1  | 
     | 
     | 
    /*-  | 
    
    
    2  | 
     | 
     | 
     * ====================================================  | 
    
    
    3  | 
     | 
     | 
     * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.  | 
    
    
    4  | 
     | 
     | 
     * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz.  | 
    
    
    5  | 
     | 
     | 
     *  | 
    
    
    6  | 
     | 
     | 
     * Developed at SunPro, a Sun Microsystems, Inc. business.  | 
    
    
    7  | 
     | 
     | 
     * Permission to use, copy, modify, and distribute this  | 
    
    
    8  | 
     | 
     | 
     * software is freely granted, provided that this notice  | 
    
    
    9  | 
     | 
     | 
     * is preserved.  | 
    
    
    10  | 
     | 
     | 
     * ====================================================  | 
    
    
    11  | 
     | 
     | 
     *  | 
    
    
    12  | 
     | 
     | 
     * The argument reduction and testing for exceptional cases was  | 
    
    
    13  | 
     | 
     | 
     * written by Steven G. Kargl with input from Bruce D. Evans  | 
    
    
    14  | 
     | 
     | 
     * and David A. Schultz.  | 
    
    
    15  | 
     | 
     | 
     */  | 
    
    
    16  | 
     | 
     | 
     | 
    
    
    17  | 
     | 
     | 
    #include <float.h>  | 
    
    
    18  | 
     | 
     | 
    #include <ieeefp.h>  | 
    
    
    19  | 
     | 
     | 
    #include <math.h>  | 
    
    
    20  | 
     | 
     | 
     | 
    
    
    21  | 
     | 
     | 
    #include "math_private.h"  | 
    
    
    22  | 
     | 
     | 
     | 
    
    
    23  | 
     | 
     | 
    #define	BIAS	(LDBL_MAX_EXP - 1)  | 
    
    
    24  | 
     | 
     | 
     | 
    
    
    25  | 
     | 
     | 
    static const unsigned  | 
    
    
    26  | 
     | 
     | 
        B1 = 709958130;	/* B1 = (127-127.0/3-0.03306235651)*2**23 */  | 
    
    
    27  | 
     | 
     | 
     | 
    
    
    28  | 
     | 
     | 
    long double  | 
    
    
    29  | 
     | 
     | 
    cbrtl(long double x)  | 
    
    
    30  | 
     | 
     | 
    { | 
    
    
    31  | 
     | 
     | 
    	long double v, r, s, t, w;  | 
    
    
    32  | 
     | 
     | 
    	double dr, dt, dx;  | 
    
    
    33  | 
     | 
     | 
    	float ft, fx;  | 
    
    
    34  | 
     | 
     | 
    	uint32_t hx, lx;  | 
    
    
    35  | 
     | 
     | 
    	uint16_t expsign, es;  | 
    
    
    36  | 
     | 
     | 
    	int k;  | 
    
    
    37  | 
     | 
     | 
    	volatile double vd1, vd2;  | 
    
    
    38  | 
     | 
     | 
     | 
    
    
    39  | 
     | 
     | 
    	GET_LDOUBLE_EXP(expsign,x);  | 
    
    
    40  | 
     | 
     | 
    	k = expsign & 0x7fff;  | 
    
    
    41  | 
     | 
     | 
     | 
    
    
    42  | 
     | 
     | 
    	/*  | 
    
    
    43  | 
     | 
     | 
    	 * If x = +-Inf, then cbrt(x) = +-Inf.  | 
    
    
    44  | 
     | 
     | 
    	 * If x = NaN, then cbrt(x) = NaN.  | 
    
    
    45  | 
     | 
     | 
    	 */  | 
    
    
    46  | 
     | 
     | 
    	if (k == BIAS + LDBL_MAX_EXP)  | 
    
    
    47  | 
     | 
     | 
    		return (x + x);  | 
    
    
    48  | 
     | 
     | 
     | 
    
    
    49  | 
     | 
     | 
    	if (k == 0) { | 
    
    
    50  | 
     | 
     | 
    		/* If x = +-0, then cbrt(x) = +-0. */  | 
    
    
    51  | 
     | 
     | 
    		GET_LDOUBLE_WORDS(es,hx,lx,x);  | 
    
    
    52  | 
     | 
     | 
    		if ((hx|lx) == 0) { | 
    
    
    53  | 
     | 
     | 
    			return (x);  | 
    
    
    54  | 
     | 
     | 
    		}  | 
    
    
    55  | 
     | 
     | 
    		/* Adjust subnormal numbers. */  | 
    
    
    56  | 
     | 
     | 
    		x *= 0x1.0p514;  | 
    
    
    57  | 
     | 
     | 
    		GET_LDOUBLE_EXP(k,x);  | 
    
    
    58  | 
     | 
     | 
    		k &= 0x7fff;  | 
    
    
    59  | 
     | 
     | 
    		k -= BIAS + 514;  | 
    
    
    60  | 
     | 
     | 
    	} else  | 
    
    
    61  | 
     | 
     | 
    		k -= BIAS;  | 
    
    
