1 |
|
|
/* $OpenBSD: speed.c,v 1.20 2017/10/07 06:16:54 guenther Exp $ */ |
2 |
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 |
|
|
* All rights reserved. |
4 |
|
|
* |
5 |
|
|
* This package is an SSL implementation written |
6 |
|
|
* by Eric Young (eay@cryptsoft.com). |
7 |
|
|
* The implementation was written so as to conform with Netscapes SSL. |
8 |
|
|
* |
9 |
|
|
* This library is free for commercial and non-commercial use as long as |
10 |
|
|
* the following conditions are aheared to. The following conditions |
11 |
|
|
* apply to all code found in this distribution, be it the RC4, RSA, |
12 |
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 |
|
|
* included with this distribution is covered by the same copyright terms |
14 |
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 |
|
|
* |
16 |
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
17 |
|
|
* the code are not to be removed. |
18 |
|
|
* If this package is used in a product, Eric Young should be given attribution |
19 |
|
|
* as the author of the parts of the library used. |
20 |
|
|
* This can be in the form of a textual message at program startup or |
21 |
|
|
* in documentation (online or textual) provided with the package. |
22 |
|
|
* |
23 |
|
|
* Redistribution and use in source and binary forms, with or without |
24 |
|
|
* modification, are permitted provided that the following conditions |
25 |
|
|
* are met: |
26 |
|
|
* 1. Redistributions of source code must retain the copyright |
27 |
|
|
* notice, this list of conditions and the following disclaimer. |
28 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
29 |
|
|
* notice, this list of conditions and the following disclaimer in the |
30 |
|
|
* documentation and/or other materials provided with the distribution. |
31 |
|
|
* 3. All advertising materials mentioning features or use of this software |
32 |
|
|
* must display the following acknowledgement: |
33 |
|
|
* "This product includes cryptographic software written by |
34 |
|
|
* Eric Young (eay@cryptsoft.com)" |
35 |
|
|
* The word 'cryptographic' can be left out if the rouines from the library |
36 |
|
|
* being used are not cryptographic related :-). |
37 |
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
38 |
|
|
* the apps directory (application code) you must include an acknowledgement: |
39 |
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 |
|
|
* |
41 |
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 |
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 |
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 |
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 |
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 |
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 |
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 |
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 |
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 |
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 |
|
|
* SUCH DAMAGE. |
52 |
|
|
* |
53 |
|
|
* The licence and distribution terms for any publically available version or |
54 |
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
55 |
|
|
* copied and put under another distribution licence |
56 |
|
|
