1 |
|
|
/* $OpenBSD: optimize.c,v 1.19 2016/02/05 16:58:39 canacar Exp $ */ |
2 |
|
|
|
3 |
|
|
/* |
4 |
|
|
* Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996 |
5 |
|
|
* The Regents of the University of California. All rights reserved. |
6 |
|
|
* |
7 |
|
|
* Redistribution and use in source and binary forms, with or without |
8 |
|
|
* modification, are permitted provided that: (1) source code distributions |
9 |
|
|
* retain the above copyright notice and this paragraph in its entirety, (2) |
10 |
|
|
* distributions including binary code include the above copyright notice and |
11 |
|
|
* this paragraph in its entirety in the documentation or other materials |
12 |
|
|
* provided with the distribution, and (3) all advertising materials mentioning |
13 |
|
|
* features or use of this software display the following acknowledgement: |
14 |
|
|
* ``This product includes software developed by the University of California, |
15 |
|
|
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of |
16 |
|
|
* the University nor the names of its contributors may be used to endorse |
17 |
|
|
* or promote products derived from this software without specific prior |
18 |
|
|
* written permission. |
19 |
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED |
20 |
|
|
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF |
21 |
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
22 |
|
|
* |
23 |
|
|
* Optimization module for tcpdump intermediate representation. |
24 |
|
|
*/ |
25 |
|
|
|
26 |
|
|
#include <sys/types.h> |
27 |
|
|
#include <sys/time.h> |
28 |
|
|
|
29 |
|
|
#include <stdio.h> |
30 |
|
|
#include <stdlib.h> |
31 |
|
|
#include <stdint.h> |
32 |
|
|
#include <string.h> |
33 |
|
|
|
34 |
|
|
#include "pcap-int.h" |
35 |
|
|
|
36 |
|
|
#include "gencode.h" |
37 |
|
|
|
38 |
|
|
#ifdef HAVE_OS_PROTO_H |
39 |
|
|
#include "os-proto.h" |
40 |
|
|
#endif |
41 |
|
|
|
42 |
|
|
#ifdef BDEBUG |
43 |
|
|
extern int dflag; |
44 |
|
|
#endif |
45 |
|
|
|
46 |
|
|
#define A_ATOM BPF_MEMWORDS |
47 |
|
|
#define X_ATOM (BPF_MEMWORDS+1) |
48 |
|
|
|
49 |
|
|
#define NOP -1 |
50 |
|
|
|
51 |
|
|
/* |
52 |
|
|
* This define is used to represent *both* the accumulator and |
53 |
|
|
* x register in use-def computations. |
54 |
|
|
* Currently, the use-def code assumes only one definition per instruction. |
55 |
|
|
*/ |
56 |
|
|
#define AX_ATOM N_ATOMS |
57 |
|
|
|
58 |
|
|
/* |
59 |
|
|
* A flag to indicate that further optimization is needed. |
60 |
|
|
* Iterative passes are continued until a given pass yields no |
61 |
|
|
* branch movement. |
62 |
|
|
*/ |
63 |
|
|
static int done; |
64 |
|
|
|
65 |
|
|
/* |
66 |
|
|
* A block is marked if only if its mark equals the current mark. |
67 |
|
|
* Rather than traverse the code array, marking each item, 'cur_mark' is |
68 |
|
|
* incremented. This automatically makes each element unmarked. |
69 |
|
|
*/ |
70 |
|
|
static int cur_mark; |
71 |
|
|
#define isMarked(p) ((p)->mark == cur_mark) |
72 |
|
|
#define unMarkAll() cur_mark += 1 |
73 |
|
|
#define Mark(p) ((p)->mark = cur_mark) |
74 |
|
|
|
75 |
|
|
static void opt_init(struct block *); |
76 |
|
|
static void opt_cleanup(void); |
77 |
|
|
|
78 |
|
|
static void make_marks(struct block *); |
79 |
|
|
static void mark_code(struct block *); |
80 |
|
|
|
81 |
|
|
static void intern_blocks(struct block *); |
82 |
|
|
|
83 |
|
|
static int eq_slist(struct slist *, struct slist *); |
84 |
|
|
|
85 |
|
|
static void find_levels_r(struct block *); |
86 |
|
|
|
87 |
|
|
static void find_levels(struct block *); |
88 |
|
|
static void find_dom(struct block *); |
89 |
|
|
static void propedom(struct edge *); |
90 |
|
|
static void find_edom(struct block *); |
91 |
|
|
static void find_closure(struct block *); |
92 |
|
|
static int atomuse(struct stmt *); |
93 |
|
|
static int atomdef(struct stmt *); |
94 |
|
|
static void compute_local_ud(struct block *); |
95 |
|
|
static void find_ud(struct block *); |
96 |
|
|
static void init_val(void); |
97 |
|
|
static int F(int, int, int); |
98 |
|
|
static __inline void vstore(struct stmt *, int *, int, int); |
99 |
|
|
static void opt_blk(struct block *, int); |
100 |
|
|
static int use_conflict(struct block *, struct block *); |
101 |
|
|
static void opt_j(struct edge *); |
102 |
|
|
static void or_pullup(struct block *); |
103 |
|
|
static void and_pullup(struct block *); |
104 |
|
|
static void opt_blks(struct block *, int); |
105 |
|
|
static __inline void link_inedge(struct edge *, struct block *); |
106 |
|
|
static void find_inedges(struct block *); |
107 |
|
|
static void opt_root(struct block **); |
108 |
|
|
static void opt_loop(struct block *, int); |
109 |
|
|
static void fold_op(struct stmt *, int, int); |
110 |
|
|
static __inline struct slist *this_op(struct slist *); |
111 |
|
|
static void opt_not(struct block *); |
112 |
|
|
static void opt_peep(struct block *); |
113 |
|
|
static void opt_stmt(struct stmt *, int[], int); |
114 |
|
|
static void deadstmt(struct stmt *, struct stmt *[]); |
115 |
|
|
static void opt_deadstores(struct block *); |
116 |
|
|
static void opt_blk(struct block *, int); |
117 |
|
|
static int use_conflict(struct block *, struct block *); |
118 |
|
|
static void opt_j(struct edge *); |
119 |
|
|
static struct block *fold_edge(struct block *, struct edge *); |
120 |
|
|
static __inline int eq_blk(struct block *, struct block *); |
121 |
|
|
static int slength(struct slist *); |
122 |
|
|
static int count_blocks(struct block *); |
123 |
|
|
static void number_blks_r(struct block *); |
124 |
|
|
static int count_stmts(struct block *); |
125 |
|
|
static int convert_code_r(struct block *); |
126 |
|
|
#ifdef BDEBUG |
127 |
|
|
static void opt_dump(struct block *); |
128 |
|
|
#endif |
129 |
|
|
|
130 |
|
|
static int n_blocks; |
131 |
|
|
struct block **blocks; |
132 |
|
|
static int n_edges; |
133 |
|
|
struct edge **edges; |
134 |
|
|
|
135 |
|
|
/* |
136 |
|
|
* A bit vector set representation of the dominators. |
137 |
|
|
* We round up the set size to the next power of two. |
138 |
|
|
*/ |
139 |
|
|
static int nodewords; |
140 |
|
|
static int edgewords; |
141 |
|
|
struct block **levels; |
142 |
|
|
bpf_u_int32 *space1; |
143 |
|
|
bpf_u_int32 *space2; |
144 |
|
|
#define BITS_PER_WORD (8*sizeof(bpf_u_int32)) |
145 |
|
|
/* |
146 |
|
|
* True if a is in uset {p} |
147 |
|
|
*/ |
148 |
|
|
#define SET_MEMBER(p, a) \ |
149 |
|
|
((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD))) |
150 |
|
|
|
151 |
|
|
/* |
152 |
|
|
* Add 'a' to uset p. |
153 |
|
|
*/ |
154 |
|
|
#define SET_INSERT(p, a) \ |
155 |
|
|
(p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD)) |
156 |
|
|
|
157 |
|
|
/* |
158 |
|
|
* Delete 'a' from uset p. |
159 |
|
|
*/ |
160 |
|
|
#define SET_DELETE(p, a) \ |
161 |
|
|
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD)) |
162 |
|
|
|
163 |
|
|
/* |
164 |
|
|
* a := a intersect b |
165 |
|
|
*/ |
166 |
|
|
#define SET_INTERSECT(a, b, n)\ |
167 |
|
|
{\ |
168 |
|
|
bpf_u_int32 *_x = a, *_y = b;\ |
169 |
|
|
int _n = n;\ |
170 |
|
|
while (--_n >= 0) *_x++ &= *_y++;\ |
171 |
|
|
} |
172 |
|
|
|
173 |
|
|
/* |
174 |
|
|
* a := a - b |
175 |
|
|
*/ |
176 |
|
|
#define SET_SUBTRACT(a, b, n)\ |
177 |
|
|
{\ |
178 |
|
|
bpf_u_int32 *_x = a, *_y = b;\ |
179 |
|
|
int _n = n;\ |
180 |
|
|
while (--_n >= 0) *_x++ &=~ *_y++;\ |
181 |
|
|
} |
182 |
|
|
|
183 |
|
|
/* |
184 |
|
|
* a := a union b |
185 |
|
|
*/ |
186 |
|
|
#define SET_UNION(a, b, n)\ |
187 |
|
|
{\ |
188 |
|
|
bpf_u_int32 *_x = a, *_y = b;\ |
189 |
|
|
int _n = n;\ |
190 |
|
|
while (--_n >= 0) *_x++ |= *_y++;\ |
191 |
|
|
} |
192 |
|
|
|
193 |
|
|
static uset all_dom_sets; |
194 |
|
|
static uset all_closure_sets; |
195 |
|
|
static uset all_edge_sets; |
196 |
|
|
|
197 |
|
|
#ifndef MAX |
198 |
|
|
#define MAX(a,b) ((a)>(b)?(a):(b)) |
199 |
|
|
#endif |
200 |
|
|
|
201 |
|
|
static void |
202 |
|
|
find_levels_r(b) |
203 |
|
|
struct block *b; |
204 |
|
|
{ |
205 |
|
|
int level; |
206 |
|
|
|
207 |
|
|
if (isMarked(b)) |
208 |
|
|
return; |
209 |
|
|
|
210 |
|
|
Mark(b); |
211 |
|
|
b->link = 0; |
212 |
|
|
|
213 |
|
|
if (JT(b)) { |
214 |
|
|
find_levels_r(JT(b)); |
215 |
|
|
find_levels_r(JF(b)); |
216 |
|
|
level = MAX(JT(b)->level, JF(b)->level) + 1; |
217 |
|
|
} else |
218 |
|
|
level = 0; |