    62  | 
     | 
     | 
    	SET_LDOUBLE_EXP(x,BIAS);  | 
    
    
    63  | 
     | 
     | 
    	v = 1;  | 
    
    
    64  | 
     | 
     | 
     | 
    
    
    65  | 
     | 
     | 
    	switch (k % 3) { | 
    
    
    66  | 
     | 
     | 
    	case 1:  | 
    
    
    67  | 
     | 
     | 
    	case -2:  | 
    
    
    68  | 
     | 
     | 
    		x = 2*x;  | 
    
    
    69  | 
     | 
     | 
    		k--;  | 
    
    
    70  | 
     | 
     | 
    		break;  | 
    
    
    71  | 
     | 
     | 
    	case 2:  | 
    
    
    72  | 
     | 
     | 
    	case -1:  | 
    
    
    73  | 
     | 
     | 
    		x = 4*x;  | 
    
    
    74  | 
     | 
     | 
    		k -= 2;  | 
    
    
    75  | 
     | 
     | 
    		break;  | 
    
    
    76  | 
     | 
     | 
    	}  | 
    
    
    77  | 
     | 
     | 
    	SET_LDOUBLE_EXP(v, (expsign & 0x8000) | (BIAS + k / 3));  | 
    
    
    78  | 
     | 
     | 
     | 
    
    
    79  | 
     | 
     | 
    	/*  | 
    
    
    80  | 
     | 
     | 
    	 * The following is the guts of s_cbrtf, with the handling of  | 
    
    
    81  | 
     | 
     | 
    	 * special values removed and extra care for accuracy not taken,  | 
    
    
    82  | 
     | 
     | 
    	 * but with most of the extra accuracy not discarded.  | 
    
    
    83  | 
     | 
     | 
    	 */  | 
    
    
    84  | 
     | 
     | 
     | 
    
    
    85  | 
     | 
     | 
    	/* ~5-bit estimate: */  | 
    
    
    86  | 
     | 
     | 
    	fx = x;  | 
    
    
    87  | 
     | 
     | 
    	GET_FLOAT_WORD(hx, fx);  | 
    
    
    88  | 
     | 
     | 
    	SET_FLOAT_WORD(ft, ((hx & 0x7fffffff) / 3 + B1));  | 
    
    
    89  | 
     | 
     | 
     | 
    
    
    90  | 
     | 
     | 
    	/* ~16-bit estimate: */  | 
    
    
    91  | 
     | 
     | 
    	dx = x;  | 
    
    
    92  | 
     | 
     | 
    	dt = ft;  | 
    
    
    93  | 
     | 
     | 
    	dr = dt * dt * dt;  | 
    
    
    94  | 
     | 
     | 
    	dt = dt * (dx + dx + dr) / (dx + dr + dr);  | 
    
    
    95  | 
     | 
     | 
     | 
    
    
    96  | 
     | 
     | 
    	/* ~47-bit estimate: */  | 
    
    
    97  | 
     | 
     | 
    	dr = dt * dt * dt;  | 
    
    
    98  | 
     | 
     | 
    	dt = dt * (dx + dx + dr) / (dx + dr + dr);  | 
    
    
    99  | 
     | 
     | 
     | 
    
    
    100  | 
     | 
     | 
    	/*  | 
    
    
    101  | 
     | 
     | 
    	 * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8).  | 
    
    
    102  | 
     | 
     | 
    	 * Round it away from zero to 32 bits (32 so that t*t is exact, and  | 
    
    
    103  | 
     | 
     | 
    	 * away from zero for technical reasons).  | 
    
    
    104  | 
     | 
     | 
    	 */  | 
    
    
    105  | 
     | 
     | 
    	vd2 = 0x1.0p32;  | 
    
    
    106  | 
     | 
     | 
    	vd1 = 0x1.0p-31;  | 
    
    
    107  | 
     | 
     | 
    	#define vd ((long double)vd2 + vd1)  | 
    
    
    108  | 
     | 
     | 
     | 
    
    
    109  | 
     | 
     | 
    	t = dt + vd - 0x1.0p32;  | 
    
    
    110  | 
     | 
     | 
     | 
    
    
    111  | 
     | 
     | 
    	/*  | 
    
    
    112  | 
     | 
     | 
    	 * Final step Newton iteration to 64 or 113 bits with  | 
    
    
    113  | 
     | 
     | 
    	 * error < 0.667 ulps  | 
    
    
    114  | 
     | 
     | 
    	 */  | 
    
    
    115  | 
     | 
     | 
    	s=t*t;				/* t*t is exact */  | 
    
    
    116  | 
     | 
     | 
    	r=x/s;				/* error <= 0.5 ulps; |r| < |t| */  | 
    
    
    117  | 
     | 
     | 
    	w=t+t;				/* t+t is exact */  | 
    
    
    118  | 
     | 
     | 
    	r=(r-t)/(w+r);			/* r-t is exact; w+r ~= 3*t */  | 
    
    
    119  | 
     | 
     | 
    	t=t+t*r;			/* error <= 0.5 + 0.5/3 + epsilon */  | 
    
    
    120  | 
     | 
     | 
     | 
    
    
    121  | 
     | 
     | 
    	t *= v;  | 
    
    
    122  | 
     | 
     | 
    	return (t);  | 
    
    
    123  | 
     | 
     | 
    }  |