GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/ld80/e_expl.c Lines: 16 17 94.1 %
Date: 2017-11-13 Branches: 5 6 83.3 %

Line Branch Exec Source
1
/*	$OpenBSD: e_expl.c,v 1.4 2016/09/12 19:47:02 guenther Exp $	*/
2
3
/*
4
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5
 *
6
 * Permission to use, copy, modify, and distribute this software for any
7
 * purpose with or without fee is hereby granted, provided that the above
8
 * copyright notice and this permission notice appear in all copies.
9
 *
10
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17
 */
18
19
/*							expl.c
20
 *
21
 *	Exponential function, long double precision
22
 *
23
 *
24
 *
25
 * SYNOPSIS:
26
 *
27
 * long double x, y, expl();
28
 *
29
 * y = expl( x );
30
 *
31
 *
32
 *
33
 * DESCRIPTION:
34
 *
35
 * Returns e (2.71828...) raised to the x power.
36
 *
37
 * Range reduction is accomplished by separating the argument
38
 * into an integer k and fraction f such that
39
 *
40
 *     x    k  f
41
 *    e  = 2  e.
42
 *
43
 * A Pade' form of degree 2/3 is used to approximate exp(f) - 1
44
 * in the basic range [-0.5 ln 2, 0.5 ln 2].
45
 *
46
 *
47
 * ACCURACY:
48
 *
49
 *                      Relative error:
50
 * arithmetic   domain     # trials      peak         rms
51
 *    IEEE      +-10000     50000       1.12e-19    2.81e-20
52
 *
53
 *
54
 * Error amplification in the exponential function can be
55
 * a serious matter.  The error propagation involves
56
 * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
57
 * which shows that a 1 lsb error in representing X produces
58
 * a relative error of X times 1 lsb in the function.
59
 * While the routine gives an accurate result for arguments
60
 * that are exactly represented by a long double precision
61
 * computer number, the result contains amplified roundoff
62
 * error for large arguments not exactly represented.
63
 *
64
 *
65
 * ERROR MESSAGES:
66
 *
67
 *   message         condition      value returned
68
 * exp underflow    x < MINLOG         0.0
69
 * exp overflow     x > MAXLOG         MAXNUM
70
 *
71
 */
72
73
/*	Exponential function	*/
74
75
#include <math.h>
76
77
#include "math_private.h"
78
79
static long double P[3] = {
80
 1.2617719307481059087798E-4L,
81
 3.0299440770744196129956E-2L,
82
 9.9999999999999999991025E-1L,
83
};
84
static long double Q[4] = {
85
 3.0019850513866445504159E-6L,
86
 2.5244834034968410419224E-3L,
87
 2.2726554820815502876593E-1L,
88
 2.0000000000000000000897E0L,
89
};
90
static const long double C1 = 6.9314575195312500000000E-1L;
91
static const long double C2 = 1.4286068203094172321215E-6L;
92
static const long double MAXLOGL = 1.1356523406294143949492E4L;
93
static const long double MINLOGL = -1.13994985314888605586758E4L;
94
static const long double LOG2EL = 1.4426950408889634073599E0L;
95
96
long double
97
expl(long double x)
98
{
99
long double px, xx;
100
int n;
101
102
432
if( isnan(x) )
103
	return(x);
104
216
if( x > MAXLOGL)
105
3
	return( INFINITY );
106
107
213
if( x < MINLOGL )
108
3
	return(0.0L);
109
110
/* Express e**x = e**g 2**n
111
 *   = e**g e**( n loge(2) )
112
 *   = e**( g + n loge(2) )
113
 */
114
210
px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */
115
210
n = px;
116
210
x -= px * C1;
117
210
x -= px * C2;
118
119
120
/* rational approximation for exponential
121
 * of the fractional part:
122
 * e**x =  1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
123
 */
124
210
xx = x * x;
125
210
px = x * __polevll( xx, P, 2 );
126
210
x =  px/( __polevll( xx, Q, 3 ) - px );
127
210
x = 1.0L + ldexpl( x, 1 );
128
129
210
x = ldexpl( x, n );
130
210
return(x);
131
216
}
132
DEF_STD(expl);