219 |
|
|
b->level = level; |
220 |
|
|
b->link = levels[level]; |
221 |
|
|
levels[level] = b; |
222 |
|
|
} |
223 |
|
|
|
224 |
|
|
/* |
225 |
|
|
* Level graph. The levels go from 0 at the leaves to |
226 |
|
|
* N_LEVELS at the root. The levels[] array points to the |
227 |
|
|
* first node of the level list, whose elements are linked |
228 |
|
|
* with the 'link' field of the struct block. |
229 |
|
|
*/ |
230 |
|
|
static void |
231 |
|
|
find_levels(root) |
232 |
|
|
struct block *root; |
233 |
|
|
{ |
234 |
|
|
memset((char *)levels, 0, n_blocks * sizeof(*levels)); |
235 |
|
|
unMarkAll(); |
236 |
|
|
find_levels_r(root); |
237 |
|
|
} |
238 |
|
|
|
239 |
|
|
/* |
240 |
|
|
* Find dominator relationships. |
241 |
|
|
* Assumes graph has been leveled. |
242 |
|
|
*/ |
243 |
|
|
static void |
244 |
|
|
find_dom(root) |
245 |
|
|
struct block *root; |
246 |
|
|
{ |
247 |
|
|
int i; |
248 |
|
|
struct block *b; |
249 |
|
|
bpf_u_int32 *x; |
250 |
|
|
|
251 |
|
|
/* |
252 |
|
|
* Initialize sets to contain all nodes. |
253 |
|
|
*/ |
254 |
|
|
x = all_dom_sets; |
255 |
|
|
i = n_blocks * nodewords; |
256 |
|
|
while (--i >= 0) |
257 |
|
|
*x++ = ~0; |
258 |
|
|
/* Root starts off empty. */ |
259 |
|
|
for (i = nodewords; --i >= 0;) |
260 |
|
|
root->dom[i] = 0; |
261 |
|
|
|
262 |
|
|
/* root->level is the highest level no found. */ |
263 |
|
|
for (i = root->level; i >= 0; --i) { |
264 |
|
|
for (b = levels[i]; b; b = b->link) { |
265 |
|
|
SET_INSERT(b->dom, b->id); |
266 |
|
|
if (JT(b) == 0) |
267 |
|
|
continue; |
268 |
|
|
SET_INTERSECT(JT(b)->dom, b->dom, nodewords); |
269 |
|
|
SET_INTERSECT(JF(b)->dom, b->dom, nodewords); |
270 |
|
|
} |
271 |
|
|
} |
272 |
|
|
} |
273 |
|
|
|
274 |
|
|
static void |
275 |
|
|
propedom(ep) |
276 |
|
|
struct edge *ep; |
277 |
|
|
{ |
278 |
|
|
SET_INSERT(ep->edom, ep->id); |
279 |
|
|
if (ep->succ) { |
280 |
|
|
SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords); |
281 |
|
|
SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords); |
282 |
|
|
} |
283 |
|
|
} |
284 |
|
|
|
285 |
|
|
/* |
286 |
|
|
* Compute edge dominators. |
287 |
|
|
* Assumes graph has been leveled and predecessors established. |
288 |
|
|
*/ |
289 |
|
|
static void |
290 |
|
|
find_edom(root) |
291 |
|
|
struct block *root; |
292 |
|
|
{ |
293 |
|
|
int i; |
294 |
|
|
uset x; |
295 |
|
|
struct block *b; |
296 |
|
|
|
297 |
|
|
x = all_edge_sets; |
298 |
|
|
for (i = n_edges * edgewords; --i >= 0; ) |
299 |
|
|
x[i] = ~0; |
300 |
|
|
|
301 |
|
|
/* root->level is the highest level no found. */ |
302 |
|
|
memset(root->et.edom, 0, edgewords * sizeof(*(uset)0)); |
303 |
|
|
memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0)); |
304 |
|
|
for (i = root->level; i >= 0; --i) { |
305 |
|
|
for (b = levels[i]; b != 0; b = b->link) { |
306 |
|
|
propedom(&b->et); |
307 |
|
|
propedom(&b->ef); |
308 |
|
|
} |
309 |
|
|
} |
310 |
|
|
} |
311 |
|
|
|
312 |
|
|
/* |
313 |
|
|
* Find the backwards transitive closure of the flow graph. These sets |
314 |
|
|
* are backwards in the sense that we find the set of nodes that reach |
315 |
|
|
* a given node, not the set of nodes that can be reached by a node. |
316 |
|
|
* |
317 |
|
|
* Assumes graph has been leveled. |
318 |
|
|
*/ |
319 |
|
|
static void |
320 |
|
|
find_closure(root) |
321 |
|
|
struct block *root; |
322 |
|
|
{ |
323 |
|
|
int i; |
324 |
|
|
struct block *b; |
325 |
|
|
|
326 |
|
|
/* |
327 |
|
|
* Initialize sets to contain no nodes. |
328 |
|
|
*/ |
329 |
|
|
memset((char *)all_closure_sets, 0, |
330 |
|
|
n_blocks * nodewords * sizeof(*all_closure_sets)); |
331 |
|
|
|
332 |
|
|
/* root->level is the highest level no found. */ |
333 |
|
|
for (i = root->level; i >= 0; --i) { |
334 |
|
|
for (b = levels[i]; b; b = b->link) { |
335 |
|
|
SET_INSERT(b->closure, b->id); |
336 |
|
|
if (JT(b) == 0) |
337 |
|
|
continue; |
338 |
|
|
SET_UNION(JT(b)->closure, b->closure, nodewords); |
339 |
|
|
SET_UNION(JF(b)->closure, b->closure, nodewords); |
340 |
|
|
} |
341 |
|
|
} |
342 |
|
|
} |
343 |
|
|
|
344 |
|
|
/* |
345 |
|
|
* Return the register number that is used by s. If A and X are both |
346 |
|
|
* used, return AX_ATOM. If no register is used, return -1. |
347 |
|
|
* |
348 |
|
|
* The implementation should probably change to an array access. |
349 |
|
|
*/ |
350 |
|
|
static int |
351 |
|
|
atomuse(s) |
352 |
|
|
struct stmt *s; |
353 |
|
|
{ |
354 |
|
|
int c = s->code; |
355 |
|
|
|
356 |
|
|
if (c == NOP) |
357 |
|
|
return -1; |
358 |
|
|
|
359 |
|
|
switch (BPF_CLASS(c)) { |
360 |
|
|
|
361 |
|
|
case BPF_RET: |
362 |
|
|
return (BPF_RVAL(c) == BPF_A) ? A_ATOM : |
363 |
|
|
(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1; |
364 |
|
|
|
365 |
|
|
case BPF_LD: |
366 |
|
|
case BPF_LDX: |
367 |
|
|
return (BPF_MODE(c) == BPF_IND) ? X_ATOM : |
368 |
|
|
(BPF_MODE(c) == BPF_MEM) ? s->k : -1; |
369 |
|
|
|
370 |
|
|
case BPF_ST: |
371 |
|
|
return A_ATOM; |
372 |
|
|
|
373 |
|
|
case BPF_STX: |
374 |
|
|
return X_ATOM; |
375 |
|
|
|
376 |
|
|
case BPF_JMP: |
377 |
|
|
case BPF_ALU: |
378 |
|
|
if (BPF_SRC(c) == BPF_X) |
379 |
|
|
return AX_ATOM; |
380 |
|
|
return A_ATOM; |
381 |
|
|
|
382 |
|
|
case BPF_MISC: |
383 |
|
|
return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM; |
384 |
|
|
} |
385 |
|
|
abort(); |
386 |
|
|
/* NOTREACHED */ |
387 |
|
|
} |
388 |
|
|
|
389 |
|
|
/* |
390 |
|
|
* Return the register number that is defined by 's'. We assume that |
391 |
|
|
* a single stmt cannot define more than one register. If no register |
392 |
|
|
* is defined, return -1. |
393 |
|
|
* |
394 |
|
|
* The implementation should probably change to an array access. |
395 |
|
|
*/ |
396 |
|
|
static int |
397 |
|
|
atomdef(s) |
398 |
|
|
struct stmt *s; |
399 |
|
|
{ |
400 |
|
|
if (s->code == NOP) |
401 |
|
|
return -1; |
402 |
|
|
|
403 |
|
|
switch (BPF_CLASS(s->code)) { |
404 |
|
|
|
405 |
|
|
case BPF_LD: |
406 |
|
|
case BPF_ALU: |
407 |
|
|
return A_ATOM; |
408 |
|
|
|
409 |
|
|
case BPF_LDX: |
410 |
|
|
return X_ATOM; |
411 |
|
|
|
412 |
|
|
case BPF_ST: |
413 |
|
|
case BPF_STX: |
414 |
|
|
return s->k; |
415 |
|
|
|
416 |
|
|
case BPF_MISC: |
417 |
|
|
return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM; |
418 |
|
|
} |
419 |
|
|
return -1; |
420 |
|
|
} |
421 |
|
|
|
422 |
|
|
static void |
423 |
|
|
compute_local_ud(b) |
424 |
|
|
struct block *b; |
425 |
|
|
{ |
426 |
|
|
struct slist *s; |
427 |
|
|
atomset def = 0, use = 0, kill = 0; |
428 |
|
|
int atom; |
429 |
|
|
|
430 |
|
|
for (s = b->stmts; s; s = s->next) { |
431 |
|
|
if (s->s.code == NOP) |
432 |
|
|
continue; |
433 |
|
|
atom = atomuse(&s->s); |
434 |
|
|
if (atom >= 0) { |
435 |
|
|
if (atom == AX_ATOM) { |
436 |
|
|
if (!ATOMELEM(def, X_ATOM)) |
437 |
|
|
use |= ATOMMASK(X_ATOM); |
438 |
|
|
if (!ATOMELEM(def, A_ATOM)) |
439 |
|
|
use |= ATOMMASK(A_ATOM); |
440 |
|
|
} |
441 |
|
|
else if (atom < N_ATOMS) { |
442 |
|
|
if (!ATOMELEM(def, atom)) |
443 |
|
|
use |= ATOMMASK(atom); |
444 |
|
|
} |
445 |
|
|
else |
446 |
|
|
abort(); |
447 |
|
|
} |
448 |
|
|
atom = atomdef(&s->s); |
449 |
|
|
if (atom >= 0) { |
450 |
|
|
if (!ATOMELEM(use, atom)) |
451 |
|
|
kill |= ATOMMASK(atom); |
452 |
|
|
def |= ATOMMASK(atom); |
453 |
|
|
} |
454 |
|
|
} |
455 |
|
|
if (!ATOMELEM(def, A_ATOM) && BPF_CLASS(b->s.code) == BPF_JMP) |
456 |
|
|
use |= ATOMMASK(A_ATOM); |
457 |
|
|
|
458 |
|
|
b->def = def; |
459 |
|
|
b->kill = kill; |
460 |
|
|
b->in_use = use; |
461 |
|
|
} |
462 |
|
|
|
463 |
|
|
/* |
464 |
|
|
* Assume graph is already leveled. |
465 |
|
|
*/ |
466 |
|
|
static void |
467 |
|
|
find_ud(root) |
468 |
|
|
struct block *root; |
469 |
|
|
{ |
470 |
|
|
int i, maxlevel; |
471 |
|
|
struct block *p; |
472 |
|
|
|
473 |
|
|
/* |
474 |
|
|
* root->level is the highest level no found; |
475 |
|
|
* count down from there. |
476 |
|
|
*/ |
477 |
|
|
maxlevel = root->level; |
478 |
|
|
for (i = maxlevel; i >= 0; --i) |
479 |
|
|
for (p = levels[i]; p; p = p->link) { |
480 |
|
|
compute_local_ud(p); |
481 |
|
|
p->out_use = 0; |
482 |
|
|
} |
483 |
|
|
|
484 |
|
|
for (i = 1; i <= maxlevel; ++i) { |
485 |
|
|
for (p = levels[i]; p; p = p->link) { |
486 |
|
|
p->out_use |= JT(p)->in_use | JF(p)->in_use; |
487 |
|
|
p->in_use |= p->out_use &~ p->kill; |
488 |
|
|
} |
489 |
|
|
} |
