GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: lib/libm/src/s_csqrtl.c Lines: 0 33 0.0 %
Date: 2017-11-13 Branches: 0 12 0.0 %

Line Branch Exec Source
1
/*	$OpenBSD: s_csqrtl.c,v 1.4 2016/09/12 19:47:02 guenther Exp $	*/
2
3
/*
4
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5
 *
6
 * Permission to use, copy, modify, and distribute this software for any
7
 * purpose with or without fee is hereby granted, provided that the above
8
 * copyright notice and this permission notice appear in all copies.
9
 *
10
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17
 */
18
19
/*							csqrtl()
20
 *
21
 *	Complex square root
22
 *
23
 *
24
 *
25
 * SYNOPSIS:
26
 *
27
 * long double complex csqrtl();
28
 * long double complex z, w;
29
 *
30
 * w = csqrtl( z );
31
 *
32
 *
33
 *
34
 * DESCRIPTION:
35
 *
36
 *
37
 * If z = x + iy,  r = |z|, then
38
 *
39
 *                       1/2
40
 * Re w  =  [ (r + x)/2 ]   ,
41
 *
42
 *                       1/2
43
 * Im w  =  [ (r - x)/2 ]   .
44
 *
45
 * Cancellation error in r-x or r+x is avoided by using the
46
 * identity  2 Re w Im w  =  y.
47
 *
48
 * Note that -w is also a square root of z.  The root chosen
49
 * is always in the right half plane and Im w has the same sign as y.
50
 *
51
 *
52
 *
53
 * ACCURACY:
54
 *
55
 *                      Relative error:
56
 * arithmetic   domain     # trials      peak         rms
57
 *    IEEE      -10,+10     500000      1.1e-19     3.0e-20
58
 *
59
 */
60
61
#include <complex.h>
62
#include <math.h>
63
64
long double complex
65
csqrtl(long double complex z)
66
{
67
	long double complex w;
68
	long double x, y, r, t, scale;
69
70
	x = creall(z);
71
	y = cimagl(z);
72
73
	if (y == 0.0L) {
74
		if (x < 0.0L) {
75
			w = 0.0L + copysign(sqrtl(-x), y) * I;
76
			return (w);
77
		}
78
		else {
79
			w = sqrtl(x) + 0.0L * I;
80
			return (w);
81
		}
82
	}
83
84
	if (x == 0.0L) {
85
		r = fabsl(y);
86
		r = sqrtl(0.5L * r);
87
		if (y > 0.0L)
88
			w = r + r * I;
89
		else
90
			w = r - r * I;
91
		return (w);
92
	}
93
94
	/* Rescale to avoid internal overflow or underflow.  */
95
	if ((fabsl(x) > 4.0L) || (fabsl(y) > 4.0L)) {
96
		x *= 0.25L;
97
		y *= 0.25L;
98
		scale = 2.0L;
99
	}
100
	else {
101
#if 1
102
		x *= 7.3786976294838206464e19;  /* 2^66 */
103
		y *= 7.3786976294838206464e19;
104
		scale = 1.16415321826934814453125e-10;  /* 2^-33 */
105
#else
106
		x *= 4.0L;
107
		y *= 4.0L;
108
		scale = 0.5L;
109
#endif
110
	}
111
	w = x + y * I;
112
	r = cabsl(w);
113
	if (x > 0) {
114
		t = sqrtl(0.5L * r + 0.5L * x);
115
		r = scale * fabsl((0.5L * y) / t);
116
		t *= scale;
117
	}
118
	else {
119
		r = sqrtl(0.5L * r - 0.5L * x);
120
		t = scale * fabsl((0.5L * y) / r);
121
		r *= scale;
122
	}
123
	if (y < 0)
124
		w = t - r * I;
125
	else
126
		w = t + r * I;
127
	return (w);
128
}
129
DEF_STD(csqrtl);