* [including the GNU Public Licence.] |
57 |
|
|
*/ |
58 |
|
|
/* ==================================================================== |
59 |
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
60 |
|
|
* |
61 |
|
|
* Portions of the attached software ("Contribution") are developed by |
62 |
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
63 |
|
|
* |
64 |
|
|
* The Contribution is licensed pursuant to the OpenSSL open source |
65 |
|
|
* license provided above. |
66 |
|
|
* |
67 |
|
|
* The ECDH and ECDSA speed test software is originally written by |
68 |
|
|
* Sumit Gupta of Sun Microsystems Laboratories. |
69 |
|
|
* |
70 |
|
|
*/ |
71 |
|
|
|
72 |
|
|
/* most of this code has been pilfered from my libdes speed.c program */ |
73 |
|
|
|
74 |
|
|
#ifndef OPENSSL_NO_SPEED |
75 |
|
|
|
76 |
|
|
#define SECONDS 3 |
77 |
|
|
#define RSA_SECONDS 10 |
78 |
|
|
#define DSA_SECONDS 10 |
79 |
|
|
#define ECDSA_SECONDS 10 |
80 |
|
|
#define ECDH_SECONDS 10 |
81 |
|
|
|
82 |
|
|
#include <math.h> |
83 |
|
|
#include <signal.h> |
84 |
|
|
#include <stdio.h> |
85 |
|
|
#include <stdlib.h> |
86 |
|
|
#include <limits.h> |
87 |
|
|
#include <string.h> |
88 |
|
|
#include <unistd.h> |
89 |
|
|
|
90 |
|
|
#include "apps.h" |
91 |
|
|
|
92 |
|
|
#include <openssl/bn.h> |
93 |
|
|
#include <openssl/crypto.h> |
94 |
|
|
#include <openssl/err.h> |
95 |
|
|
#include <openssl/evp.h> |
96 |
|
|
#include <openssl/modes.h> |
97 |
|
|
#include <openssl/objects.h> |
98 |
|
|
#include <openssl/x509.h> |
99 |
|
|
|
100 |
|
|
#ifndef OPENSSL_NO_AES |
101 |
|
|
#include <openssl/aes.h> |
102 |
|
|
#endif |
103 |
|
|
#ifndef OPENSSL_NO_BF |
104 |
|
|
#include <openssl/blowfish.h> |
105 |
|
|
#endif |
106 |
|
|
#ifndef OPENSSL_NO_CAST |
107 |
|
|
#include <openssl/cast.h> |
108 |
|
|
#endif |
109 |
|
|
#ifndef OPENSSL_NO_CAMELLIA |
110 |
|
|
#include <openssl/camellia.h> |
111 |
|
|
#endif |
112 |
|
|
#ifndef OPENSSL_NO_DES |
113 |
|
|
#include <openssl/des.h> |
114 |
|
|
#endif |
115 |
|
|
#include <openssl/dsa.h> |
116 |
|
|
#include <openssl/ecdh.h> |
117 |
|
|
#include <openssl/ecdsa.h> |
118 |
|
|
#ifndef OPENSSL_NO_HMAC |
119 |
|
|
#include <openssl/hmac.h> |
120 |
|
|
#endif |
121 |
|
|
#ifndef OPENSSL_NO_IDEA |
122 |
|
|
#include <openssl/idea.h> |
123 |
|
|
#endif |
124 |
|
|
#ifndef OPENSSL_NO_MD4 |
125 |
|
|
#include <openssl/md4.h> |
126 |
|
|
#endif |
127 |
|
|
#ifndef OPENSSL_NO_MD5 |
128 |
|
|
#include <openssl/md5.h> |
129 |
|
|
#endif |
130 |
|
|
#ifndef OPENSSL_NO_RC2 |
131 |
|
|
#include <openssl/rc2.h> |
132 |
|
|
#endif |
133 |
|
|
#ifndef OPENSSL_NO_RC4 |
134 |
|
|
#include <openssl/rc4.h> |
135 |
|
|
#endif |
136 |
|
|
#include <openssl/rsa.h> |
137 |
|
|
#ifndef OPENSSL_NO_RIPEMD |
138 |
|
|
#include <openssl/ripemd.h> |
139 |
|
|
#endif |
140 |
|
|
#ifndef OPENSSL_NO_SHA |
141 |
|
|
#include <openssl/sha.h> |
142 |
|
|
#endif |
143 |
|
|
#ifndef OPENSSL_NO_WHIRLPOOL |
144 |
|
|
#include <openssl/whrlpool.h> |
145 |
|
|
#endif |
146 |
|
|
|
147 |
|
|
#include "./testdsa.h" |
148 |
|
|
#include "./testrsa.h" |
149 |
|
|
|
150 |
|
|
#define BUFSIZE (1024*8+64) |
151 |
|
|
int run = 0; |
152 |
|
|
|
153 |
|
|
static int mr = 0; |
154 |
|
|
static int usertime = 1; |
155 |
|
|
|
156 |
|
|
static double Time_F(int s); |