490 |
|
|
} |
491 |
|
|
|
492 |
|
|
/* |
493 |
|
|
* These data structures are used in a Cocke and Shwarz style |
494 |
|
|
* value numbering scheme. Since the flowgraph is acyclic, |
495 |
|
|
* exit values can be propagated from a node's predecessors |
496 |
|
|
* provided it is uniquely defined. |
497 |
|
|
*/ |
498 |
|
|
struct valnode { |
499 |
|
|
int code; |
500 |
|
|
int v0, v1; |
501 |
|
|
int val; |
502 |
|
|
struct valnode *next; |
503 |
|
|
}; |
504 |
|
|
|
505 |
|
|
#define MODULUS 213 |
506 |
|
|
static struct valnode *hashtbl[MODULUS]; |
507 |
|
|
static int curval; |
508 |
|
|
static int maxval; |
509 |
|
|
|
510 |
|
|
/* Integer constants mapped with the load immediate opcode. */ |
511 |
|
|
#define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L) |
512 |
|
|
|
513 |
|
|
struct vmapinfo { |
514 |
|
|
int is_const; |
515 |
|
|
bpf_int32 const_val; |
516 |
|
|
}; |
517 |
|
|
|
518 |
|
|
struct vmapinfo *vmap; |
519 |
|
|
struct valnode *vnode_base; |
520 |
|
|
struct valnode *next_vnode; |
521 |
|
|
|
522 |
|
|
static void |
523 |
|
|
init_val() |
524 |
|
|
{ |
525 |
|
|
curval = 0; |
526 |
|
|
next_vnode = vnode_base; |
527 |
|
|
memset((char *)vmap, 0, maxval * sizeof(*vmap)); |
528 |
|
|
memset((char *)hashtbl, 0, sizeof hashtbl); |
529 |
|
|
} |
530 |
|
|
|
531 |
|
|
/* Because we really don't have an IR, this stuff is a little messy. */ |
532 |
|
|
static int |
533 |
|
|
F(code, v0, v1) |
534 |
|
|
int code; |
535 |
|
|
int v0, v1; |
536 |
|
|
{ |
537 |
|
|
u_int hash; |
538 |
|
|
int val; |
539 |
|
|
struct valnode *p; |
540 |
|
|
|
541 |
|
|
hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8); |
542 |
|
|
hash %= MODULUS; |
543 |
|
|
|
544 |
|
|
for (p = hashtbl[hash]; p; p = p->next) |
545 |
|
|
if (p->code == code && p->v0 == v0 && p->v1 == v1) |
546 |
|
|
return p->val; |
547 |
|
|
|
548 |
|
|
val = ++curval; |
549 |
|
|
if (BPF_MODE(code) == BPF_IMM && |
550 |
|
|
(BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) { |
551 |
|
|
vmap[val].const_val = v0; |
552 |
|
|
vmap[val].is_const = 1; |
553 |
|
|
} |
554 |
|
|
p = next_vnode++; |
555 |
|
|
p->val = val; |
556 |
|
|
p->code = code; |
557 |
|
|
p->v0 = v0; |
558 |
|
|
p->v1 = v1; |
559 |
|
|
p->next = hashtbl[hash]; |
560 |
|
|
hashtbl[hash] = p; |
561 |
|
|
|
562 |
|
|
return val; |
563 |
|
|
} |
564 |
|
|
|
565 |
|
|
static __inline void |
566 |
|
|
vstore(s, valp, newval, alter) |
567 |
|
|
struct stmt *s; |
568 |
|
|
int *valp; |
569 |
|
|
int newval; |
570 |
|
|
int alter; |
571 |
|
|
{ |
572 |
|
|
if (alter && *valp == newval) |
573 |
|
|
s->code = NOP; |
574 |
|
|
else |
575 |
|
|
*valp = newval; |
576 |
|
|
} |
577 |
|
|
|
578 |
|
|
static void |
579 |
|
|
fold_op(s, v0, v1) |
580 |
|
|
struct stmt *s; |
581 |
|
|
int v0, v1; |
582 |
|
|
{ |
583 |
|
|
bpf_int32 a, b; |
584 |
|
|
|
585 |
|
|
a = vmap[v0].const_val; |
586 |
|
|
b = vmap[v1].const_val; |
587 |
|
|
|
588 |
|
|
switch (BPF_OP(s->code)) { |
589 |
|
|
case BPF_ADD: |
590 |
|
|
a += b; |
591 |
|
|
break; |
592 |
|
|
|
593 |
|
|
case BPF_SUB: |
594 |
|
|
a -= b; |
595 |
|
|
break; |
596 |
|
|
|
597 |
|
|
case BPF_MUL: |
598 |
|
|
a *= b; |
599 |
|
|
break; |
600 |
|
|
|
601 |
|
|
case BPF_DIV: |
602 |
|
|
if (b == 0) |
603 |
|
|
bpf_error("division by zero"); |
604 |
|
|
a /= b; |
605 |
|
|
break; |
606 |
|
|
|
607 |
|
|
case BPF_AND: |
608 |
|
|
a &= b; |
609 |
|
|
break; |
610 |
|
|
|
611 |
|
|
case BPF_OR: |
612 |
|
|
a |= b; |
613 |
|
|
break; |
614 |
|
|
|
615 |
|
|
case BPF_LSH: |
616 |
|
|
a <<= b; |
617 |
|
|
break; |
618 |
|
|
|
619 |
|
|
case BPF_RSH: |
620 |
|
|
a >>= b; |
621 |
|
|
break; |
622 |
|
|
|
623 |
|
|
case BPF_NEG: |
624 |
|
|
a = -a; |
625 |
|
|
break; |
626 |
|
|
|
627 |
|
|
default: |
628 |
|
|
abort(); |
629 |
|
|
} |
630 |
|
|
s->k = a; |
631 |
|
|
s->code = BPF_LD|BPF_IMM; |
632 |
|
|
done = 0; |
633 |
|
|
} |
634 |
|
|
|
635 |
|
|
static __inline struct slist * |
636 |
|
|
this_op(s) |
637 |
|
|
struct slist *s; |
638 |
|
|
{ |
639 |
|
|
while (s != 0 && s->s.code == NOP) |
640 |
|
|
s = s->next; |
641 |
|
|
return s; |
642 |
|
|
} |
643 |
|
|
|
644 |
|
|
static void |
645 |
|
|
opt_not(b) |
646 |
|
|
struct block *b; |
647 |
|
|
{ |
648 |
|
|
struct block *tmp = JT(b); |
649 |
|
|
|
650 |
|
|
JT(b) = JF(b); |
651 |
|
|
JF(b) = tmp; |
652 |
|
|
} |
653 |
|
|
|
654 |
|
|
static void |
655 |
|
|
opt_peep(b) |
656 |
|
|
struct block *b; |
657 |
|
|
{ |
658 |
|
|
struct slist *s; |
659 |
|
|
struct slist *next, *last; |
660 |
|
|
int val; |
661 |
|
|
|
662 |
|
|
s = b->stmts; |
663 |
|
|
if (s == 0) |
664 |
|
|
return; |
665 |
|
|
|
666 |
|
|
last = s; |
667 |
|
|
while (1) { |
668 |
|
|
s = this_op(s); |
669 |
|
|
if (s == 0) |
670 |
|
|
break; |
671 |
|
|
next = this_op(s->next); |
672 |
|
|
if (next == 0) |
673 |
|
|
break; |
674 |
|
|
last = next; |
675 |
|
|
|
676 |
|
|
/* |
677 |
|
|
* st M[k] --> st M[k] |
678 |
|
|
* ldx M[k] tax |
679 |
|
|
*/ |
680 |
|
|
if (s->s.code == BPF_ST && |
681 |
|
|
next->s.code == (BPF_LDX|BPF_MEM) && |
682 |
|
|
s->s.k == next->s.k) { |
683 |
|
|
done = 0; |
684 |
|
|
next->s.code = BPF_MISC|BPF_TAX; |
685 |
|
|
} |
686 |
|
|
/* |
687 |
|
|
* ld #k --> ldx #k |
688 |
|
|
* tax txa |
689 |
|
|
*/ |
690 |
|
|
if (s->s.code == (BPF_LD|BPF_IMM) && |
691 |
|
|
next->s.code == (BPF_MISC|BPF_TAX)) { |
692 |
|
|
s->s.code = BPF_LDX|BPF_IMM; |
693 |
|
|
next->s.code = BPF_MISC|BPF_TXA; |
694 |
|
|
done = 0; |
695 |
|
|
} |
696 |
|
|
/* |
697 |
|
|
* This is an ugly special case, but it happens |
698 |
|
|
* when you say tcp[k] or udp[k] where k is a constant. |
699 |
|
|
*/ |
700 |
|
|
if (s->s.code == (BPF_LD|BPF_IMM)) { |
701 |
|
|
struct slist *add, *tax, *ild; |
702 |
|
|
|
703 |
|
|
/* |
704 |
|
|
* Check that X isn't used on exit from this |
705 |
|
|
* block (which the optimizer might cause). |
706 |
|
|
* We know the code generator won't generate |
707 |
|
|
* any local dependencies. |
708 |
|
|
*/ |
709 |
|
|
if (ATOMELEM(b->out_use, X_ATOM)) |
710 |
|
|
break; |
711 |
|
|
|
712 |
|
|
if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B)) |
713 |
|
|
add = next; |
714 |
|
|
else |
715 |
|
|
add = this_op(next->next); |
716 |
|
|
if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X)) |
717 |
|
|
break; |
718 |
|
|
|
719 |
|
|
tax = this_op(add->next); |
720 |
|
|
if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX)) |
721 |
|
|
break; |
722 |
|
|
|
723 |
|
|
ild = this_op(tax->next); |
724 |
|
|
if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD || |
725 |
|
|
BPF_MODE(ild->s.code) != BPF_IND) |
726 |
|
|
break; |
727 |
|
|
/* |
728 |
|
|
* XXX We need to check that X is not |
729 |
|
|
* subsequently used. We know we can eliminate the |
730 |
|
|
* accumulator modifications since it is defined |
731 |
|
|
* by the last stmt of this sequence. |
732 |
|
|
* |
733 |
|
|
* We want to turn this sequence: |
734 |
|
|
* |
735 |
|
|
* (004) ldi #0x2 {s} |
736 |
|
|
* (005) ldxms [14] {next} -- optional |
737 |
|
|
* (006) addx {add} |
738 |
|
|
* (007) tax {tax} |
739 |
|
|
* (008) ild [x+0] {ild} |
740 |
|
|
* |
741 |
|
|
* into this sequence: |
742 |
|
|
* |
743 |
|
|
* (004) nop |
744 |
|
|
* (005) ldxms [14] |
745 |
|
|
* (006) nop |
746 |
|
|
* (007) nop |
747 |
|
|
* (008) ild [x+2] |
748 |
|
|
* |
749 |
|
|
*/ |
750 |
|
|
ild->s.k += s->s.k; |
751 |
|
|
s->s.code = NOP; |
752 |
|
|
add->s.code = NOP; |
753 |
|
|
tax->s.code = NOP; |
754 |
|
|
done = 0; |
755 |
|
|
} |
756 |
|
|
s = next; |
757 |
|
|
} |
758 |
|
|
/* |
759 |
|
|
* If we have a subtract to do a comparison, and the X register |
760 |
|
|
* is a known constant, we can merge this value into the |
761 |
|
|
* comparison. |
762 |
|
|
*/ |
763 |
|
|
if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X) && |
764 |
|
|
!ATOMELEM(b->out_use, A_ATOM)) { |
765 |
|
|
val = b->val[X_ATOM]; |
766 |
|
|
if (vmap[val].is_const) { |
767 |
|
|
int op; |
768 |
|
|
|
769 |
|
|
b->s.k += vmap[val].const_val; |
770 |
|
|
op = BPF_OP(b->s.code); |
771 |
|
|
if (op == BPF_JGT || op == BPF_JGE) { |
772 |
|
|
struct block *t = JT(b); |
773 |
|
|
JT(b) = JF(b); |
774 |
|
|
JF(b) = t; |
775 |
|
|
b->s.k += 0x80000000; |
776 |
|
|
} |
777 |
|
|
last->s.code = NOP; |
778 |
|
|
done = 0; |
779 |
|
|
} else if (b->s.k == 0) { |
780 |
|
|
/* |
781 |
|
|
* sub x -> nop |
782 |
|
|
