1 |
|
|
/* @(#)s_erf.c 5.1 93/09/24 */ |
2 |
|
|
/* |
3 |
|
|
* ==================================================== |
4 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 |
|
|
* |
6 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business. |
7 |
|
|
* Permission to use, copy, modify, and distribute this |
8 |
|
|
* software is freely granted, provided that this notice |
9 |
|
|
* is preserved. |
10 |
|
|
* ==================================================== |
11 |
|
|
*/ |
12 |
|
|
|
13 |
|
|
/* double erf(double x) |
14 |
|
|
* double erfc(double x) |
15 |
|
|
* x |
16 |
|
|
* 2 |\ |
17 |
|
|
* erf(x) = --------- | exp(-t*t)dt |
18 |
|
|
* sqrt(pi) \| |
19 |
|
|
* 0 |
20 |
|
|
* |
21 |
|
|
* erfc(x) = 1-erf(x) |
22 |
|
|
* Note that |
23 |
|
|
* erf(-x) = -erf(x) |
24 |
|
|
* erfc(-x) = 2 - erfc(x) |
25 |
|
|
* |
26 |
|
|
* Method: |
27 |
|
|
* 1. For |x| in [0, 0.84375] |
28 |
|
|
* erf(x) = x + x*R(x^2) |
29 |
|
|
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25] |
30 |
|
|
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] |
31 |
|
|
* where R = P/Q where P is an odd poly of degree 8 and |
32 |
|
|
* Q is an odd poly of degree 10. |
33 |
|
|
* -57.90 |
34 |
|
|
* | R - (erf(x)-x)/x | <= 2 |
35 |
|
|
* |
36 |
|
|
* |
37 |
|
|
* Remark. The formula is derived by noting |
38 |
|
|
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) |
39 |
|
|
* and that |
40 |
|
|
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688 |
41 |
|
|
* is close to one. The interval is chosen because the fix |
42 |
|
|
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is |
43 |
|
|
* near 0.6174), and by some experiment, 0.84375 is chosen to |
44 |
|
|
* guarantee the error is less than one ulp for erf. |
45 |
|
|
* |
46 |
|
|
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and |
47 |
|
|
* c = 0.84506291151 rounded to single (24 bits) |
48 |
|
|
* erf(x) = sign(x) * (c + P1(s)/Q1(s)) |
49 |
|
|
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 |
50 |
|
|
* 1+(c+P1(s)/Q1(s)) if x < 0 |
51 |
|
|
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 |
52 |
|
|
* Remark: here we use the taylor series expansion at x=1. |
53 |
|
|
* erf(1+s) = erf(1) + s*Poly(s) |
54 |
|
|
* = 0.845.. + P1(s)/Q1(s) |
55 |
|
|
* That is, we use rational approximation to approximate |
56 |
|
|
* erf(1+s) - (c = (single)0.84506291151) |
57 |
|
|
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] |
58 |
|
|
* where |
59 |
|
|
* P1(s) = degree 6 poly in s |
60 |
|
|
* Q1(s) = degree 6 poly in s |
61 |
|
|
* |
62 |
|
|
* 3. For x in [1.25,1/0.35(~2.857143)], |
63 |
|
|
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) |
64 |
|
|
* erf(x) = 1 - erfc(x) |
65 |
|
|
* where |
66 |
|
|
* R1(z) = degree 7 poly in z, (z=1/x^2) |
67 |
|
|
* S1(z) = degree 8 poly in z |
68 |
|
|
* |
69 |
|
|
* 4. For x in [1/0.35,28] |
70 |
|
|
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 |
71 |
|
|
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 |
72 |
|
|
* = 2.0 - tiny (if x <= -6) |
73 |
|
|
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else |
74 |
|
|
* erf(x) = sign(x)*(1.0 - tiny) |
75 |
|
|
* where |
76 |
|
|
* R2(z) = degree 6 poly in z, (z=1/x^2) |
77 |
|
|
* S2(z) = degree 7 poly in z |
78 |
|
|
* |
79 |
|
|
* Note1: |
80 |
|
|
* To compute exp(-x*x-0.5625+R/S), let s be a single |
81 |
|
|
* precision number and s := x; then |
82 |
|
|
* -x*x = -s*s + (s-x)*(s+x) |
83 |
|
|
* exp(-x*x-0.5626+R/S) = |
84 |
|
|
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); |
85 |
|
|
* Note2: |
86 |
|
|
* Here 4 and 5 make use of the asymptotic series |
87 |
|
|
* exp(-x*x) |
88 |
|
|
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) |
89 |
|
|
* x*sqrt(pi) |
90 |
|
|
* We use rational approximation to approximate |
91 |
|
|
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 |
92 |
|
|
* Here is the error bound for R1/S1 and R2/S2 |
93 |
|
|
* |R1/S1 - f(x)| < 2**(-62.57) |
94 |
|
|
* |R2/S2 - f(x)| < 2**(-61.52) |
95 |
|
|
* |
96 |
|
|
* 5. For inf > x >= 28 |
97 |
|
|
* erf(x) = sign(x) *(1 - tiny) (raise inexact) |
98 |
|
|
* erfc(x) = tiny*tiny (raise underflow) if x > 0 |
99 |
|
|
* = 2 - tiny if x<0 |
100 |
|
|
* |
101 |
|
|
* 7. Special case: |
102 |
|
|
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, |
103 |
|
|
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, |
104 |
|
|
* erfc/erf(NaN) is NaN |
105 |
|
|
*/ |
106 |
|
|
|
107 |
|
|
#include <float.h> |
108 |
|
|
#include <math.h> |
109 |
|
|
|
110 |
|
|
#include "math_private.h" |
111 |
|
|
|
112 |
|
|
static const double |
113 |
|
|
