); | 
    
    | 134 |  |  | 	    u = ivln2_h*t;	/* ivln2_h has 16 sig. bits */ | 
    
    | 135 |  |  | 	    v = t*ivln2_l-w*ivln2; | 
    
    | 136 |  |  | 	    t1 = u+v; | 
    
    | 137 |  |  | 	    GET_FLOAT_WORD(is,t1); | 
    
    | 138 |  |  | 	    SET_FLOAT_WORD(t1,is&0xfffff000); | 
    
    | 139 |  |  | 	    t2 = v-(t1-u); | 
    
    | 140 |  |  | 	} else { | 
    
    | 141 |  |  | 	    float s2,s_h,s_l,t_h,t_l; | 
    
    | 142 |  |  | 	    n = 0; | 
    
    | 143 |  |  | 	/* take care subnormal number */ | 
    
    | 144 |  |  | 	    if(ix<0x00800000) | 
    
    | 145 |  |  | 		{ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); } | 
    
    | 146 |  |  | 	    n  += ((ix)>>23)-0x7f; | 
    
    | 147 |  |  | 	    j  = ix&0x007fffff; | 
    
    | 148 |  |  | 	/* determine interval */ | 
    
    | 149 |  |  | 	    ix = j|0x3f800000;		/* normalize ix */ | 
    
    | 150 |  |  | 	    if(j<=0x1cc471) k=0;	/* |x|<sqrt(3/2) */ | 
    
    | 151 |  |  | 	    else if(j<0x5db3d7) k=1;	/* |x|<sqrt(3)   */ | 
    
    | 152 |  |  | 	    else {k=0;n+=1;ix -= 0x00800000;} | 
    
    | 153 |  |  | 	    SET_FLOAT_WORD(ax,ix); | 
    
    | 154 |  |  |  | 
    
    | 155 |  |  | 	/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ | 
    
    | 156 |  |  | 	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */ | 
    
    | 157 |  |  | 	    v = one/(ax+bp[k]); | 
    
    | 158 |  |  | 	    s = u*v; | 
    
    | 159 |  |  | 	    s_h = s; | 
    
    | 160 |  |  | 	    GET_FLOAT_WORD(is,s_h); | 
    
    | 161 |  |  | 	    SET_FLOAT_WORD(s_h,is&0xfffff000); | 
    
    | 162 |  |  | 	/* t_h=ax+bp[k] High */ | 
    
    | 163 |  |  | 	    SET_FLOAT_WORD(t_h,((ix>>1)|0x20000000)+0x0040000+(k<<21)); | 
    
    | 164 |  |  | 	    t_l = ax - (t_h-bp[k]); | 
    
    | 165 |  |  | 	    s_l = v*((u-s_h*t_h)-s_h*t_l); | 
    
    | 166 |  |  | 	/* compute log(ax) */ | 
    
    | 167 |  |  | 	    s2 = s*s; | 
    
    | 168 |  |  | 	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); | 
    
    | 169 |  |  | 	    r += s_l*(s_h+s); | 
    
    | 170 |  |  | 	    s2  = s_h*s_h; | 
    
    | 171 |  |  | 	    t_h = (float)3.0+s2+r; | 
    
    | 172 |  |  | 	    GET_FLOAT_WORD(is,t_h); | 
    
    | 173 |  |  | 	    SET_FLOAT_WORD(t_h,is&0xfffff000); | 
    
    | 174 |  |  | 	    t_l = r-((t_h-(float)3.0)-s2); | 
    
    | 175 |  |  | 	/* u+v = s*(1+...) */ | 
    
    | 176 |  |  | 	    u = s_h*t_h; | 
    
    | 177 |  |  | 	    v = s_l*t_h+t_l*s; | 
    
    | 178 |  |  | 	/* 2/(3log2)*(s+...) */ | 
    
    | 179 |  |  | 	    p_h = u+v; | 
    
    | 180 |  |  | 	    GET_FLOAT_WORD(is,p_h); | 
    
    | 181 |  |  | 	    SET_FLOAT_WORD(p_h,is&0xfffff000); | 
    
    | 182 |  |  | 	    p_l = v-(p_h-u); | 
    
    | 183 |  |  | 	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */ | 
    
    | 184 |  |  | 	    z_l = cp_l*p_h+p_l*cp+dp_l[k]; | 
    
    | 185 |  |  | 	/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ | 
    
    | 186 |  |  | 	    t = (float)n; | 
    
    | 187 |  |  | 	    t1 = (((z_h+z_l)+dp_h[k])+t); | 
    
