GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/ld80/e_log10l.c Lines: 0 37 0.0 %
Date: 2017-11-13 Branches: 0 14 0.0 %

Line Branch Exec Source
1
/*	$OpenBSD: e_log10l.c,v 1.3 2017/01/21 08:29:13 krw Exp $	*/
2
3
/*
4
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5
 *
6
 * Permission to use, copy, modify, and distribute this software for any
7
 * purpose with or without fee is hereby granted, provided that the above
8
 * copyright notice and this permission notice appear in all copies.
9
 *
10
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17
 */
18
19
/*							log10l.c
20
 *
21
 *	Common logarithm, long double precision
22
 *
23
 *
24
 *
25
 * SYNOPSIS:
26
 *
27
 * long double x, y, log10l();
28
 *
29
 * y = log10l( x );
30
 *
31
 *
32
 *
33
 * DESCRIPTION:
34
 *
35
 * Returns the base 10 logarithm of x.
36
 *
37
 * The argument is separated into its exponent and fractional
38
 * parts.  If the exponent is between -1 and +1, the logarithm
39
 * of the fraction is approximated by
40
 *
41
 *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
42
 *
43
 * Otherwise, setting  z = 2(x-1)/x+1),
44
 *
45
 *     log(x) = z + z**3 P(z)/Q(z).
46
 *
47
 *
48
 *
49
 * ACCURACY:
50
 *
51
 *                      Relative error:
52
 * arithmetic   domain     # trials      peak         rms
53
 *    IEEE      0.5, 2.0     30000      9.0e-20     2.6e-20
54
 *    IEEE     exp(+-10000)  30000      6.0e-20     2.3e-20
55
 *
56
 * In the tests over the interval exp(+-10000), the logarithms
57
 * of the random arguments were uniformly distributed over
58
 * [-10000, +10000].
59
 *
60
 * ERROR MESSAGES:
61
 *
62
 * log singularity:  x = 0; returns MINLOG
63
 * log domain:       x < 0; returns MINLOG
64
 */
65
66
#include <math.h>
67
68
#include "math_private.h"
69
70
/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
71
 * 1/sqrt(2) <= x < sqrt(2)
72
 * Theoretical peak relative error = 6.2e-22
73
 */
74
static long double P[] = {
75
 4.9962495940332550844739E-1L,
76
 1.0767376367209449010438E1L,
77
 7.7671073698359539859595E1L,
78
 2.5620629828144409632571E2L,
79
 4.2401812743503691187826E2L,
80
 3.4258224542413922935104E2L,
81
 1.0747524399916215149070E2L,
82
};
83
static long double Q[] = {
84
/* 1.0000000000000000000000E0,*/
85
 2.3479774160285863271658E1L,
86
 1.9444210022760132894510E2L,
87
 7.7952888181207260646090E2L,
88
 1.6911722418503949084863E3L,
89
 2.0307734695595183428202E3L,
90
 1.2695660352705325274404E3L,
91
 3.2242573199748645407652E2L,
92
};
93
94
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
95
 * where z = 2(x-1)/(x+1)
96
 * 1/sqrt(2) <= x < sqrt(2)
97
 * Theoretical peak relative error = 6.16e-22
98
 */
99
100
static long double R[4] = {
101
 1.9757429581415468984296E-3L,
102
-7.1990767473014147232598E-1L,
103
 1.0777257190312272158094E1L,
104
-3.5717684488096787370998E1L,
105
};
106
static long double S[4] = {
107
/* 1.00000000000000000000E0L,*/
108
-2.6201045551331104417768E1L,
109
 1.9361891836232102174846E2L,
110
-4.2861221385716144629696E2L,
111
};
112
/* log10(2) */
113
#define L102A 0.3125L
114
#define L102B -1.1470004336018804786261e-2L
115
/* log10(e) */
116
#define L10EA 0.5L
117
#define L10EB -6.5705518096748172348871e-2L
118
119
#define SQRTH 0.70710678118654752440L
120
121
long double
122
log10l(long double x)
123
{
124
long double y;
125
volatile long double z;
126
int e;
127
128
if( isnan(x) )
129
	return(x);
130
/* Test for domain */
131
if( x <= 0.0L )
132
	{
133
	if( x == 0.0L )
134
		return (-1.0L / (x - x));
135
	else
136
		return (x - x) / (x - x);
137
	}
138
if( x == INFINITY )
139
	return(INFINITY);
140
/* separate mantissa from exponent */
141
142
/* Note, frexp is used so that denormal numbers
143
 * will be handled properly.
144
 */
145
x = frexpl( x, &e );
146
147
148
/* logarithm using log(x) = z + z**3 P(z)/Q(z),
149
 * where z = 2(x-1)/x+1)
150
 */
151
if( (e > 2) || (e < -2) )
152
{
153
if( x < SQRTH )
154
	{ /* 2( 2x-1 )/( 2x+1 ) */
155
	e -= 1;
156
	z = x - 0.5L;
157
	y = 0.5L * z + 0.5L;
158
	}
159
else
160
	{ /*  2 (x-1)/(x+1)   */
161
	z = x - 0.5L;
162
	z -= 0.5L;
163
	y = 0.5L * x  + 0.5L;
164
	}
165
x = z / y;
166
z = x*x;
167
y = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) );
168
goto done;
169
}
170
171
172
/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
173
174
if( x < SQRTH )
175
	{
176
	e -= 1;
177
	x = ldexpl( x, 1 ) - 1.0L; /*  2x - 1  */
178
	}
179
else
180
	{
181
	x = x - 1.0L;
182
	}
183
z = x*x;
184
y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 7 ) );
185
y = y - ldexpl( z, -1 );   /* -0.5x^2 + ... */
186
187
done:
188
189
/* Multiply log of fraction by log10(e)
190
 * and base 2 exponent by log10(2).
191
 *
192
 * ***CAUTION***
193
 *
194
 * This sequence of operations is critical and it may
195
 * be horribly defeated by some compiler optimizers.
196
 */
197
z = y * (L10EB);
198
z += x * (L10EB);
199
z += e * (L102B);
200
z += y * (L10EA);
201
z += x * (L10EA);
202
z += e * (L102A);
203
204
return( z );
205
}