157 |
|
|
static void print_message(const char *s, long num, int length); |
158 |
|
|
static void |
159 |
|
|
pkey_print_message(const char *str, const char *str2, |
160 |
|
|
long num, int bits, int sec); |
161 |
|
|
static void print_result(int alg, int run_no, int count, double time_used); |
162 |
|
|
static int do_multi(int multi); |
163 |
|
|
|
164 |
|
|
#define ALGOR_NUM 32 |
165 |
|
|
#define SIZE_NUM 5 |
166 |
|
|
#define RSA_NUM 4 |
167 |
|
|
#define DSA_NUM 3 |
168 |
|
|
|
169 |
|
|
#define EC_NUM 16 |
170 |
|
|
#define MAX_ECDH_SIZE 256 |
171 |
|
|
|
172 |
|
|
static const char *names[ALGOR_NUM] = { |
173 |
|
|
"md2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", |
174 |
|
|
"rc4", "des cbc", "des ede3", "idea cbc", "seed cbc", |
175 |
|
|
"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", |
176 |
|
|
"aes-128 cbc", "aes-192 cbc", "aes-256 cbc", |
177 |
|
|
"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", |
178 |
|
|
"evp", "sha256", "sha512", "whirlpool", |
179 |
|
|
"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash", |
180 |
|
|
"aes-128 gcm", "aes-256 gcm", "chacha20 poly1305", |
181 |
|
|
}; |
182 |
|
|
static double results[ALGOR_NUM][SIZE_NUM]; |
183 |
|
|
static int lengths[SIZE_NUM] = {16, 64, 256, 1024, 8 * 1024}; |
184 |
|
|
static double rsa_results[RSA_NUM][2]; |
185 |
|
|
static double dsa_results[DSA_NUM][2]; |
186 |
|
|
static double ecdsa_results[EC_NUM][2]; |
187 |
|
|
static double ecdh_results[EC_NUM][1]; |
188 |
|
|
|
189 |
|
|
static void sig_done(int sig); |
190 |
|
|
|
191 |
|
|
static void |
192 |
|
|
sig_done(int sig) |
193 |
|
|
{ |
194 |
|
112 |
signal(SIGALRM, sig_done); |
195 |
|
56 |
run = 0; |
196 |
|
56 |
} |
197 |
|
|
|
198 |
|
|
#define START 0 |
199 |
|
|
#define STOP 1 |
200 |
|
|
|
201 |
|
|
|
202 |
|
|
static double |
203 |
|
|
Time_F(int s) |
204 |
|
|
{ |
205 |
|
224 |
return app_tminterval(s, usertime); |
206 |
|
|
} |
207 |
|
|
|
208 |
|
|
|
209 |
|
|
static const int KDF1_SHA1_len = 20; |
210 |
|
|
static void * |
211 |
|
|
KDF1_SHA1(const void *in, size_t inlen, void *out, size_t * outlen) |
212 |
|
|
{ |
213 |
|
|
#ifndef OPENSSL_NO_SHA |
214 |
|
|
if (*outlen < SHA_DIGEST_LENGTH) |
215 |
|
|
return NULL; |
216 |
|
|
else |
217 |
|
|
*outlen = SHA_DIGEST_LENGTH; |
218 |
|
|
return SHA1(in, inlen, out); |
219 |
|
|
#else |
220 |
|
|
return NULL; |
221 |
|
|
#endif /* OPENSSL_NO_SHA */ |
222 |
|
|
} |
223 |
|
|
|
224 |
|
|
int |
225 |
|
|
speed_main(int argc, char **argv) |
226 |
|
|
{ |
227 |
|
|
unsigned char *buf = NULL, *buf2 = NULL; |
228 |
|
|
int mret = 1; |
229 |
|
|
long count = 0, save_count = 0; |
230 |
|
|
int i, j, k; |
231 |
|
|
long rsa_count; |
232 |
|
32 |
unsigned rsa_num; |
233 |
|
16 |
unsigned char md[EVP_MAX_MD_SIZE]; |
234 |
|
|
#ifndef OPENSSL_NO_MD4 |
235 |
|
16 |
unsigned char md4[MD4_DIGEST_LENGTH]; |
236 |
|
|
#endif |
237 |
|
|
#ifndef OPENSSL_NO_MD5 |
238 |
|
16 |
unsigned char md5[MD5_DIGEST_LENGTH]; |
239 |
|
16 |
unsigned char hmac[MD5_DIGEST_LENGTH]; |
240 |
|
|
#endif |
241 |
|
|
#ifndef OPENSSL_NO_SHA |
242 |
|
16 |
unsigned char sha[SHA_DIGEST_LENGTH]; |
243 |
|
|
#ifndef OPENSSL_NO_SHA256 |
244 |
|
16 |
unsigned char sha256[SHA256_DIGEST_LENGTH]; |
245 |
|
|
#endif |
246 |
