1 |
|
|
/* $OpenBSD: adler32.c,v 1.6 2005/07/20 15:56:40 millert Exp $ */ |
2 |
|
|
/* adler32.c -- compute the Adler-32 checksum of a data stream |
3 |
|
|
* Copyright (C) 1995-2004 Mark Adler |
4 |
|
|
* For conditions of distribution and use, see copyright notice in zlib.h |
5 |
|
|
*/ |
6 |
|
|
|
7 |
|
|
#define ZLIB_INTERNAL |
8 |
|
|
#include "zlib.h" |
9 |
|
|
|
10 |
|
|
#define BASE 65521UL /* largest prime smaller than 65536 */ |
11 |
|
|
#define NMAX 5552 |
12 |
|
|
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
13 |
|
|
|
14 |
|
|
#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
15 |
|
|
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
16 |
|
|
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
17 |
|
|
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
18 |
|
|
#define DO16(buf) DO8(buf,0); DO8(buf,8); |
19 |
|
|
|
20 |
|
|
/* use NO_DIVIDE if your processor does not do division in hardware */ |
21 |
|
|
#ifdef NO_DIVIDE |
22 |
|
|
# define MOD(a) \ |
23 |
|
|
do { \ |
24 |
|
|
if (a >= (BASE << 16)) a -= (BASE << 16); \ |
25 |
|
|
if (a >= (BASE << 15)) a -= (BASE << 15); \ |
26 |
|
|
if (a >= (BASE << 14)) a -= (BASE << 14); \ |
27 |
|
|
if (a >= (BASE << 13)) a -= (BASE << 13); \ |
28 |
|
|
if (a >= (BASE << 12)) a -= (BASE << 12); \ |
29 |
|
|
if (a >= (BASE << 11)) a -= (BASE << 11); \ |
30 |
|
|
if (a >= (BASE << 10)) a -= (BASE << 10); \ |
31 |
|
|
if (a >= (BASE << 9)) a -= (BASE << 9); \ |
32 |
|
|
if (a >= (BASE << 8)) a -= (BASE << 8); \ |
33 |
|
|
if (a >= (BASE << 7)) a -= (BASE << 7); \ |
34 |
|
|
if (a >= (BASE << 6)) a -= (BASE << 6); \ |
35 |
|
|
if (a >= (BASE << 5)) a -= (BASE << 5); \ |
36 |
|
|
if (a >= (BASE << 4)) a -= (BASE << 4); \ |
37 |
|
|
if (a >= (BASE << 3)) a -= (BASE << 3); \ |
38 |
|
|
if (a >= (BASE << 2)) a -= (BASE << 2); \ |
39 |
|
|
if (a >= (BASE << 1)) a -= (BASE << 1); \ |
40 |
|
|
if (a >= BASE) a -= BASE; \ |
41 |
|
|
} while (0) |
42 |
|
|
# define MOD4(a) \ |
43 |
|
|
do { \ |
44 |
|
|
if (a >= (BASE << 4)) a -= (BASE << 4); \ |
45 |
|
|
if (a >= (BASE << 3)) a -= (BASE << 3); \ |
46 |
|
|
if (a >= (BASE << 2)) a -= (BASE << 2); \ |
47 |
|
|
if (a >= (BASE << 1)) a -= (BASE << 1); \ |
48 |
|
|
if (a >= BASE) a -= BASE; \ |
49 |
|
|
} while (0) |
50 |
|
|
#else |
51 |
|
|
# define MOD(a) a %= BASE |
52 |
|
|
# define MOD4(a) a %= BASE |
53 |
|
|
#endif |
54 |
|
|
|
55 |
|
|
/* ========================================================================= */ |
56 |
|
|
uLong ZEXPORT adler32(adler, buf, len) |
57 |
|
|
uLong adler; |
58 |
|
|
const Bytef *buf; |
59 |
|
|
uInt len; |
60 |
|
|
{ |
61 |
|
|
unsigned long sum2; |
62 |
|
|
unsigned n; |
63 |
|
|
|
64 |
|
|
/* split Adler-32 into component sums */ |
65 |
|
|