* j #0 j x |
783 |
|
|
*/ |
784 |
|
|
last->s.code = NOP; |
785 |
|
|
b->s.code = BPF_CLASS(b->s.code) | BPF_OP(b->s.code) | |
786 |
|
|
BPF_X; |
787 |
|
|
done = 0; |
788 |
|
|
} |
789 |
|
|
} |
790 |
|
|
/* |
791 |
|
|
* Likewise, a constant subtract can be simplified. |
792 |
|
|
*/ |
793 |
|
|
else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K) && |
794 |
|
|
!ATOMELEM(b->out_use, A_ATOM)) { |
795 |
|
|
int op; |
796 |
|
|
|
797 |
|
|
b->s.k += last->s.k; |
798 |
|
|
last->s.code = NOP; |
799 |
|
|
op = BPF_OP(b->s.code); |
800 |
|
|
if (op == BPF_JGT || op == BPF_JGE) { |
801 |
|
|
struct block *t = JT(b); |
802 |
|
|
JT(b) = JF(b); |
803 |
|
|
JF(b) = t; |
804 |
|
|
b->s.k += 0x80000000; |
805 |
|
|
} |
806 |
|
|
done = 0; |
807 |
|
|
} |
808 |
|
|
/* |
809 |
|
|
* and #k nop |
810 |
|
|
* jeq #0 -> jset #k |
811 |
|
|
*/ |
812 |
|
|
if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) && |
813 |
|
|
!ATOMELEM(b->out_use, A_ATOM) && b->s.k == 0) { |
814 |
|
|
b->s.k = last->s.k; |
815 |
|
|
b->s.code = BPF_JMP|BPF_K|BPF_JSET; |
816 |
|
|
last->s.code = NOP; |
817 |
|
|
done = 0; |
818 |
|
|
opt_not(b); |
819 |
|
|
} |
820 |
|
|
/* |
821 |
|
|
* If the accumulator is a known constant, we can compute the |
822 |
|
|
* comparison result. |
823 |
|
|
*/ |
824 |
|
|
val = b->val[A_ATOM]; |
825 |
|
|
if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) { |
826 |
|
|
bpf_int32 v = vmap[val].const_val; |
827 |
|
|
switch (BPF_OP(b->s.code)) { |
828 |
|
|
|
829 |
|
|
case BPF_JEQ: |
830 |
|
|
v = v == b->s.k; |
831 |
|
|
break; |
832 |
|
|
|
833 |
|
|
case BPF_JGT: |
834 |
|
|
v = (unsigned)v > b->s.k; |
835 |
|
|
break; |
836 |
|
|
|
837 |
|
|
case BPF_JGE: |
838 |
|
|
v = (unsigned)v >= b->s.k; |
839 |
|
|
break; |
840 |
|
|
|
841 |
|
|
case BPF_JSET: |
842 |
|
|
v &= b->s.k; |
843 |
|
|
break; |
844 |
|
|
|
845 |
|
|
default: |
846 |
|
|
abort(); |
847 |
|
|
} |
848 |
|
|
if (JF(b) != JT(b)) |
849 |
|
|
done = 0; |
850 |
|
|
if (v) |
851 |
|
|
JF(b) = JT(b); |
852 |
|
|
else |
853 |
|
|
JT(b) = JF(b); |
854 |
|
|
} |
855 |
|
|
} |
856 |
|
|
|
857 |
|
|
/* |
858 |
|
|
* Compute the symbolic value of expression of 's', and update |
859 |
|
|
* anything it defines in the value table 'val'. If 'alter' is true, |
860 |
|
|
* do various optimizations. This code would be cleaner if symbolic |
861 |
|
|
* evaluation and code transformations weren't folded together. |
862 |
|
|
*/ |
863 |
|
|
static void |
864 |
|
|
opt_stmt(s, val, alter) |
865 |
|
|
struct stmt *s; |
866 |
|
|
int val[]; |
867 |
|
|
int alter; |
868 |
|
|
{ |
869 |
|
|
int op; |
870 |
|
|
int v; |
871 |
|
|
|
872 |
|
|
switch (s->code) { |
873 |
|
|
|
874 |
|
|
case BPF_LD|BPF_ABS|BPF_W: |
875 |
|
|
case BPF_LD|BPF_ABS|BPF_H: |
876 |
|
|
case BPF_LD|BPF_ABS|BPF_B: |
877 |
|
|
v = F(s->code, s->k, 0L); |
878 |
|
|
vstore(s, &val[A_ATOM], v, alter); |
879 |
|
|
break; |
880 |
|
|
|
881 |
|
|
case BPF_LD|BPF_IND|BPF_W: |
882 |
|
|
case BPF_LD|BPF_IND|BPF_H: |
883 |
|
|
case BPF_LD|BPF_IND|BPF_B: |
884 |
|
|
v = val[X_ATOM]; |
885 |
|
|
if (alter && vmap[v].is_const) { |
886 |
|
|
s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code); |
887 |
|
|
s->k += vmap[v].const_val; |
888 |
|
|
v = F(s->code, s->k, 0L); |
889 |
|
|
done = 0; |
890 |
|
|
} |
891 |
|
|
else |
892 |
|
|
v = F(s->code, s->k, v); |
893 |
|
|
vstore(s, &val[A_ATOM], v, alter); |
894 |
|
|
break; |
895 |
|
|
|
896 |
|
|
case BPF_LD|BPF_LEN: |
897 |
|
|
v = F(s->code, 0L, 0L); |
898 |
|
|
vstore(s, &val[A_ATOM], v, alter); |
899 |
|
|
break; |
900 |
|
|
|
901 |
|
|
case BPF_LD|BPF_IMM: |
902 |
|
|
v = K(s->k); |
903 |
|
|
vstore(s, &val[A_ATOM], v, alter); |
904 |
|
|
break; |
905 |
|
|
|
906 |
|
|
case BPF_LDX|BPF_IMM: |
907 |
|
|
v = K(s->k); |
908 |
|
|
vstore(s, &val[X_ATOM], v, alter); |
909 |
|
|
break; |
910 |
|
|
|
911 |
|
|
case BPF_LDX|BPF_MSH|BPF_B: |
912 |
|
|
v = F(s->code, s->k, 0L); |
913 |
|
|
vstore(s, &val[X_ATOM], v, alter); |
914 |
|
|
break; |
915 |
|
|
|
916 |
|
|
case BPF_ALU|BPF_NEG: |
917 |
|
|
if (alter && vmap[val[A_ATOM]].is_const) { |
918 |
|
|
s->code = BPF_LD|BPF_IMM; |
919 |
|
|
s->k = -vmap[val[A_ATOM]].const_val; |
920 |
|
|
val[A_ATOM] = K(s->k); |
921 |
|
|
} |
922 |
|
|
else |
923 |
|
|
val[A_ATOM] = F(s->code, val[A_ATOM], 0L); |
924 |
|
|
break; |
925 |
|
|
|
926 |
|
|
case BPF_ALU|BPF_ADD|BPF_K: |
927 |
|
|
case BPF_ALU|BPF_SUB|BPF_K: |
928 |
|
|
case BPF_ALU|BPF_MUL|BPF_K: |
929 |
|
|
case BPF_ALU|BPF_DIV|BPF_K: |
930 |
|
|
case BPF_ALU|BPF_AND|BPF_K: |
931 |
|
|
case BPF_ALU|BPF_OR|BPF_K: |
932 |
|
|
case BPF_ALU|BPF_LSH|BPF_K: |
933 |
|
|
case BPF_ALU|BPF_RSH|BPF_K: |
934 |
|
|
op = BPF_OP(s->code); |
935 |
|
|
if (alter) { |
936 |
|
|
if (s->k == 0) { |
937 |
|
|
if (op == BPF_ADD || op == BPF_SUB || |
938 |
|
|
op == BPF_LSH || op == BPF_RSH || |
939 |
|
|
op == BPF_OR) { |
940 |
|
|
s->code = NOP; |
941 |
|
|
break; |
942 |
|
|
} |
943 |
|
|
if (op == BPF_MUL || op == BPF_AND) { |
944 |
|
|
s->code = BPF_LD|BPF_IMM; |
945 |
|
|
val[A_ATOM] = K(s->k); |
946 |
|
|
break; |
947 |
|
|
} |
948 |
|
|
} |
949 |
|
|
if (vmap[val[A_ATOM]].is_const) { |
950 |
|
|
fold_op(s, val[A_ATOM], K(s->k)); |
951 |
|
|
val[A_ATOM] = K(s->k); |
952 |
|
|
break; |
953 |
|
|
} |
954 |
|
|
} |
955 |
|
|
val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k)); |
956 |
|
|
break; |
957 |
|
|
|
958 |
|
|
case BPF_ALU|BPF_ADD|BPF_X: |
959 |
|
|
case BPF_ALU|BPF_SUB|BPF_X: |
960 |
|
|
case BPF_ALU|BPF_MUL|BPF_X: |
961 |
|
|
case BPF_ALU|BPF_DIV|BPF_X: |
962 |
|
|
case BPF_ALU|BPF_AND|BPF_X: |
963 |
|
|
case BPF_ALU|BPF_OR|BPF_X: |
964 |
|
|
case BPF_ALU|BPF_LSH|BPF_X: |
965 |
|
|
case BPF_ALU|BPF_RSH|BPF_X: |
966 |
|
|
op = BPF_OP(s->code); |
967 |
|
|
if (alter && vmap[val[X_ATOM]].is_const) { |
968 |
|
|
if (vmap[val[A_ATOM]].is_const) { |
969 |
|
|
fold_op(s, val[A_ATOM], val[X_ATOM]); |
970 |
|
|
val[A_ATOM] = K(s->k); |
971 |
|
|
} |
972 |
|
|
else { |
973 |
|
|
s->code = BPF_ALU|BPF_K|op; |
974 |
|
|
s->k = vmap[val[X_ATOM]].const_val; |
975 |
|
|
done = 0; |
976 |
|
|
val[A_ATOM] = |
977 |
|
|
F(s->code, val[A_ATOM], K(s->k)); |
978 |
|
|
} |
979 |
|
|
break; |
980 |
|
|
} |
981 |
|
|
/* |
982 |
|
|
* Check if we're doing something to an accumulator |
983 |
|
|
* that is 0, and simplify. This may not seem like |
984 |
|
|
* much of a simplification but it could open up further |
985 |
|
|
* optimizations. |
986 |
|
|
* XXX We could also check for mul by 1, and -1, etc. |
987 |
|
|
*/ |
988 |
|
|
if (alter && vmap[val[A_ATOM]].is_const |
989 |
|
|
&& vmap[val[A_ATOM]].const_val == 0) { |
990 |
|
|
if (op == BPF_ADD || op == BPF_OR || |
991 |
|
|
op == BPF_LSH || op == BPF_RSH || op == BPF_SUB) { |
992 |
|
|
s->code = BPF_MISC|BPF_TXA; |
993 |
|
|
vstore(s, &val[A_ATOM], val[X_ATOM], alter); |
994 |
|
|
break; |
995 |
|
|
} |
996 |
|
|
else if (op == BPF_MUL || op == BPF_DIV || |
997 |
|
|
op == BPF_AND) { |
998 |
|
|
s->code = BPF_LD|BPF_IMM; |
999 |
|
|
s->k = 0; |
1000 |
|
|
vstore(s, &val[A_ATOM], K(s->k), alter); |
1001 |
|
|
break; |
1002 |
|
|
} |
1003 |
|
|
else if (op == BPF_NEG) { |
1004 |
|
|
s->code = NOP; |
1005 |
|
|
break; |
1006 |
|
|
} |
1007 |
|
|
} |
1008 |
|
|
val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]); |
1009 |
|
|
break; |
1010 |
|
|
|
1011 |
|
|
case BPF_MISC|BPF_TXA: |
1012 |
|
|
vstore(s, &val[A_ATOM], val[X_ATOM], alter); |
1013 |
|
|
break; |
1014 |
|
|
|
1015 |
|
|
case BPF_LD|BPF_MEM: |
1016 |
|
|
v = val[s->k]; |
1017 |
|
|
if (alter && vmap[v].is_const) { |
1018 |
|
|
s->code = BPF_LD|BPF_IMM; |
1019 |
|
|
s->k = vmap[v].const_val; |
1020 |
|
|
done = 0; |
1021 |
|
|
} |
1022 |
|
|
vstore(s, &val[A_ATOM], v, alter); |
1023 |
|
|
break; |
1024 |
|
|
|
1025 |
|
|
case BPF_MISC|BPF_TAX: |
1026 |
|
|
vstore(s, &val[X_ATOM], val[A_ATOM], alter); |
1027 |
|
|
break; |
1028 |
|
|
|
1029 |
|
|
case BPF_LDX|BPF_MEM: |
1030 |
|
|
v = val[s->k]; |
1031 |
|
|
if (alter && vmap[v].is_const) { |
1032 |
|
|
s->code = BPF_LDX|BPF_IMM; |
1033 |
|
|
s->k = vmap[v].const_val; |
1034 |
|
|
done = 0; |
1035 |
|
|
} |
1036 |
|
|
vstore(s, &val[X_ATOM], v, alter); |
1037 |
|
|
break; |
1038 |
|
|
|
1039 |
|
|
case BPF_ST: |
1040 |
|
|
vstore(s, &val[s->k], val[A_ATOM], alter); |
1041 |
|
|
break; |
1042 |
|
|
|
1043 |
|
|
case BPF_STX: |
1044 |
|
|