|
|
#ifndef OPENSSL_NO_SHA512 |
247 |
|
16 |
unsigned char sha512[SHA512_DIGEST_LENGTH]; |
248 |
|
|
#endif |
249 |
|
|
#endif |
250 |
|
|
#ifndef OPENSSL_NO_WHIRLPOOL |
251 |
|
16 |
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; |
252 |
|
|
#endif |
253 |
|
|
#ifndef OPENSSL_NO_RIPEMD |
254 |
|
16 |
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; |
255 |
|
|
#endif |
256 |
|
|
#ifndef OPENSSL_NO_RC4 |
257 |
|
16 |
RC4_KEY rc4_ks; |
258 |
|
|
#endif |
259 |
|
|
#ifndef OPENSSL_NO_RC2 |
260 |
|
16 |
RC2_KEY rc2_ks; |
261 |
|
|
#endif |
262 |
|
|
#ifndef OPENSSL_NO_IDEA |
263 |
|
16 |
IDEA_KEY_SCHEDULE idea_ks; |
264 |
|
|
#endif |
265 |
|
|
#ifndef OPENSSL_NO_BF |
266 |
|
16 |
BF_KEY bf_ks; |
267 |
|
|
#endif |
268 |
|
|
#ifndef OPENSSL_NO_CAST |
269 |
|
16 |
CAST_KEY cast_ks; |
270 |
|
|
#endif |
271 |
|
|
static const unsigned char key16[16] = |
272 |
|
|
{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
273 |
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12}; |
274 |
|
|
#ifndef OPENSSL_NO_AES |
275 |
|
|
static const unsigned char key24[24] = |
276 |
|
|
{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
277 |
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
278 |
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34}; |
279 |
|
|
static const unsigned char key32[32] = |
280 |
|
|
{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
281 |
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
282 |
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
283 |
|
|
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56}; |
284 |
|
|
#endif |
285 |
|
|
#ifndef OPENSSL_NO_CAMELLIA |
286 |
|
|
static const unsigned char ckey24[24] = |
287 |
|
|
{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
288 |
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
289 |
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34}; |
290 |
|
|
static const unsigned char ckey32[32] = |
291 |
|
|
{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
292 |
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
293 |
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
294 |
|
|
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56}; |
295 |
|
|
#endif |
296 |
|
|
#ifndef OPENSSL_NO_AES |
297 |
|
|
#define MAX_BLOCK_SIZE 128 |
298 |
|
|
#else |
299 |
|
|
#define MAX_BLOCK_SIZE 64 |
300 |
|
|
#endif |
301 |
|
16 |
unsigned char DES_iv[8]; |
302 |
|
16 |
unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; |
303 |
|
|
#ifndef OPENSSL_NO_DES |
304 |
|
|
static DES_cblock key = {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0}; |
305 |
|
|
static DES_cblock key2 = {0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12}; |
306 |
|
|
static DES_cblock key3 = {0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34}; |
307 |
|
16 |
DES_key_schedule sch; |
308 |
|
16 |
DES_key_schedule sch2; |
309 |
|
16 |
DES_key_schedule sch3; |
310 |
|
|
#endif |
311 |
|
|
#ifndef OPENSSL_NO_AES |
312 |
|
16 |
AES_KEY aes_ks1, aes_ks2, aes_ks3; |
313 |
|
|
#endif |
314 |
|
|
#ifndef OPENSSL_NO_CAMELLIA |
315 |
|
16 |
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; |
316 |
|
|
#endif |
317 |
|
|
#define D_MD2 0 |
318 |
|
|
#define D_MD4 1 |
319 |
|
|
#define D_MD5 2 |
320 |