tiny = 1e-300, |
114 |
|
|
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
115 |
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
116 |
|
|
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ |
117 |
|
|
/* c = (float)0.84506291151 */ |
118 |
|
|
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ |
119 |
|
|
/* |
120 |
|
|
* Coefficients for approximation to erf on [0,0.84375] |
121 |
|
|
*/ |
122 |
|
|
efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ |
123 |
|
|
efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ |
124 |
|
|
pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ |
125 |
|
|
pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ |
126 |
|
|
pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ |
127 |
|
|
pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ |
128 |
|
|
pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ |
129 |
|
|
qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ |
130 |
|
|
qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ |
131 |
|
|
qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ |
132 |
|
|
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ |
133 |
|
|
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ |
134 |
|
|
/* |
135 |
|
|
* Coefficients for approximation to erf in [0.84375,1.25] |
136 |
|
|
*/ |
137 |
|
|
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ |
138 |
|
|
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ |
139 |
|
|
pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ |
140 |
|
|
pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ |
141 |
|
|
pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ |
142 |
|
|
pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ |
143 |
|
|
pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ |
144 |
|
|
qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ |
145 |
|
|
qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ |
146 |
|
|
qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ |
147 |
|
|
qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ |
148 |
|
|
qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ |
149 |
|
|
qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ |
150 |
|
|
/* |
151 |
|
|
* Coefficients for approximation to erfc in [1.25,1/0.35] |
152 |
|
|
*/ |
153 |
|
|
ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ |
154 |
|
|
ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ |
155 |
|
|
ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ |
156 |
|
|
ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ |
157 |
|
|
ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ |
158 |
|
|
ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ |
159 |
|
|
ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ |
160 |
|
|
ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ |
161 |
|
|
sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ |
162 |
|
|
sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ |
163 |
|
|
sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ |
164 |
|
|
sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ |
165 |
|
|
sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ |
166 |
|
|
sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ |
167 |
|
|
sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ |
168 |
|
|
sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ |
169 |
|
|
/* |
170 |
|
|
* Coefficients for approximation to erfc in [1/.35,28] |
171 |
|
|
*/ |
172 |
|
|
rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ |
173 |
|
|
rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ |
174 |
|
|
rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ |
175 |
|
|
rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ |
176 |
|
|
rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ |
177 |
|
|
rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ |
178 |
|
|
rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ |
179 |
|
|
sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ |
180 |
|
|
sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ |
181 |
|
|
sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ |
182 |
|
|
sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ |
183 |
|
|
sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ |
184 |
|
|
sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ |
185 |
|
|
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ |
186 |
|
|
|
187 |
|
|
double |
188 |
|
|
erf(double x) |
189 |
|
|
{ |
190 |
|
|
int32_t hx,ix,i; |
191 |
|
|
double R,S,P,Q,s,y,z,r; |
192 |
|
15324 |
GET_HIGH_WORD(hx,x); |
193 |
|
7662 |
ix = hx&0x7fffffff; |
194 |
✗✓ |
7662 |
