GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/ld80/e_logl.c Lines: 33 39 84.6 %
Date: 2017-11-13 Branches: 10 14 71.4 %

Line Branch Exec Source
1
/*	$OpenBSD: e_logl.c,v 1.5 2017/01/21 08:29:13 krw Exp $	*/
2
3
/*
4
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5
 *
6
 * Permission to use, copy, modify, and distribute this software for any
7
 * purpose with or without fee is hereby granted, provided that the above
8
 * copyright notice and this permission notice appear in all copies.
9
 *
10
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17
 */
18
19
/*							logl.c
20
 *
21
 *	Natural logarithm, long double precision
22
 *
23
 *
24
 *
25
 * SYNOPSIS:
26
 *
27
 * long double x, y, logl();
28
 *
29
 * y = logl( x );
30
 *
31
 *
32
 *
33
 * DESCRIPTION:
34
 *
35
 * Returns the base e (2.718...) logarithm of x.
36
 *
37
 * The argument is separated into its exponent and fractional
38
 * parts.  If the exponent is between -1 and +1, the logarithm
39
 * of the fraction is approximated by
40
 *
41
 *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
42
 *
43
 * Otherwise, setting  z = 2(x-1)/x+1),
44
 *
45
 *     log(x) = z + z**3 P(z)/Q(z).
46
 *
47
 *
48
 *
49
 * ACCURACY:
50
 *
51
 *                      Relative error:
52
 * arithmetic   domain     # trials      peak         rms
53
 *    IEEE      0.5, 2.0    150000      8.71e-20    2.75e-20
54
 *    IEEE     exp(+-10000) 100000      5.39e-20    2.34e-20
55
 *
56
 * In the tests over the interval exp(+-10000), the logarithms
57
 * of the random arguments were uniformly distributed over
58
 * [-10000, +10000].
59
 *
60
 * ERROR MESSAGES:
61
 *
62
 * log singularity:  x = 0; returns -INFINITY
63
 * log domain:       x < 0; returns NAN
64
 */
65
66
#include <math.h>
67
68
#include "math_private.h"
69
70
/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
71
 * 1/sqrt(2) <= x < sqrt(2)
72
 * Theoretical peak relative error = 2.32e-20
73
 */
74
static long double P[] = {
75
 4.5270000862445199635215E-5L,
76
 4.9854102823193375972212E-1L,
77
 6.5787325942061044846969E0L,
78
 2.9911919328553073277375E1L,
79
 6.0949667980987787057556E1L,
80
 5.7112963590585538103336E1L,
81
 2.0039553499201281259648E1L,
82
};
83
static long double Q[] = {
84
/* 1.0000000000000000000000E0,*/
85
 1.5062909083469192043167E1L,
86
 8.3047565967967209469434E1L,
87
 2.2176239823732856465394E2L,
88
 3.0909872225312059774938E2L,
89
 2.1642788614495947685003E2L,
90
 6.0118660497603843919306E1L,
91
};
92
93
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
94
 * where z = 2(x-1)/(x+1)
95
 * 1/sqrt(2) <= x < sqrt(2)
96
 * Theoretical peak relative error = 6.16e-22
97
 */
98
99
static long double R[4] = {
100
 1.9757429581415468984296E-3L,
101
-7.1990767473014147232598E-1L,
102
 1.0777257190312272158094E1L,
103
-3.5717684488096787370998E1L,
104
};
105
static long double S[4] = {
106
/* 1.00000000000000000000E0L,*/
107
-2.6201045551331104417768E1L,
108
 1.9361891836232102174846E2L,
109
-4.2861221385716144629696E2L,
110
};
111
static const long double C1 = 6.9314575195312500000000E-1L;
112
static const long double C2 = 1.4286068203094172321215E-6L;
113
114
#define SQRTH 0.70710678118654752440L
115
116
long double
117
logl(long double x)
118
{
119
long double y, z;
120
398
int e;
121
122
199
if( isnan(x) )
123
	return(x);
124
199
if( x == INFINITY )
125
	return(x);
126
/* Test for domain */
127
199
if( x <= 0.0L )
128
	{
129
98
	if( x == 0.0L )
130
		return( -INFINITY );
131
	else
132
98
		return( NAN );
133
	}
134
135
/* separate mantissa from exponent */
136
137
/* Note, frexp is used so that denormal numbers
138
 * will be handled properly.
139
 */
140
101
x = frexpl( x, &e );
141
142
/* logarithm using log(x) = z + z**3 P(z)/Q(z),
143
 * where z = 2(x-1)/x+1)
144
 */
145
101
if( (e > 2) || (e < -2) )
146
{
147
28
if( x < SQRTH )
148
	{ /* 2( 2x-1 )/( 2x+1 ) */
149
28
	e -= 1;
150
28
	z = x - 0.5L;
151
28
	y = 0.5L * z + 0.5L;
152
28
	}
153
else
154
	{ /*  2 (x-1)/(x+1)   */
155
	z = x - 0.5L;
156
	z -= 0.5L;
157
	y = 0.5L * x  + 0.5L;
158
	}
159
28
x = z / y;
160
28
z = x*x;
161
28
z = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) );
162
28
z = z + e * C2;
163
28
z = z + x;
164
28
z = z + e * C1;
165
28
return( z );
166
}
167
168
169
/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
170
171
73
if( x < SQRTH )
172
	{
173
45
	e -= 1;
174
45
	x = ldexpl( x, 1 ) - 1.0L; /*  2x - 1  */
175
45
	}
176
else
177
	{
178
28
	x = x - 1.0L;
179
	}
180
73
z = x*x;
181
73
y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 6 ) );
182
73
y = y + e * C2;
183
73
z = y - ldexpl( z, -1 );   /*  y - 0.5 * z  */
184
/* Note, the sum of above terms does not exceed x/4,
185
 * so it contributes at most about 1/4 lsb to the error.
186
 */
187
73
z = z + x;
188
73
z = z + e * C1; /* This sum has an error of 1/2 lsb. */
189
73
return( z );
190
199
}
191
DEF_STD(logl);