sum2 = (adler >> 16) & 0xffff; |
66 |
|
|
adler &= 0xffff; |
67 |
|
|
|
68 |
|
|
/* in case user likes doing a byte at a time, keep it fast */ |
69 |
|
|
if (len == 1) { |
70 |
|
|
adler += buf[0]; |
71 |
|
|
if (adler >= BASE) |
72 |
|
|
adler -= BASE; |
73 |
|
|
sum2 += adler; |
74 |
|
|
if (sum2 >= BASE) |
75 |
|
|
sum2 -= BASE; |
76 |
|
|
return adler | (sum2 << 16); |
77 |
|
|
} |
78 |
|
|
|
79 |
|
|
/* initial Adler-32 value (deferred check for len == 1 speed) */ |
80 |
|
|
if (buf == Z_NULL) |
81 |
|
|
return 1L; |
82 |
|
|
|
83 |
|
|
/* in case short lengths are provided, keep it somewhat fast */ |
84 |
|
|
if (len < 16) { |
85 |
|
|
while (len--) { |
86 |
|
|
adler += *buf++; |
87 |
|
|
sum2 += adler; |
88 |
|
|
} |
89 |
|
|
if (adler >= BASE) |
90 |
|
|
adler -= BASE; |
91 |
|
|
MOD4(sum2); /* only added so many BASE's */ |
92 |
|
|
return adler | (sum2 << 16); |
93 |
|
|
} |
94 |
|
|
|
95 |
|
|
/* do length NMAX blocks -- requires just one modulo operation */ |
96 |
|
|
while (len >= NMAX) { |
97 |
|
|
len -= NMAX; |
98 |
|
|
n = NMAX / 16; /* NMAX is divisible by 16 */ |
99 |
|
|
do { |
100 |
|
|
DO16(buf); /* 16 sums unrolled */ |
101 |
|
|
buf += 16; |
102 |
|
|
} while (--n); |
103 |
|
|
MOD(adler); |
104 |
|
|
MOD(sum2); |
105 |
|
|
} |
106 |
|
|
|
107 |
|
|
/* do remaining bytes (less than NMAX, still just one modulo) */ |
108 |
|
|
if (len) { /* avoid modulos if none remaining */ |
109 |
|
|
while (len >= 16) { |
110 |
|
|
len -= 16; |
111 |
|
|
DO16(buf); |
112 |
|
|
buf += 16; |
113 |
|
|
} |
114 |
|
|
while (len--) { |
115 |
|
|
adler += *buf++; |
116 |
|
|
sum2 += adler; |
117 |
|
|
} |
118 |
|
|
MOD(adler); |
119 |
|
|
MOD(sum2); |
120 |
|
|
} |
121 |
|
|
|
122 |
|
|
/* return recombined sums */ |
123 |
|
|
return adler | (sum2 << 16); |
124 |
|
|
} |
125 |
|
|
|
126 |
|
|
/* ========================================================================= */ |
127 |
|
|
uLong ZEXPORT adler32_combine(adler1, adler2, len2) |
128 |
|
|
uLong adler1; |
129 |
|
|
uLong adler2; |
130 |
|
|
z_off_t len2; |
131 |
|
|
{ |
132 |
|
|
unsigned long sum1; |
133 |
|
|
unsigned long sum2; |
134 |
|
|
unsigned rem; |
135 |
|
|
|
136 |
|
|
/* the derivation of this formula is left as an exercise for the reader */ |
137 |
|
|
rem = (unsigned)(len2 % BASE); |
138 |
|
|
sum1 = adler1 & 0xffff; |
139 |
|
|
sum2 = rem * sum1; |
140 |
|
|
MOD(sum2); |
141 |
|
|
sum1 += (adler2 & 0xffff) + BASE - 1; |
142 |
|
|
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; |
143 |
|
|
if (sum1 > BASE) sum1 -= BASE; |
144 |
|
|
if (sum1 > BASE) sum1 -= BASE; |
145 |
|
|
if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); |
146 |
|
|
if (sum2 > BASE) sum2 -= BASE; |
147 |
|
|
return sum1 | (sum2 << 16); |
148 |
|
|
} |