    | 188 |  |  | 	    GET_FLOAT_WORD(is,t1); | 
    
    | 189 |  |  | 	    SET_FLOAT_WORD(t1,is&0xfffff000); | 
    
    | 190 |  |  | 	    t2 = z_l-(((t1-t)-dp_h[k])-z_h); | 
    
    | 191 |  |  | 	} | 
    
    | 192 |  |  |  | 
    
    | 193 |  |  | 	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ | 
    
    | 194 |  |  | 	if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0) | 
    
    | 195 |  |  | 	    s = -one;	/* (-ve)**(odd int) */ | 
    
    | 196 |  |  |  | 
    
    | 197 |  |  |     /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */ | 
    
    | 198 |  |  | 	GET_FLOAT_WORD(is,y); | 
    
    | 199 |  |  | 	SET_FLOAT_WORD(yy1,is&0xfffff000); | 
    
    | 200 |  |  | 	p_l = (y-yy1)*t1+y*t2; | 
    
    | 201 |  |  | 	p_h = yy1*t1; | 
    
    | 202 |  |  | 	z = p_l+p_h; | 
    
    | 203 |  |  | 	GET_FLOAT_WORD(j,z); | 
    
    | 204 |  |  | 	if (j>0x43000000)				/* if z > 128 */ | 
    
    | 205 |  |  | 	    return s*huge*huge;				/* overflow */ | 
    
    | 206 |  |  | 	else if (j==0x43000000) {			/* if z == 128 */ | 
    
    | 207 |  |  | 	    if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */ | 
    
    | 208 |  |  | 	} | 
    
    | 209 |  |  | 	else if ((j&0x7fffffff)>0x43160000)		/* z <= -150 */ | 
    
    | 210 |  |  | 	    return s*tiny*tiny;				/* underflow */ | 
    
    | 211 |  |  | 	else if (j==0xc3160000){			/* z == -150 */ | 
    
    | 212 |  |  | 	    if(p_l<=z-p_h) return s*tiny*tiny;		/* underflow */ | 
    
    | 213 |  |  | 	} | 
    
    | 214 |  |  |     /* | 
    
    | 215 |  |  |      * compute 2**(p_h+p_l) | 
    
    | 216 |  |  |      */ | 
    
    | 217 |  |  | 	i = j&0x7fffffff; | 
    
    | 218 |  |  | 	k = (i>>23)-0x7f; | 
    
    | 219 |  |  | 	n = 0; | 
    
    | 220 |  |  | 	if(i>0x3f000000) {		/* if |z| > 0.5, set n = [z+0.5] */ | 
    
    | 221 |  |  | 	    n = j+(0x00800000>>(k+1)); | 
    
    | 222 |  |  | 	    k = ((n&0x7fffffff)>>23)-0x7f;	/* new k for n */ | 
    
    | 223 |  |  | 	    SET_FLOAT_WORD(t,n&~(0x007fffff>>k)); | 
    
    | 224 |  |  | 	    n = ((n&0x007fffff)|0x00800000)>>(23-k); | 
    
    | 225 |  |  | 	    if(j<0) n = -n; | 
    
    | 226 |  |  | 	    p_h -= t; | 
    
    | 227 |  |  | 	} | 
    
    | 228 |  |  | 	t = p_l+p_h; | 
    
    | 229 |  |  | 	GET_FLOAT_WORD(is,t); | 
    
    | 230 |  |  | 	SET_FLOAT_WORD(t,is&0xfffff000); | 
    
    | 231 |  |  | 	u = t*lg2_h; | 
    
    | 232 |  |  | 	v = (p_l-(t-p_h))*lg2+t*lg2_l; | 
    
    | 233 |  |  | 	z = u+v; | 
    
    | 234 |  |  | 	w = v-(z-u); | 
    
    | 235 |  |  | 	t  = z*z; | 
    
    | 236 |  |  | 	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); | 
    
    | 237 |  |  | 	r  = (z*t1)/(t1-two)-(w+z*w); | 
    
    | 238 |  |  | 	z  = one-(r-z); | 
    
    | 239 |  |  | 	GET_FLOAT_WORD(j,z); | 
    
    | 240 |  |  | 	j += (n<<23); | 
    
    | 241 |  |  | 	if((j>>23)<=0) z = scalbnf(z,n);	/* subnormal output */ | 
    
    | 242 |  |  | 	else SET_FLOAT_WORD(z,j); | 
    
    | 243 |  |  | 	return s*z; | 
    
    | 244 |  |  | } | 
    
    | 245 |  |  | DEF_STD(powf); |