|
|
#define D_HMAC 3 |
321 |
|
|
#define D_SHA1 4 |
322 |
|
|
#define D_RMD160 5 |
323 |
|
|
#define D_RC4 6 |
324 |
|
|
#define D_CBC_DES 7 |
325 |
|
|
#define D_EDE3_DES 8 |
326 |
|
|
#define D_CBC_IDEA 9 |
327 |
|
|
#define D_CBC_SEED 10 |
328 |
|
|
#define D_CBC_RC2 11 |
329 |
|
|
#define D_CBC_RC5 12 |
330 |
|
|
#define D_CBC_BF 13 |
331 |
|
|
#define D_CBC_CAST 14 |
332 |
|
|
#define D_CBC_128_AES 15 |
333 |
|
|
#define D_CBC_192_AES 16 |
334 |
|
|
#define D_CBC_256_AES 17 |
335 |
|
|
#define D_CBC_128_CML 18 |
336 |
|
|
#define D_CBC_192_CML 19 |
337 |
|
|
#define D_CBC_256_CML 20 |
338 |
|
|
#define D_EVP 21 |
339 |
|
|
#define D_SHA256 22 |
340 |
|
|
#define D_SHA512 23 |
341 |
|
|
#define D_WHIRLPOOL 24 |
342 |
|
|
#define D_IGE_128_AES 25 |
343 |
|
|
#define D_IGE_192_AES 26 |
344 |
|
|
#define D_IGE_256_AES 27 |
345 |
|
|
#define D_GHASH 28 |
346 |
|
|
#define D_AES_128_GCM 29 |
347 |
|
|
#define D_AES_256_GCM 30 |
348 |
|
|
#define D_CHACHA20_POLY1305 31 |
349 |
|
|
double d = 0.0; |
350 |
|
16 |
long c[ALGOR_NUM][SIZE_NUM]; |
351 |
|
|
#define R_DSA_512 0 |
352 |
|
|
#define R_DSA_1024 1 |
353 |
|
|
#define R_DSA_2048 2 |
354 |
|
|
#define R_RSA_512 0 |
355 |
|
|
#define R_RSA_1024 1 |
356 |
|
|
#define R_RSA_2048 2 |
357 |
|
|
#define R_RSA_4096 3 |
358 |
|
|
|
359 |
|
|
#define R_EC_P160 0 |
360 |
|
|
#define R_EC_P192 1 |
361 |
|
|
#define R_EC_P224 2 |
362 |
|
|
#define R_EC_P256 3 |
363 |
|
|
#define R_EC_P384 4 |
364 |
|
|
#define R_EC_P521 5 |
365 |
|
|
#define R_EC_K163 6 |
366 |
|
|
#define R_EC_K233 7 |
367 |
|
|
#define R_EC_K283 8 |
368 |
|
|
#define R_EC_K409 9 |
369 |
|
|
#define R_EC_K571 10 |
370 |
|
|
#define R_EC_B163 11 |
371 |
|
|
#define R_EC_B233 12 |
372 |
|
|
#define R_EC_B283 13 |
373 |
|
|
#define R_EC_B409 14 |
374 |
|
|
#define R_EC_B571 15 |
375 |
|
|
|
376 |
|
16 |
RSA *rsa_key[RSA_NUM]; |
377 |
|
16 |
long rsa_c[RSA_NUM][2]; |
378 |
|
|
static unsigned int rsa_bits[RSA_NUM] = {512, 1024, 2048, 4096}; |
379 |
|
|
static unsigned char *rsa_data[RSA_NUM] = |
380 |
|
|
{test512, test1024, test2048, test4096}; |
381 |
|
|
static int rsa_data_length[RSA_NUM] = { |
382 |
|
|
sizeof(test512), sizeof(test1024), |
383 |
|
|
sizeof(test2048), sizeof(test4096)}; |
384 |
|
16 |
DSA *dsa_key[DSA_NUM]; |
385 |
|
16 |
long dsa_c[DSA_NUM][2]; |
386 |
|
|
static unsigned int dsa_bits[DSA_NUM] = {512, 1024, 2048}; |
387 |
|
|
#ifndef OPENSSL_NO_EC |
388 |
|
|
/* |
389 |
|
|
* We only test over the following curves as they are representative, |
390 |
|
|
* To add tests over more curves, simply add the curve NID and curve |
391 |
|
|
* name to the following arrays and increase the EC_NUM value |
392 |
|
|
* accordingly. |
393 |
|
|
*/ |
394 |
|
|
static unsigned int test_curves[EC_NUM] = |
395 |
|
|
{ |
396 |
|
|
/* Prime Curves */ |
397 |
|
|
NID_secp160r1, |
398 |
|
|
NID_X9_62_prime192v1, |
399 |
|
|
NID_secp224r1, |
400 |
|
|
NID_X9_62_prime256v1, |
401 |
|
|
NID_secp384r1, |
402 |
|
|
NID_secp521r1, |
403 |
|
|
/* Binary Curves */ |
404 |
|
|
NID_sect163k1, |
405 |
|
|
NID_sect233k1, |
406 |
|
|
NID_sect283k1, |
407 |
|
|
NID_sect409k1, |
408 |
|
|
NID_sect571k1, |
409 |
|
|
NID_sect163r2, |
410 |
|
|
NID_sect233r1, |
411 |
|
|
NID_sect283r1, |
412 |
|
|
NID_sect409r1, |