vstore(s, &val[s->k], val[X_ATOM], alter); |
1045 |
|
|
break; |
1046 |
|
|
} |
1047 |
|
|
} |
1048 |
|
|
|
1049 |
|
|
static void |
1050 |
|
|
deadstmt(s, last) |
1051 |
|
|
struct stmt *s; |
1052 |
|
|
struct stmt *last[]; |
1053 |
|
|
{ |
1054 |
|
|
int atom; |
1055 |
|
|
|
1056 |
|
|
atom = atomuse(s); |
1057 |
|
|
if (atom >= 0) { |
1058 |
|
|
if (atom == AX_ATOM) { |
1059 |
|
|
last[X_ATOM] = 0; |
1060 |
|
|
last[A_ATOM] = 0; |
1061 |
|
|
} |
1062 |
|
|
else |
1063 |
|
|
last[atom] = 0; |
1064 |
|
|
} |
1065 |
|
|
atom = atomdef(s); |
1066 |
|
|
if (atom >= 0) { |
1067 |
|
|
if (last[atom]) { |
1068 |
|
|
done = 0; |
1069 |
|
|
last[atom]->code = NOP; |
1070 |
|
|
} |
1071 |
|
|
last[atom] = s; |
1072 |
|
|
} |
1073 |
|
|
} |
1074 |
|
|
|
1075 |
|
|
static void |
1076 |
|
|
opt_deadstores(b) |
1077 |
|
|
struct block *b; |
1078 |
|
|
{ |
1079 |
|
|
struct slist *s; |
1080 |
|
|
int atom; |
1081 |
|
|
struct stmt *last[N_ATOMS]; |
1082 |
|
|
|
1083 |
|
|
memset((char *)last, 0, sizeof last); |
1084 |
|
|
|
1085 |
|
|
for (s = b->stmts; s != 0; s = s->next) |
1086 |
|
|
deadstmt(&s->s, last); |
1087 |
|
|
deadstmt(&b->s, last); |
1088 |
|
|
|
1089 |
|
|
for (atom = 0; atom < N_ATOMS; ++atom) |
1090 |
|
|
if (last[atom] && !ATOMELEM(b->out_use, atom)) { |
1091 |
|
|
last[atom]->code = NOP; |
1092 |
|
|
done = 0; |
1093 |
|
|
} |
1094 |
|
|
} |
1095 |
|
|
|
1096 |
|
|
static void |
1097 |
|
|
opt_blk(b, do_stmts) |
1098 |
|
|
struct block *b; |
1099 |
|
|
int do_stmts; |
1100 |
|
|
{ |
1101 |
|
|
struct slist *s; |
1102 |
|
|
struct edge *p; |
1103 |
|
|
int i; |
1104 |
|
|
bpf_int32 aval; |
1105 |
|
|
|
1106 |
|
|
#if 0 |
1107 |
|
|
for (s = b->stmts; s && s->next; s = s->next) |
1108 |
|
|
if (BPF_CLASS(s->s.code) == BPF_JMP) { |
1109 |
|
|
do_stmts = 0; |
1110 |
|
|
break; |
1111 |
|
|
} |
1112 |
|
|
#endif |
1113 |
|
|
|
1114 |
|
|
/* |
1115 |
|
|
* Initialize the atom values. |
1116 |
|
|
* If we have no predecessors, everything is undefined. |
1117 |
|
|
* Otherwise, we inherent our values from our predecessors. |
1118 |
|
|
* If any register has an ambiguous value (i.e. control paths are |
1119 |
|
|
* merging) give it the undefined value of 0. |
1120 |
|
|
*/ |
1121 |
|
|
p = b->in_edges; |
1122 |
|
|
if (p == 0) |
1123 |
|
|
memset((char *)b->val, 0, sizeof(b->val)); |
1124 |
|
|
else { |
1125 |
|
|
memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val)); |
1126 |
|
|
while ((p = p->next) != NULL) { |
1127 |
|
|
for (i = 0; i < N_ATOMS; ++i) |
1128 |
|
|
if (b->val[i] != p->pred->val[i]) |
1129 |
|
|
b->val[i] = 0; |
1130 |
|
|
} |
1131 |
|
|
} |
1132 |
|
|
aval = b->val[A_ATOM]; |
1133 |
|
|
for (s = b->stmts; s; s = s->next) |
1134 |
|
|
opt_stmt(&s->s, b->val, do_stmts); |
1135 |
|
|
|
1136 |
|
|
/* |
1137 |
|
|
* This is a special case: if we don't use anything from this |
1138 |
|
|
* block, and we load the accumulator with value that is |
1139 |
|
|
* already there, or if this block is a return, |
1140 |
|
|
* eliminate all the statements. |
1141 |
|
|
*/ |
1142 |
|
|
if (do_stmts && |
1143 |
|
|
((b->out_use == 0 && aval != 0 &&b->val[A_ATOM] == aval) || |
1144 |
|
|
BPF_CLASS(b->s.code) == BPF_RET)) { |
1145 |
|
|
if (b->stmts != 0) { |
1146 |
|
|
b->stmts = 0; |
1147 |
|
|
done = 0; |
1148 |
|
|
} |
1149 |
|
|
} else { |
1150 |
|
|
opt_peep(b); |
1151 |
|
|
opt_deadstores(b); |
1152 |
|
|
} |
1153 |
|
|
/* |
1154 |
|
|
* Set up values for branch optimizer. |
1155 |
|
|
*/ |
1156 |
|
|
if (BPF_SRC(b->s.code) == BPF_K) |
1157 |
|
|
b->oval = K(b->s.k); |
1158 |
|
|
else |
1159 |
|
|
b->oval = b->val[X_ATOM]; |
1160 |
|
|
b->et.code = b->s.code; |
1161 |
|
|
b->ef.code = -b->s.code; |
1162 |
|
|
} |
1163 |
|
|
|
1164 |
|
|
/* |
1165 |
|
|
* Return true if any register that is used on exit from 'succ', has |
1166 |
|
|
* an exit value that is different from the corresponding exit value |
1167 |
|
|
* from 'b'. |
1168 |
|
|
*/ |
1169 |
|
|
static int |
1170 |
|
|
use_conflict(b, succ) |
1171 |
|
|
struct block *b, *succ; |
1172 |
|
|
{ |
1173 |
|
|
int atom; |
1174 |
|
|
atomset use = succ->out_use; |
1175 |
|
|
|
1176 |
|
|
if (use == 0) |
1177 |
|
|
return 0; |
1178 |
|
|
|
1179 |
|
|
for (atom = 0; atom < N_ATOMS; ++atom) |
1180 |
|
|
if (ATOMELEM(use, atom)) |
1181 |
|
|
if (b->val[atom] != succ->val[atom]) |
1182 |
|
|
return 1; |
1183 |
|
|
return 0; |
1184 |
|
|
} |
1185 |
|
|
|
1186 |
|
|
static struct block * |
1187 |
|
|
fold_edge(child, ep) |
1188 |
|
|
struct block *child; |
1189 |
|
|
struct edge *ep; |
1190 |
|
|
{ |
1191 |
|
|
int sense; |
1192 |
|
|
int aval0, aval1, oval0, oval1; |
1193 |
|
|
int code = ep->code; |
1194 |
|
|
|
1195 |
|
|
if (code < 0) { |
1196 |
|
|
code = -code; |
1197 |
|
|
sense = 0; |
1198 |
|
|
} else |
1199 |
|
|
sense = 1; |
1200 |
|
|
|
1201 |
|
|
if (child->s.code != code) |
1202 |
|
|
return 0; |
1203 |
|
|
|
1204 |
|
|
aval0 = child->val[A_ATOM]; |
1205 |
|
|
oval0 = child->oval; |
1206 |
|
|
aval1 = ep->pred->val[A_ATOM]; |
1207 |
|
|
oval1 = ep->pred->oval; |
1208 |
|
|
|
1209 |
|
|
if (aval0 != aval1) |
1210 |
|
|
return 0; |
1211 |
|
|
|
1212 |
|
|
if (oval0 == oval1) |
1213 |
|
|
/* |
1214 |
|
|
* The operands are identical, so the |
1215 |
|
|
* result is true if a true branch was |
1216 |
|
|
* taken to get here, otherwise false. |
1217 |
|
|
*/ |
1218 |
|
|
return sense ? JT(child) : JF(child); |
1219 |
|
|
|
1220 |
|
|
if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K)) |
1221 |
|
|
/* |
1222 |
|
|
* At this point, we only know the comparison if we |
1223 |
|
|
* came down the true branch, and it was an equality |
1224 |
|
|
* comparison with a constant. We rely on the fact that |
1225 |
|
|
* distinct constants have distinct value numbers. |
1226 |
|
|
*/ |
1227 |
|
|
return JF(child); |
1228 |
|
|
|
1229 |
|
|
return 0; |
1230 |
|
|
} |
1231 |
|
|
|
1232 |
|
|
static void |
1233 |
|
|
opt_j(ep) |
1234 |
|
|
struct edge *ep; |
1235 |
|
|
{ |
1236 |
|
|
int i, k; |
1237 |
|
|
struct block *target; |
1238 |
|
|
|
1239 |
|
|
if (JT(ep->succ) == 0) |
1240 |
|
|
return; |
1241 |
|
|
|
1242 |
|
|
if (JT(ep->succ) == JF(ep->succ)) { |
1243 |
|
|
/* |
1244 |
|
|
* Common branch targets can be eliminated, provided |
1245 |
|
|
* there is no data dependency. |
1246 |
|
|
*/ |
1247 |
|
|
if (!use_conflict(ep->pred, ep->succ->et.succ)) { |
1248 |
|
|
done = 0; |
1249 |
|
|
ep->succ = JT(ep->succ); |
1250 |
|
|
} |
1251 |
|
|
} |
1252 |
|
|
/* |
1253 |
|
|
* For each edge dominator that matches the successor of this |
1254 |
|
|
* edge, promote the edge successor to the its grandchild. |
1255 |
|
|
* |
1256 |
|
|
* XXX We violate the set abstraction here in favor a reasonably |
1257 |
|
|
* efficient loop. |
1258 |
|
|
*/ |
1259 |
|
|
top: |
1260 |
|
|
for (i = 0; i < edgewords; ++i) { |
1261 |
|
|
bpf_u_int32 x = ep->edom[i]; |
1262 |
|
|
|
1263 |
|
|
while (x != 0) { |
1264 |
|
|
k = ffs(x) - 1; |
1265 |
|
|
x &=~ (1 << k); |
1266 |
|
|
k += i * BITS_PER_WORD; |
1267 |
|
|
|
1268 |
|
|
target = fold_edge(ep->succ, edges[k]); |
1269 |
|
|
/* |
1270 |
|
|
* Check that there is no data dependency between |
1271 |
|
|
* nodes that will be violated if we move the edge. |
1272 |
|
|
*/ |
1273 |
|
|
if (target != 0 && !use_conflict(ep->pred, target)) { |
1274 |
|
|
done = 0; |
1275 |
|
|
ep->succ = target; |
1276 |
|
|
if (JT(target) != 0) |
1277 |
|
|
/* |
1278 |
|
|
* Start over unless we hit a leaf. |
1279 |
|
|
*/ |
1280 |
|
|
goto top; |
1281 |
|
|
return; |
1282 |
|
|
} |
1283 |
|
|
} |
1284 |
|
|
} |
1285 |
|
|
} |
1286 |
|
|
|
1287 |
|
|
|
1288 |
|
|
static void |
1289 |
|
|
or_pullup(b) |
1290 |
|
|
struct block *b; |
1291 |
|
|
{ |
1292 |
|
|
int val, at_top; |
1293 |
|
|
struct block *pull; |
1294 |
|
|
struct block **diffp, **samep; |
1295 |
|
|
struct edge *ep; |
1296 |
|
|
|
1297 |
|
|
ep = b->in_edges; |
1298 |
|
|
if (ep == 0) |
1299 |
|
|
return; |
1300 |
|
|
|
1301 |
|
|
/* |
1302 |
|
|
* Make sure each predecessor loads the same value. |
1303 |
|
|
* XXX why? |
1304 |
|
|
*/ |
1305 |
|
|
val = ep->pred->val[A_ATOM]; |
1306 |
|
|
for (ep = ep->next; ep != 0; ep = ep->next) |
1307 |
|
|
if (val != ep->pred->val[A_ATOM]) |
1308 |
|
|
return; |
1309 |
|
|
|
1310 |
|
|
if (JT(b->in_edges->pred) == b) |
1311 |
|
|
diffp = &JT(b->in_edges->pred); |
1312 |
|
|
else |
1313 |
|
|
diffp = &JF(b->in_edges->pred); |
