1 |
|
|
/* @(#)k_cos.c 5.1 93/09/24 */ |
2 |
|
|
/* |
3 |
|
|
* ==================================================== |
4 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 |
|
|
* |
6 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business. |
7 |
|
|
* Permission to use, copy, modify, and distribute this |
8 |
|
|
* software is freely granted, provided that this notice |
9 |
|
|
* is preserved. |
10 |
|
|
* ==================================================== |
11 |
|
|
*/ |
12 |
|
|
|
13 |
|
|
/* |
14 |
|
|
* __kernel_cos( x, y ) |
15 |
|
|
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
16 |
|
|
* Input x is assumed to be bounded by ~pi/4 in magnitude. |
17 |
|
|
* Input y is the tail of x. |
18 |
|
|
* |
19 |
|
|
* Algorithm |
20 |
|
|
* 1. Since cos(-x) = cos(x), we need only to consider positive x. |
21 |
|
|
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. |
22 |
|
|
* 3. cos(x) is approximated by a polynomial of degree 14 on |
23 |
|
|
* [0,pi/4] |
24 |
|
|
* 4 14 |
25 |
|
|
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
26 |
|
|
* where the Remes error is |
27 |
|
|
* |
28 |
|
|
* | 2 4 6 8 10 12 14 | -58 |
29 |
|
|
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
30 |
|
|
* | | |
31 |
|
|
* |
32 |
|
|
* 4 6 8 10 12 14 |
33 |
|
|
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
34 |
|
|
* cos(x) = 1 - x*x/2 + r |
35 |
|
|
* since cos(x+y) ~ cos(x) - sin(x)*y |
36 |
|
|
* ~ cos(x) - x*y, |
37 |
|
|
* a correction term is necessary in cos(x) and hence |
38 |
|
|
* cos(x+y) = 1 - (x*x/2 - (r - x*y)) |
39 |
|
|
* For better accuracy when x > 0.3, let qx = |x|/4 with |
40 |
|
|
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
41 |
|
|
* Then |
42 |
|
|
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). |
43 |
|
|
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the |
44 |
|
|
* magnitude of the latter is at least a quarter of x*x/2, |
45 |
|
|
* thus, reducing the rounding error in the subtraction. |
46 |
|
|
*/ |
47 |
|
|
|
48 |
|
|
#include "math.h" |
49 |
|
|
#include "math_private.h" |
50 |
|
|
|
51 |
|
|
static const double |
52 |
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
53 |
|
|
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ |
54 |
|
|
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ |
55 |
|
|
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ |
56 |
|
|
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ |
57 |
|
|
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ |
58 |
|
|
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ |
59 |
|
|
|
60 |
|
|
double |
61 |
|
|
__kernel_cos(double x, double y) |
62 |
|
|
{ |
63 |
|
|
double a,hz,z,r,qx; |
64 |
|
|
int32_t ix; |
65 |
|
1812 |
GET_HIGH_WORD(ix,x); |
66 |
|
906 |
ix &= 0x7fffffff; /* ix = |x|'s high word*/ |
67 |
✗✓ |
906 |
if(ix<0x3e400000) { /* if x < 2**27 */ |
68 |
|
|
if(((int)x)==0) return one; /* generate inexact */ |
69 |
|
|
} |
70 |
|
906 |
z = x*x; |
71 |
|
906 |
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); |
72 |
✓✓ |
906 |
if(ix < 0x3FD33333) /* if |x| < 0.3 */ |
73 |
|
420 |
return one - (0.5*z - (z*r - x*y)); |
74 |
|
|
else { |
75 |
✓✓ |
486 |
if(ix > 0x3fe90000) { /* x > 0.78125 */ |
76 |
|
|
qx = 0.28125; |
77 |
|
66 |
} else { |
78 |
|
420 |
INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ |
79 |
|
|
} |
80 |
|
486 |
hz = 0.5*z-qx; |
81 |
|
486 |
a = one-qx; |
82 |
|
486 |
return a - (hz - (z*r-x*y)); |
83 |
|
|
} |
84 |
|
906 |
} |