if(ix>=0x7ff00000) { /* erf(nan)=nan */ |
195 |
|
|
i = ((u_int32_t)hx>>31)<<1; |
196 |
|
|
return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */ |
197 |
|
|
} |
198 |
|
|
|
199 |
✓✓ |
7662 |
if(ix < 0x3feb0000) { /* |x|<0.84375 */ |
200 |
✓✓ |
1260 |
if(ix < 0x3e300000) { /* |x|<2**-28 */ |
201 |
✓✗ |
18 |
if (ix < 0x00800000) |
202 |
|
18 |
return 0.125*(8.0*x+efx8*x); /*avoid underflow */ |
203 |
|
|
return x + efx*x; |
204 |
|
|
} |
205 |
|
1242 |
z = x*x; |
206 |
|
1242 |
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
207 |
|
1242 |
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
208 |
|
1242 |
y = r/s; |
209 |
|
1242 |
return x + x*y; |
210 |
|
|
} |
211 |
✓✓ |
6402 |
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ |
212 |
|
738 |
s = fabs(x)-one; |
213 |
|
738 |
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
214 |
|
738 |
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
215 |
✓✓ |
1476 |
if(hx>=0) return erx + P/Q; else return -erx - P/Q; |
216 |
|
|
} |
217 |
✓✓ |
5664 |
if (ix >= 0x40180000) { /* inf>|x|>=6 */ |
218 |
✓✓ |
732 |
if(hx>=0) return one-tiny; else return tiny-one; |
219 |
|
|
} |
220 |
|
5298 |
x = fabs(x); |
221 |
|
5298 |
s = one/(x*x); |
222 |
✓✓ |
5298 |
if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */ |
223 |
|
1680 |
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( |
224 |
|
1680 |
ra5+s*(ra6+s*ra7)))))); |
225 |
|
1680 |
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( |
226 |
|
1680 |
sa5+s*(sa6+s*(sa7+s*sa8))))))); |
227 |
|
1680 |
} else { /* |x| >= 1/0.35 */ |
228 |
|
3618 |
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( |
229 |
|
3618 |
rb5+s*rb6))))); |
230 |
|
3618 |
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( |
231 |
|
3618 |
sb5+s*(sb6+s*sb7)))))); |
232 |
|
|
} |
233 |
|
|
z = x; |
234 |
|
5298 |
SET_LOW_WORD(z,0); |
235 |
|
5298 |
r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S); |
236 |
✓✓ |
10596 |
if(hx>=0) return one-r/x; else return r/x-one; |
237 |
|
7662 |
} |
238 |
|
|
DEF_STD(erf); |
239 |
|
|
LDBL_MAYBE_CLONE(erf); |
240 |
|
|
|
241 |
|
|
double |
242 |
|
|
erfc(double x) |
243 |
|
|
{ |
244 |
|
|
int32_t hx,ix; |
245 |
|
|
double R,S,P,Q,s,y,z,r; |
246 |
|
15816 |
GET_HIGH_WORD(hx,x); |
247 |
|
7908 |
ix = hx&0x7fffffff; |
248 |
✗✓ |
7908 |
if(ix>=0x7ff00000) { /* erfc(nan)=nan */ |
249 |
|
|
/* erfc(+-inf)=0,2 */ |
250 |
|
|
return (double)(((u_int32_t)hx>>31)<<1)+one/x; |
251 |
|
|
} |
252 |
|
|
|
253 |
✓✓ |
7908 |
if(ix < 0x3feb0000) { /* |x|<0.84375 */ |
254 |
✓✓ |
564 |
if(ix < 0x3c700000) /* |x|<2**-56 */ |
255 |
|
18 |
return one-x; |
256 |
|
546 |
z = x*x; |
257 |
|
546 |
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
258 |
|
546 |
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
259 |
|
546 |
y = r/s; |
260 |
✓✓ |
546 |
if(hx < 0x3fd00000) { /* x<1/4 */ |
261 |
|
372 |
return one-(x+x*y); |
262 |
|
|
} else { |
263 |
|
174 |
r = x*y; |
264 |
|
174 |
r += (x-half); |
265 |
|
174 |
return half - r ; |
266 |
|
|
} |
267 |
|
|
} |
268 |
✓✓ |
7344 |
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ |
269 |
|
654 |
s = fabs(x)-one; |
270 |
|
654 |
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
271 |
|
654 |
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
272 |
✓✓ |
654 |
if(hx>=0) { |
273 |
|
426 |
z = one-erx; return z - P/Q; |
274 |
|
|
} else { |
275 |
|
228 |
z = erx+P/Q; return one+z; |
276 |
|
|
} |
277 |
|
|
} |
278 |
✓✗ |
6690 |
if (ix < 0x403c0000) { /* |x|<28 */ |
279 |
|
6690 |
x = fabs(x); |
280 |
|
6690 |
s = one/(x*x); |
281 |
✓✓ |
6690 |
if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/ |
282 |
|
1476 |
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( |
283 |
|
1476 |
ra5+s*(ra6+s*ra7)))))); |
284 |
|
1476 |
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( |
285 |
|
1476 |
sa5+s*(sa6+s*(sa7+s*sa8))))))); |
286 |
|
1476 |
} else { /* |x| >= 1/.35 ~ 2.857143 */ |
287 |
✓✓ |
5226 |
if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */ |
288 |
|
5202 |
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( |
289 |
|
5202 |
rb5+s*rb6))))); |
290 |
|
5202 |
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( |
291 |
|
5202 |
sb5+s*(sb6+s*sb7)))))); |
292 |
|
|
} |
293 |
|
|
z = x; |
294 |
|
6678 |
SET_LOW_WORD(z,0); |
295 |
|
6678 |
r = exp(-z*z-0.5625) * exp((z-x)*(z+x)+R/S); |
296 |
✓✓ |
13356 |
if(hx>0) return r/x; else return two-r/x; |
297 |
|
|
} else { |
298 |
|
|
if(hx>0) return tiny*tiny; else return two-tiny; |
299 |
|
|
} |
300 |
|
7908 |
} |
301 |
|
|
DEF_STD(erfc); |
302 |
|
|
LDBL_MAYBE_CLONE(erfc); |