1314 |
|
|
|
1315 |
|
|
at_top = 1; |
1316 |
|
|
while (1) { |
1317 |
|
|
if (*diffp == 0) |
1318 |
|
|
return; |
1319 |
|
|
|
1320 |
|
|
if (JT(*diffp) != JT(b)) |
1321 |
|
|
return; |
1322 |
|
|
|
1323 |
|
|
if (!SET_MEMBER((*diffp)->dom, b->id)) |
1324 |
|
|
return; |
1325 |
|
|
|
1326 |
|
|
if ((*diffp)->val[A_ATOM] != val) |
1327 |
|
|
break; |
1328 |
|
|
|
1329 |
|
|
diffp = &JF(*diffp); |
1330 |
|
|
at_top = 0; |
1331 |
|
|
} |
1332 |
|
|
samep = &JF(*diffp); |
1333 |
|
|
while (1) { |
1334 |
|
|
if (*samep == 0) |
1335 |
|
|
return; |
1336 |
|
|
|
1337 |
|
|
if (JT(*samep) != JT(b)) |
1338 |
|
|
return; |
1339 |
|
|
|
1340 |
|
|
if (!SET_MEMBER((*samep)->dom, b->id)) |
1341 |
|
|
return; |
1342 |
|
|
|
1343 |
|
|
if ((*samep)->val[A_ATOM] == val) |
1344 |
|
|
break; |
1345 |
|
|
|
1346 |
|
|
/* XXX Need to check that there are no data dependencies |
1347 |
|
|
between dp0 and dp1. Currently, the code generator |
1348 |
|
|
will not produce such dependencies. */ |
1349 |
|
|
samep = &JF(*samep); |
1350 |
|
|
} |
1351 |
|
|
#ifdef notdef |
1352 |
|
|
/* XXX This doesn't cover everything. */ |
1353 |
|
|
for (i = 0; i < N_ATOMS; ++i) |
1354 |
|
|
if ((*samep)->val[i] != pred->val[i]) |
1355 |
|
|
return; |
1356 |
|
|
#endif |
1357 |
|
|
/* Pull up the node. */ |
1358 |
|
|
pull = *samep; |
1359 |
|
|
*samep = JF(pull); |
1360 |
|
|
JF(pull) = *diffp; |
1361 |
|
|
|
1362 |
|
|
/* |
1363 |
|
|
* At the top of the chain, each predecessor needs to point at the |
1364 |
|
|
* pulled up node. Inside the chain, there is only one predecessor |
1365 |
|
|
* to worry about. |
1366 |
|
|
*/ |
1367 |
|
|
if (at_top) { |
1368 |
|
|
for (ep = b->in_edges; ep != 0; ep = ep->next) { |
1369 |
|
|
if (JT(ep->pred) == b) |
1370 |
|
|
JT(ep->pred) = pull; |
1371 |
|
|
else |
1372 |
|
|
JF(ep->pred) = pull; |
1373 |
|
|
} |
1374 |
|
|
} |
1375 |
|
|
else |
1376 |
|
|
*diffp = pull; |
1377 |
|
|
|
1378 |
|
|
done = 0; |
1379 |
|
|
} |
1380 |
|
|
|
1381 |
|
|
static void |
1382 |
|
|
and_pullup(b) |
1383 |
|
|
struct block *b; |
1384 |
|
|
{ |
1385 |
|
|
int val, at_top; |
1386 |
|
|
struct block *pull; |
1387 |
|
|
struct block **diffp, **samep; |
1388 |
|
|
struct edge *ep; |
1389 |
|
|
|
1390 |
|
|
ep = b->in_edges; |
1391 |
|
|
if (ep == 0) |
1392 |
|
|
return; |
1393 |
|
|
|
1394 |
|
|
/* |
1395 |
|
|
* Make sure each predecessor loads the same value. |
1396 |
|
|
*/ |
1397 |
|
|
val = ep->pred->val[A_ATOM]; |
1398 |
|
|
for (ep = ep->next; ep != 0; ep = ep->next) |
1399 |
|
|
if (val != ep->pred->val[A_ATOM]) |
1400 |
|
|
return; |
1401 |
|
|
|
1402 |
|
|
if (JT(b->in_edges->pred) == b) |
1403 |
|
|
diffp = &JT(b->in_edges->pred); |
1404 |
|
|
else |
1405 |
|
|
diffp = &JF(b->in_edges->pred); |
1406 |
|
|
|
1407 |
|
|
at_top = 1; |
1408 |
|
|
while (1) { |
1409 |
|
|
if (*diffp == 0) |
1410 |
|
|
return; |
1411 |
|
|
|
1412 |
|
|
if (JF(*diffp) != JF(b)) |
1413 |
|
|
return; |
1414 |
|
|
|
1415 |
|
|
if (!SET_MEMBER((*diffp)->dom, b->id)) |
1416 |
|
|
return; |
1417 |
|
|
|
1418 |
|
|
if ((*diffp)->val[A_ATOM] != val) |
1419 |
|
|
break; |
1420 |
|
|
|
1421 |
|
|
diffp = &JT(*diffp); |
1422 |
|
|
at_top = 0; |
1423 |
|
|
} |
1424 |
|
|
samep = &JT(*diffp); |
1425 |
|
|
while (1) { |
1426 |
|
|
if (*samep == 0) |
1427 |
|
|
return; |
1428 |
|
|
|
1429 |
|
|
if (JF(*samep) != JF(b)) |
1430 |
|
|
return; |
1431 |
|
|
|
1432 |
|
|
if (!SET_MEMBER((*samep)->dom, b->id)) |
1433 |
|
|
return; |
1434 |
|
|
|
1435 |
|
|
if ((*samep)->val[A_ATOM] == val) |
1436 |
|
|
break; |
1437 |
|
|
|
1438 |
|
|
/* XXX Need to check that there are no data dependencies |
1439 |
|
|
between diffp and samep. Currently, the code generator |
1440 |
|
|
will not produce such dependencies. */ |
1441 |
|
|
samep = &JT(*samep); |
1442 |
|
|
} |
1443 |
|
|
#ifdef notdef |
1444 |
|
|
/* XXX This doesn't cover everything. */ |
1445 |
|
|
for (i = 0; i < N_ATOMS; ++i) |
1446 |
|
|
if ((*samep)->val[i] != pred->val[i]) |
1447 |
|
|
return; |
1448 |
|
|
#endif |
1449 |
|
|
/* Pull up the node. */ |
1450 |
|
|
pull = *samep; |
1451 |
|
|
*samep = JT(pull); |
1452 |
|
|
JT(pull) = *diffp; |
1453 |
|
|
|
1454 |
|
|
/* |
1455 |
|
|
* At the top of the chain, each predecessor needs to point at the |
1456 |
|
|
* pulled up node. Inside the chain, there is only one predecessor |
1457 |
|
|
* to worry about. |
1458 |
|
|
*/ |
1459 |
|
|
if (at_top) { |
1460 |
|
|
for (ep = b->in_edges; ep != 0; ep = ep->next) { |
1461 |
|
|
if (JT(ep->pred) == b) |
1462 |
|
|
JT(ep->pred) = pull; |
1463 |
|
|
else |
1464 |
|
|
JF(ep->pred) = pull; |
1465 |
|
|
} |
1466 |
|
|
} |
1467 |
|
|
else |
1468 |
|
|
*diffp = pull; |
1469 |
|
|
|
1470 |
|
|
done = 0; |
1471 |
|
|
} |
1472 |
|
|
|
1473 |
|
|
static void |
1474 |
|
|
opt_blks(root, do_stmts) |
1475 |
|
|
struct block *root; |
1476 |
|
|
int do_stmts; |
1477 |
|
|
{ |
1478 |
|
|
int i, maxlevel; |
1479 |
|
|
struct block *p; |
1480 |
|
|
|
1481 |
|
|
init_val(); |
1482 |
|
|
maxlevel = root->level; |
1483 |
|
|
for (i = maxlevel; i >= 0; --i) |
1484 |
|
|
for (p = levels[i]; p; p = p->link) |
1485 |
|
|
opt_blk(p, do_stmts); |
1486 |
|
|
|
1487 |
|
|
if (do_stmts) |
1488 |
|
|
/* |
1489 |
|
|
* No point trying to move branches; it can't possibly |
1490 |
|
|
* make a difference at this point. |
1491 |
|
|
*/ |
1492 |
|
|
return; |
1493 |
|
|
|
1494 |
|
|
for (i = 1; i <= maxlevel; ++i) { |
1495 |
|
|
for (p = levels[i]; p; p = p->link) { |
1496 |
|
|
opt_j(&p->et); |
1497 |
|
|
opt_j(&p->ef); |
1498 |
|
|
} |
1499 |
|
|
} |
1500 |
|
|
for (i = 1; i <= maxlevel; ++i) { |
1501 |
|
|
for (p = levels[i]; p; p = p->link) { |
1502 |
|
|
or_pullup(p); |
1503 |
|
|
and_pullup(p); |
1504 |
|
|
} |
1505 |
|
|
} |
1506 |
|
|
} |
1507 |
|
|
|
1508 |
|
|
static __inline void |
1509 |
|
|
link_inedge(parent, child) |
1510 |
|
|
struct edge *parent; |
1511 |
|
|
struct block *child; |
1512 |
|
|
{ |
1513 |
|
|
parent->next = child->in_edges; |
1514 |
|
|
child->in_edges = parent; |
1515 |
|
|
} |
1516 |
|
|
|
1517 |
|
|
static void |
1518 |
|
|
find_inedges(root) |
1519 |
|
|
struct block *root; |
1520 |
|
|
{ |
1521 |
|
|
int i; |
1522 |
|
|
struct block *b; |
1523 |
|
|
|
1524 |
|
|
for (i = 0; i < n_blocks; ++i) |
1525 |
|
|
blocks[i]->in_edges = 0; |
1526 |
|
|
|
1527 |
|
|
/* |
1528 |
|
|
* Traverse the graph, adding each edge to the predecessor |
1529 |
|
|
* list of its successors. Skip the leaves (i.e. level 0). |
1530 |
|
|
*/ |
1531 |
|
|
for (i = root->level; i > 0; --i) { |
1532 |
|
|
for (b = levels[i]; b != 0; b = b->link) { |
1533 |
|
|
link_inedge(&b->et, JT(b)); |
1534 |
|
|
link_inedge(&b->ef, JF(b)); |
1535 |
|
|
} |
1536 |
|
|
} |
1537 |
|
|
} |
1538 |
|
|
|
1539 |
|
|
static void |
1540 |
|
|
opt_root(b) |
1541 |
|
|
struct block **b; |
1542 |
|
|
{ |
1543 |
|
|
struct slist *tmp, *s; |
1544 |
|
|
|
1545 |
|
|
s = (*b)->stmts; |
1546 |
|
|
(*b)->stmts = 0; |
1547 |
|
|
while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b)) |
1548 |
|
|
*b = JT(*b); |
1549 |
|
|
|
1550 |
|
|
tmp = (*b)->stmts; |
1551 |
|
|
if (tmp != 0) |
1552 |
|
|
sappend(s, tmp); |
1553 |
|
|
(*b)->stmts = s; |
1554 |
|
|
|
1555 |
|
|
/* |
1556 |
|
|
* If the root node is a return, then there is no |
1557 |
|
|
* point executing any statements (since the bpf machine |
1558 |
|
|
* has no side effects). |
1559 |
|
|
*/ |
1560 |
|
|
if (BPF_CLASS((*b)->s.code) == BPF_RET) |
1561 |
|
|
(*b)->stmts = 0; |
1562 |
|
|
} |
1563 |
|
|
|
1564 |
|
|
static void |
1565 |
|
|
opt_loop(root, do_stmts) |
1566 |
|
|
struct block *root; |
1567 |
|
|
int do_stmts; |
1568 |
|
|
{ |
1569 |
|
|
|
1570 |
|
|
#ifdef BDEBUG |
1571 |
|
|
if (dflag > 1) |
1572 |
|
|
opt_dump(root); |
1573 |
|
|
#endif |
1574 |
|
|
do { |
1575 |
|
|
done = 1; |
1576 |
|
|
find_levels(root); |
1577 |
|
|
find_dom(root); |
1578 |
|
|
find_closure(root); |
1579 |
|
|
find_inedges(root); |
1580 |
|
|
find_ud(root); |
1581 |
|
|
find_edom(root); |
1582 |
|
|
opt_blks(root, do_stmts); |
1583 |
|
|
#ifdef BDEBUG |
1584 |
|
|
if (dflag > 1) |
1585 |
|
|
opt_dump(root); |
1586 |
|
|
#endif |
1587 |
|
|
} while (!done); |
1588 |
|
|
} |
1589 |
|
|
|
1590 |
|
|
/* |
1591 |
|
|
* Optimize the filter code in its dag representation. |
1592 |
|
|
*/ |
1593 |
|
|
void |
1594 |
|
|
bpf_optimize(rootp) |
1595 |
|
|
struct block **rootp; |
