GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/ld80/k_sinl.c Lines: 6 6 100.0 %
Date: 2017-11-13 Branches: 2 2 100.0 %

Line Branch Exec Source
1
/*	$OpenBSD: k_sinl.c,v 1.2 2017/01/21 08:29:13 krw Exp $	*/
2
/* From: @(#)k_sin.c 1.3 95/01/18 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
7
 *
8
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
9
 * Permission to use, copy, modify, and distribute this
10
 * software is freely granted, provided that this notice
11
 * is preserved.
12
 * ====================================================
13
 */
14
15
/*
16
 * ld80 version of k_sin.c.  See ../k_sin.c for most comments.
17
 */
18
19
#include "math_private.h"
20
21
static const double
22
half =  0.5;
23
24
/*
25
 * Domain [-0.7854, 0.7854], range ~[-1.89e-22, 1.915e-22]
26
 * |sin(x)/x - s(x)| < 2**-72.1
27
 *
28
 * See ../ld80/k_cosl.c for more details about the polynomial.
29
 */
30
#if defined(__amd64__) || defined(__i386__)
31
/* Long double constants are slow on these arches, and broken on i386. */
32
static const volatile double
33
S1hi = -0.16666666666666666,		/* -0x15555555555555.0p-55 */
34
S1lo = -9.2563760475949941e-18;		/* -0x15580000000000.0p-109 */
35
#define	S1	((long double)S1hi + S1lo)
36
#else
37
static const long double
38
S1 = -0.166666666666666666671L;		/* -0xaaaaaaaaaaaaaaab.0p-66 */
39
#endif
40
41
static const double
42
S2 =  0.0083333333333333332,		/*  0x11111111111111.0p-59 */
43
S3 = -0.00019841269841269427,		/* -0x1a01a01a019f81.0p-65 */
44
S4 =  0.0000027557319223597490,		/*  0x171de3a55560f7.0p-71 */
45
S5 = -0.000000025052108218074604,	/* -0x1ae64564f16cad.0p-78 */
46
S6 =  1.6059006598854211e-10,		/*  0x161242b90243b5.0p-85 */
47
S7 = -7.6429779983024564e-13,		/* -0x1ae42ebd1b2e00.0p-93 */
48
S8 =  2.6174587166648325e-15;		/*  0x179372ea0b3f64.0p-101 */
49
50
long double
51
__kernel_sinl(long double x, long double y, int iy)
52
{
53
	long double z,r,v;
54
55
392
	z	=  x*x;
56
196
	v	=  z*x;
57
196
	r	=  S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*S8)))));
58
252
	if(iy==0) return x+v*(S1+z*r);
59
140
	else      return x-((z*(half*y-v*r)-y)-v*S1);
60
196
}