1596 |
|
|
{ |
1597 |
|
|
struct block *root; |
1598 |
|
|
|
1599 |
|
|
root = *rootp; |
1600 |
|
|
|
1601 |
|
|
opt_init(root); |
1602 |
|
|
opt_loop(root, 0); |
1603 |
|
|
opt_loop(root, 1); |
1604 |
|
|
intern_blocks(root); |
1605 |
|
|
opt_root(rootp); |
1606 |
|
|
opt_cleanup(); |
1607 |
|
|
} |
1608 |
|
|
|
1609 |
|
|
static void |
1610 |
|
|
make_marks(p) |
1611 |
|
|
struct block *p; |
1612 |
|
|
{ |
1613 |
|
|
if (!isMarked(p)) { |
1614 |
|
|
Mark(p); |
1615 |
|
|
if (BPF_CLASS(p->s.code) != BPF_RET) { |
1616 |
|
|
make_marks(JT(p)); |
1617 |
|
|
make_marks(JF(p)); |
1618 |
|
|
} |
1619 |
|
|
} |
1620 |
|
|
} |
1621 |
|
|
|
1622 |
|
|
/* |
1623 |
|
|
* Mark code array such that isMarked(i) is true |
1624 |
|
|
* only for nodes that are alive. |
1625 |
|
|
*/ |
1626 |
|
|
static void |
1627 |
|
|
mark_code(p) |
1628 |
|
|
struct block *p; |
1629 |
|
|
{ |
1630 |
|
|
cur_mark += 1; |
1631 |
|
|
make_marks(p); |
1632 |
|
|
} |
1633 |
|
|
|
1634 |
|
|
/* |
1635 |
|
|
* True iff the two stmt lists load the same value from the packet into |
1636 |
|
|
* the accumulator. |
1637 |
|
|
*/ |
1638 |
|
|
static int |
1639 |
|
|
eq_slist(x, y) |
1640 |
|
|
struct slist *x, *y; |
1641 |
|
|
{ |
1642 |
|
|
while (1) { |
1643 |
|
|
while (x && x->s.code == NOP) |
1644 |
|
|
x = x->next; |
1645 |
|
|
while (y && y->s.code == NOP) |
1646 |
|
|
y = y->next; |
1647 |
|
|
if (x == 0) |
1648 |
|
|
return y == 0; |
1649 |
|
|
if (y == 0) |
1650 |
|
|
return x == 0; |
1651 |
|
|
if (x->s.code != y->s.code || x->s.k != y->s.k) |
1652 |
|
|
return 0; |
1653 |
|
|
x = x->next; |
1654 |
|
|
y = y->next; |
1655 |
|
|
} |
1656 |
|
|
} |
1657 |
|
|
|
1658 |
|
|
static __inline int |
1659 |
|
|
eq_blk(b0, b1) |
1660 |
|
|
struct block *b0, *b1; |
1661 |
|
|
{ |
1662 |
|
|
if (b0->s.code == b1->s.code && |
1663 |
|
|
b0->s.k == b1->s.k && |
1664 |
|
|
b0->et.succ == b1->et.succ && |
1665 |
|
|
b0->ef.succ == b1->ef.succ) |
1666 |
|
|
return eq_slist(b0->stmts, b1->stmts); |
1667 |
|
|
return 0; |
1668 |
|
|
} |
1669 |
|
|
|
1670 |
|
|
static void |
1671 |
|
|
intern_blocks(root) |
1672 |
|
|
struct block *root; |
1673 |
|
|
{ |
1674 |
|
|
struct block *p; |
1675 |
|
|
int i, j; |
1676 |
|
|
int done; |
1677 |
|
|
top: |
1678 |
|
|
done = 1; |
1679 |
|
|
for (i = 0; i < n_blocks; ++i) |
1680 |
|
|
blocks[i]->link = 0; |
1681 |
|
|
|
1682 |
|
|
mark_code(root); |
1683 |
|
|
|
1684 |
|
|
for (i = n_blocks - 1; --i >= 0; ) { |
1685 |
|
|
if (!isMarked(blocks[i])) |
1686 |
|
|
continue; |
1687 |
|
|
for (j = i + 1; j < n_blocks; ++j) { |
1688 |
|
|
if (!isMarked(blocks[j])) |
1689 |
|
|
continue; |
1690 |
|
|
if (eq_blk(blocks[i], blocks[j])) { |
1691 |
|
|
blocks[i]->link = blocks[j]->link ? |
1692 |
|
|
blocks[j]->link : blocks[j]; |
1693 |
|
|
break; |
1694 |
|
|
} |
1695 |
|
|
} |
1696 |
|
|
} |
1697 |
|
|
for (i = 0; i < n_blocks; ++i) { |
1698 |
|
|
p = blocks[i]; |
1699 |
|
|
if (JT(p) == 0) |
1700 |
|
|
continue; |
1701 |
|
|
if (JT(p)->link) { |
1702 |
|
|
done = 0; |
1703 |
|
|
JT(p) = JT(p)->link; |
1704 |
|
|
} |
1705 |
|
|
if (JF(p)->link) { |
1706 |
|
|
done = 0; |
1707 |
|
|
JF(p) = JF(p)->link; |
1708 |
|
|
} |
1709 |
|
|
} |
1710 |
|
|
if (!done) |
1711 |
|
|
goto top; |
1712 |
|
|
} |
1713 |
|
|
|
1714 |
|
|
static void |
1715 |
|
|
opt_cleanup() |
1716 |
|
|
{ |
1717 |
|
|
free((void *)vnode_base); |
1718 |
|
|
free((void *)vmap); |
1719 |
|
|
free((void *)edges); |
1720 |
|
|
free((void *)space1); |
1721 |
|
|
free((void *)space2); |
1722 |
|
|
free((void *)levels); |
1723 |
|
|
free((void *)blocks); |
1724 |
|
|
} |
1725 |
|
|
|
1726 |
|
|
/* |
1727 |
|
|
* Return the number of stmts in 's'. |
1728 |
|
|
*/ |
1729 |
|
|
static int |
1730 |
|
|
slength(s) |
1731 |
|
|
struct slist *s; |
1732 |
|
|
{ |
1733 |
|
|
int n = 0; |
1734 |
|
|
|
1735 |
✓✓ |
264 |
for (; s; s = s->next) |
1736 |
✓✗ |
78 |
if (s->s.code != NOP) |
1737 |
|
78 |
++n; |
1738 |
|
36 |
return n; |
1739 |
|
|
} |
1740 |
|
|
|
1741 |
|
|
/* |
1742 |
|
|
* Return the number of nodes reachable by 'p'. |
1743 |
|
|
* All nodes should be initially unmarked. |
1744 |
|
|
*/ |
1745 |
|
|
static int |
1746 |
|
|
count_blocks(p) |
1747 |
|
|
struct block *p; |
1748 |
|
|
{ |
1749 |
|
|
if (p == 0 || isMarked(p)) |
1750 |
|
|
return 0; |
1751 |
|
|
Mark(p); |
1752 |
|
|
return count_blocks(JT(p)) + count_blocks(JF(p)) + 1; |
1753 |
|
|
} |
1754 |
|
|
|
1755 |
|
|
/* |
1756 |
|
|
* Do a depth first search on the flow graph, numbering the |
1757 |
|
|
* the basic blocks, and entering them into the 'blocks' array.` |
1758 |
|
|
*/ |
1759 |
|
|
static void |
1760 |
|
|
number_blks_r(p) |
1761 |
|
|
struct block *p; |
1762 |
|
|
{ |
1763 |
|
|
int n; |
1764 |
|
|
|
1765 |
|
|
if (p == 0 || isMarked(p)) |
1766 |
|
|
return; |
1767 |
|
|
|
1768 |
|
|
Mark(p); |
1769 |
|
|
n = n_blocks++; |
1770 |
|
|
p->id = n; |
1771 |
|
|
blocks[n] = p; |
1772 |
|
|
|
1773 |
|
|
number_blks_r(JT(p)); |
1774 |
|
|
number_blks_r(JF(p)); |
1775 |
|
|
} |
1776 |
|
|
|
1777 |
|
|
/* |
1778 |
|
|
* Return the number of stmts in the flowgraph reachable by 'p'. |
1779 |
|
|
* The nodes should be unmarked before calling. |
1780 |
|
|
*/ |
1781 |
|
|
static int |
1782 |
|
|
count_stmts(p) |
1783 |
|
|
struct block *p; |
1784 |
|
|
{ |
1785 |
|
|
int n; |
1786 |
|
|
|
1787 |
✓✓✓✓
|
105 |
if (p == 0 || isMarked(p)) |
1788 |
|
21 |
return 0; |
1789 |
|
18 |
Mark(p); |
1790 |
|
18 |
n = count_stmts(JT(p)) + count_stmts(JF(p)); |
1791 |
|
18 |
return slength(p->stmts) + n + 1 + p->longjt + p->longjf; |
1792 |
|
39 |
} |
1793 |
|
|
|
1794 |
|
|
/* |
1795 |
|
|
* Allocate memory. All allocation is done before optimization |
1796 |
|
|
* is begun. A linear bound on the size of all data structures is computed |
1797 |
|
|
* from the total number of blocks and/or statements. |
1798 |
|
|
*/ |
1799 |
|
|
static void |
1800 |
|
|
opt_init(root) |
1801 |
|
|
struct block *root; |
1802 |
|
|
{ |
1803 |
|
|
bpf_u_int32 *p; |
1804 |
|
|
int i, n, max_stmts; |
1805 |
|
|
size_t size1, size2; |
1806 |
|
|
|
1807 |
|
|
/* |
1808 |
|
|
* First, count the blocks, so we can malloc an array to map |
1809 |
|
|
* block number to block. Then, put the blocks into the array. |
1810 |
|
|
*/ |
1811 |
|
|
unMarkAll(); |
1812 |
|
|
n = count_blocks(root); |
1813 |
|
|
blocks = reallocarray(NULL, n, sizeof(*blocks)); |
1814 |
|
|
if (blocks == NULL) |
1815 |
|
|
bpf_error("malloc"); |
1816 |
|
|
|
1817 |
|
|
unMarkAll(); |
1818 |
|
|
n_blocks = 0; |
1819 |
|
|
number_blks_r(root); |
1820 |
|
|
|
1821 |
|
|
n_edges = 2 * n_blocks; |
1822 |
|
|
edges = reallocarray(NULL, n_edges, sizeof(*edges)); |
1823 |
|
|
if (edges == NULL) |
1824 |
|
|
bpf_error("malloc"); |
1825 |
|
|
|
1826 |
|
|
/* |
1827 |
|
|
* The number of levels is bounded by the number of nodes. |
1828 |
|
|
*/ |
1829 |
|
|
levels = reallocarray(NULL, n_blocks, sizeof(*levels)); |
1830 |
|
|
if (levels == NULL) |
1831 |
|
|
bpf_error("malloc"); |
1832 |
|
|
|
1833 |
|
|
edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1; |
1834 |
|
|
nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1; |
1835 |
|
|
|
1836 |
|
|
size1 = 2; |
1837 |
|
|
if (n_blocks > SIZE_MAX / size1) |
1838 |
|
|
goto fail1; |
1839 |
|
|
size1 *= n_blocks; |
1840 |
|
|
if (nodewords > SIZE_MAX / size1) |
1841 |
|
|
goto fail1; |
1842 |
|
|
size1 *= nodewords; |
1843 |
|
|
if (sizeof(*space1) > SIZE_MAX / size1) |
1844 |
|
|
goto fail1; |
1845 |
|
|
size1 *= sizeof(*space1); |
1846 |
|
|
|
1847 |
|
|
space1 = (bpf_u_int32 *)malloc(size1); |
1848 |
|
|
if (space1 == NULL) { |
1849 |
|
|
fail1: |
1850 |
|
|
bpf_error("malloc"); |
1851 |
|
|
} |
1852 |
|
|
|
1853 |
|
|
size2 = n_edges; |
1854 |
|
|
if (edgewords > SIZE_MAX / size2) |
1855 |
|
|
goto fail2; |
1856 |
|
|
size2 *= edgewords; |
1857 |
|
|
if (sizeof(*space2) > SIZE_MAX / size2) |
1858 |
|
|
goto fail2; |
1859 |
|
|
size2 *= sizeof(*space2); |
1860 |
|
|
|
1861 |
|
|
space2 = (bpf_u_int32 *)malloc(size2); |
1862 |
|
|
if (space2 == NULL) { |
1863 |
|
|
fail2: |
1864 |
|
|
free(space1); |
1865 |
|
|
bpf_error("malloc"); |
1866 |
|
|
} |
1867 |
|
|
|
1868 |
|
|
p = space1; |
1869 |
|
|
all_dom_sets = p; |
1870 |
|
|
for (i = 0; i < n; ++i) { |
1871 |
|
|
blocks[i]->dom = p; |
1872 |
|
|
p += nodewords; |
1873 |
|
|
} |
1874 |
|
|
all_closure_sets = p; |
1875 |
|
|
for (i = 0; i < n; ++i) { |
1876 |
|
|
blocks[i]->closure = p; |
1877 |
|
|
p += nodewords; |
1878 |
|
|
} |
1879 |
|
|
p = space2; |
1880 |
|
|
all_edge_sets = p; |
1881 |
|
|
for (i = 0; i < n; ++i) { |
1882 |
|
|
struct block *b = blocks[i]; |
1883 |
|
|
|
1884 |
|
|
b->et.edom = p; |
1885 |
|
|
p += edgewords; |
1886 |
|
|
b->ef.edom = p; |
1887 |
|
|
p += edgewords; |
1888 |
|
|
b->et.id = i; |
1889 |
|
|
edges[i] = &b->et; |
1890 |
|
|
b->ef.id = n_blocks + i; |
1891 |
|
|
edges[n_blocks + i] = &b->ef; |
1892 |
|
|
b->et.pred = b; |
1893 |
|
|
b->ef.pred = b; |
1894 |
|
|
} |
1895 |
|
|
max_stmts = 0; |
1896 |
|
|
for (i = 0; i < n; ++i) |
1897 |
|
|
max_stmts += slength(blocks[i]->stmts) + 1; |
1898 |
|
|
/* |
1899 |
|
|
* We allocate at most 3 value numbers per statement, |
1900 |
|
|
* so this is an upper bound on the number of valnodes |
1901 |
|
|
* we'll need. |
1902 |
|
|
*/ |
1903 |
|
|
maxval = 3 * max_stmts; |
1904 |
|
|
vmap = reallocarray(NULL, maxval, sizeof(*vmap)); |
1905 |
|
|
vnode_base = reallocarray(NULL, maxval, sizeof(*vnode_base)); |
1906 |
|
|
if (vmap == NULL || vnode_base == NULL) |
1907 |
|
|
bpf_error("malloc"); |
1908 |
|
|
} |
1909 |
|
|
|
1910 |
|
|
/* |
1911 |
|
|
* Some pointers used to convert the basic block form of the code, |
1912 |
|
|
* into the array form that BPF requires. 'fstart' will point to |
1913 |
|
|
* the malloc'd array while 'ftail' is used during the recursive traversal. |
1914 |
|
|
*/ |
1915 |
|
|
static struct bpf_insn *fstart; |
1916 |
|
|
static struct bpf_insn *ftail; |
1917 |
|
|
|
1918 |
|
|
#ifdef BDEBUG |
1919 |
|
|
int bids[1000]; |
1920 |
|
|
#endif |
1921 |
|
|
|
1922 |
|
|
/* |
1923 |
|
|
* Returns true if successful. Returns false if a branch has |
1924 |
|
|
* an offset that is too large. If so, we have marked that |
1925 |
|
|
* branch so that on a subsequent iteration, it will be treated |
1926 |
|
|
* properly. |
1927 |
|
|
*/ |
1928 |
|
|
static int |
1929 |
|
|
convert_code_r(p) |
1930 |
|
|
struct block *p; |
1931 |
|
|
{ |
1932 |
|
|
struct bpf_insn *dst; |
1933 |
|
|
struct slist *src; |
1934 |
|
|
int slen; |
1935 |
|
|
u_int off; |
1936 |
|
|
int extrajmps; /* number of extra jumps inserted */ |
1937 |
|
|
struct slist **offset = NULL; |
1938 |
|
|
|
1939 |
✓✓✓✓
|
105 |
if (p == 0 || isMarked(p)) |
1940 |
|
21 |
return (1); |
1941 |
|
18 |
Mark(p); |
1942 |
|
|
|
1943 |
✗✓ |
18 |
if (convert_code_r(JF(p)) == 0) |
1944 |
|
|
return (0); |
1945 |
✗✓ |
18 |
if (convert_code_r(JT(p)) == 0) |
1946 |
|
|
return (0); |
1947 |
|
|
|
1948 |
|
18 |
slen = slength(p->stmts); |
1949 |
|
18 |
dst = ftail -= (slen + 1 + p->longjt + p->longjf); |
1950 |
|
|
/* inflate length by any extra jumps */ |
1951 |
|
|
|
1952 |
|
18 |
p->offset = dst - fstart; |
1953 |
|
|
|
1954 |
|
|
/* generate offset[] for convenience */ |
1955 |
✓✓ |
18 |
if (slen) { |
1956 |
|
12 |
offset = calloc(slen, sizeof(struct slist *)); |
1957 |
✗✓ |
12 |
if (!offset) { |
1958 |
|
|
bpf_error("not enough core"); |
1959 |
|
|
/*NOTREACHED*/ |
1960 |
|
|
} |
1961 |
|
|
} |
1962 |
|
18 |
src = p->stmts; |
1963 |
✓✓ |
114 |
for (off = 0; off < slen && src; off++) { |
1964 |
|
|
#if 0 |
1965 |
|
|
printf("off=%d src=%x\n", off, src); |
1966 |
|
|
#endif |
1967 |
|
39 |
offset[off] = src; |
1968 |
|
39 |
src = src->next; |
1969 |
|
|
} |
1970 |
|
|
|
1971 |
|
|
off = 0; |
1972 |
✓✓ |
114 |
for (src = p->stmts; src; src = src->next) { |
1973 |
✓✗ |
39 |
if (src->s.code == NOP) |
1974 |
|
|
continue; |
1975 |
|
39 |
dst->code = (u_short)src->s.code; |
1976 |
|
39 |
dst->k = src->s.k; |
1977 |
|
|
|
1978 |
|
|
/* fill block-local relative jump */ |
1979 |
✗✓✗✗
|
39 |
if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) { |
1980 |
|
|
#if 0 |
1981 |
|
|
if (src->s.jt || src->s.jf) { |
1982 |
|
|
bpf_error("illegal jmp destination"); |
1983 |
|
|
/*NOTREACHED*/ |
1984 |
|
|
} |
1985 |
|
|
#endif |
1986 |
|
|
goto filled; |
1987 |
|
|
} |
1988 |
|
|
if (off == slen - 2) /*???*/ |
1989 |
|
|
goto filled; |
1990 |
|
|
|
1991 |
|
|
{ |
1992 |
|
|
int i; |
1993 |
|
|
int jt, jf; |
1994 |
|
|
char *ljerr = "%s for block-local relative jump: off=%d"; |
1995 |
|
|
|
1996 |
|
|
#if 0 |
1997 |
|
|
printf("code=%x off=%d %x %x\n", src->s.code, |
1998 |
|
|
off, src->s.jt, src->s.jf); |
1999 |
|
|
#endif |
2000 |
|
|
|
2001 |
|
|
if (!src->s.jt || !src->s.jf) { |
2002 |
|
|
bpf_error(ljerr, "no jmp destination", off); |
2003 |
|
|
/*NOTREACHED*/ |
2004 |
|
|
} |
2005 |
|
|
|
2006 |
|
|
jt = jf = 0; |
2007 |
|
|
for (i = 0; i < slen; i++) { |
2008 |
|
|
if (offset[i] == src->s.jt) { |
2009 |
|
|
if (jt) { |
2010 |
|
|
bpf_error(ljerr, "multiple matches", off); |
2011 |
|
|
/*NOTREACHED*/ |
2012 |
|
|
} |
2013 |
|
|
|
2014 |
|
|
dst->jt = i - off - 1; |
2015 |
|
|
jt++; |
2016 |
|
|
} |
2017 |
|
|
if (offset[i] == src->s.jf) { |
2018 |
|
|
if (jf) { |
2019 |
|
|
bpf_error(ljerr, "multiple matches", off); |
2020 |
|
|
/*NOTREACHED*/ |
2021 |
|
|
} |
2022 |
|
|
dst->jf = i - off - 1; |
2023 |
|
|
jf++; |
2024 |
|
|
} |
2025 |
|
|
} |
2026 |
|
|
if (!jt || !jf) { |
2027 |
|
|
bpf_error(ljerr, "no destination found", off); |
2028 |
|
|
/*NOTREACHED*/ |
2029 |
|
|
} |
2030 |
|
|
} |
2031 |
|
|
filled: |
2032 |
|
39 |
++dst; |
2033 |
|
39 |
++off; |
2034 |
|
39 |
} |
2035 |
|
18 |
free(offset); |
2036 |
|
|
|
2037 |
|
|
#ifdef BDEBUG |
2038 |
|
|
bids[dst - fstart] = p->id + 1; |
2039 |
|
|
#endif |
2040 |
|
18 |
dst->code = (u_short)p->s.code; |
2041 |
|
18 |
dst->k = p->s.k; |
2042 |
✓✓ |
18 |
if (JT(p)) { |
2043 |
|
|
extrajmps = 0; |
2044 |
|
12 |
off = JT(p)->offset - (p->offset + slen) - 1; |
2045 |
✗✓ |
12 |
if (off >= 256) { |
2046 |
|
|
/* offset too large for branch, must add a jump */ |
2047 |
|
|
if (p->longjt == 0) { |
2048 |
|
|
/* mark this instruction and retry */ |
2049 |
|
|
p->longjt++; |
2050 |
|
|
return(0); |
2051 |
|
|
} |
2052 |
|
|
/* branch if T to following jump */ |
2053 |
|
|
dst->jt = extrajmps; |
2054 |
|
|
extrajmps++; |
2055 |
|
|
dst[extrajmps].code = BPF_JMP|BPF_JA; |
2056 |
|
|
dst[extrajmps].k = off - extrajmps; |
2057 |
|
|
} |
2058 |
|
|
else |
2059 |
|
12 |
dst->jt = off; |
2060 |
|
12 |
off = JF(p)->offset - (p->offset + slen) - 1; |
2061 |
✗✓ |
12 |
if (off >= 256) { |
2062 |
|
|
/* offset too large for branch, must add a jump */ |
2063 |
|
|
if (p->longjf == 0) { |
2064 |
|
|
/* mark this instruction and retry */ |
2065 |
|
|
p->longjf++; |
2066 |
|
|
return(0); |
2067 |
|
|
} |
2068 |
|
|
/* branch if F to following jump */ |
2069 |
|
|
/* if two jumps are inserted, F goes to second one */ |
2070 |
|
|
dst->jf = extrajmps; |
2071 |
|
|
extrajmps++; |
2072 |
|
|
dst[extrajmps].code = BPF_JMP|BPF_JA; |
2073 |
|
|
dst[extrajmps].k = off - extrajmps; |
2074 |
|
|
} |
2075 |
|
|
else |
2076 |
|
12 |
dst->jf = off; |
2077 |
|
|
} |
2078 |
|
18 |
return (1); |
2079 |
|
39 |
} |
2080 |
|
|
|
2081 |
|
|
|
2082 |
|
|
/* |
2083 |
|
|
* Convert flowgraph intermediate representation to the |
2084 |
|
|
* BPF array representation. Set *lenp to the number of instructions. |
2085 |
|
|
*/ |
2086 |
|
|
struct bpf_insn * |
2087 |
|
|
icode_to_fcode(root, lenp) |
2088 |
|
|
struct block *root; |
2089 |
|
|
int *lenp; |
2090 |
|
|
{ |
2091 |
|
|
int n; |
2092 |
|
|
struct bpf_insn *fp; |
2093 |
|
|
|
2094 |
|
|
/* |
2095 |
|
|
* Loop doing convert_codr_r() until no branches remain |
2096 |
|
|
* with too-large offsets. |
2097 |
|
|
*/ |
2098 |
|
6 |
while (1) { |
2099 |
|
3 |
unMarkAll(); |
2100 |
|
3 |
n = *lenp = count_stmts(root); |
2101 |
|
|
|
2102 |
|
3 |
fp = calloc(n, sizeof(*fp)); |
2103 |
✗✓ |
3 |
if (fp == NULL) |
2104 |
|
|
bpf_error("calloc"); |
2105 |
|
|
|
2106 |
|
3 |
fstart = fp; |
2107 |
|
3 |
ftail = fp + n; |
2108 |
|
|
|
2109 |
|
3 |
unMarkAll(); |
2110 |
✗✓ |
3 |
if (convert_code_r(root)) |
2111 |
|
|
break; |
2112 |
|
|
free(fp); |
2113 |
|
|
} |
2114 |
|
|
|
2115 |
|
3 |
return fp; |
2116 |
|
|
} |
2117 |
|
|
|
2118 |
|
|
#ifdef BDEBUG |
2119 |
|
|
static void |
2120 |
|
|
opt_dump(root) |
2121 |
|
|
struct block *root; |
2122 |
|
|
{ |
2123 |
|
|
struct bpf_program f; |
2124 |
|
|
|
2125 |
|
|
memset(bids, 0, sizeof bids); |
2126 |
|
|
f.bf_insns = icode_to_fcode(root, &f.bf_len); |
2127 |
|
|
bpf_dump(&f, 1); |
2128 |
|
|
putchar('\n'); |
2129 |
|
|
free((char *)f.bf_insns); |
2130 |
|
|
} |
2131 |
|
|
#endif |