413 |
|
|
NID_sect571r1 |
414 |
|
|
}; |
415 |
|
|
static const char *test_curves_names[EC_NUM] = |
416 |
|
|
{ |
417 |
|
|
/* Prime Curves */ |
418 |
|
|
"secp160r1", |
419 |
|
|
"nistp192", |
420 |
|
|
"nistp224", |
421 |
|
|
"nistp256", |
422 |
|
|
"nistp384", |
423 |
|
|
"nistp521", |
424 |
|
|
/* Binary Curves */ |
425 |
|
|
"nistk163", |
426 |
|
|
"nistk233", |
427 |
|
|
"nistk283", |
428 |
|
|
"nistk409", |
429 |
|
|
"nistk571", |
430 |
|
|
"nistb163", |
431 |
|
|
"nistb233", |
432 |
|
|
"nistb283", |
433 |
|
|
"nistb409", |
434 |
|
|
"nistb571" |
435 |
|
|
}; |
436 |
|
|
static int test_curves_bits[EC_NUM] = |
437 |
|
|
{ |
438 |
|
|
160, 192, 224, 256, 384, 521, |
439 |
|
|
163, 233, 283, 409, 571, |
440 |
|
|
163, 233, 283, 409, 571 |
441 |
|
|
}; |
442 |
|
|
|
443 |
|
|
#endif |
444 |
|
|
|
445 |
|
16 |
unsigned char ecdsasig[256]; |
446 |
|
16 |
unsigned int ecdsasiglen; |
447 |
|
16 |
EC_KEY *ecdsa[EC_NUM]; |
448 |
|
16 |
long ecdsa_c[EC_NUM][2]; |
449 |
|
|
|
450 |
|
16 |
EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM]; |
451 |
|
16 |
unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE]; |
452 |
|
|
int secret_size_a, secret_size_b; |
453 |
|
|
int ecdh_checks = 0; |
454 |
|
|
int secret_idx = 0; |
455 |
|
16 |
long ecdh_c[EC_NUM][2]; |
456 |
|
|
|
457 |
|
16 |
int rsa_doit[RSA_NUM]; |
458 |
|
16 |
int dsa_doit[DSA_NUM]; |
459 |
|
16 |
int ecdsa_doit[EC_NUM]; |
460 |
|
16 |
int ecdh_doit[EC_NUM]; |
461 |
|
16 |
int doit[ALGOR_NUM]; |
462 |
|
|
int pr_header = 0; |
463 |
|
|
const EVP_CIPHER *evp_cipher = NULL; |
464 |
|
|
const EVP_MD *evp_md = NULL; |
465 |
|
|
int decrypt = 0; |
466 |
|
|
int multi = 0; |
467 |
|
16 |
const char *errstr = NULL; |
468 |
|
|
|
469 |
✓✗ |
16 |
if (single_execution) { |
470 |
✗✓ |
16 |
if (pledge("stdio proc flock rpath cpath wpath", NULL) == -1) { |
471 |
|
|
perror("pledge"); |
472 |
|
|
exit(1); |
473 |
|
|
} |
474 |
|
|
} |
475 |
|
|
|
476 |
|
16 |
usertime = -1; |
477 |
|
|
|
478 |
|
16 |
memset(results, 0, sizeof(results)); |
479 |
|
16 |
memset(dsa_key, 0, sizeof(dsa_key)); |
480 |
✓✓ |
544 |
for (i = 0; i < EC_NUM; i++) |
481 |
|
256 |
ecdsa[i] = NULL; |
482 |
✓✓ |
544 |
for (i = 0; i < EC_NUM; i++) { |
483 |
|
256 |
ecdh_a[i] = NULL; |
484 |
|
256 |
ecdh_b[i] = NULL; |
485 |
|
|
} |
486 |
|
|
|
487 |
|
16 |
memset(rsa_key, 0, sizeof(rsa_key)); |
488 |
✓✓ |
160 |
for (i = 0; i < RSA_NUM; i++) |
489 |
|
64 |
rsa_key[i] = NULL; |
490 |
|
|
|
491 |
✗✓ |
16 |
if ((buf = malloc(BUFSIZE)) == NULL) { |
492 |
|
|
BIO_printf(bio_err, "out of memory\n"); |
493 |
|
|
goto end; |
494 |
|
|
} |
495 |
✗✓ |
16 |
if ((buf2 = malloc(BUFSIZE)) == NULL) { |
496 |
|
|
BIO_printf(bio_err, "out of memory\n"); |
497 |
|
|
goto end; |
498 |
|
|
} |
499 |
|
16 |
memset(c, 0, sizeof(c)); |
500 |
|
16 |
memset(DES_iv, 0, sizeof(DES_iv)); |
501 |
|
16 |
memset(iv, 0, sizeof(iv)); |
502 |
|
|
|
503 |
✓✓ |
1056 |
for (i = 0; i < ALGOR_NUM; i++) |
504 |
|
512 |
doit[i] = 0; |
505 |
✓✓ |
160 |
for (i = 0; i < RSA_NUM; i++) |
506 |
|
64 |
rsa_doit[i] = 0; |
507 |
✓✓ |
128 |
for (i = 0; i < DSA_NUM; i++) |
508 |
|
48 |
dsa_doit[i] = 0; |
509 |
✓✓ |
544 |
for (i = 0; i < EC_NUM; i++) |
510 |
|
256 |
ecdsa_doit[i] = 0; |
511 |
✓✓ |
544 |
for (i = 0; i < EC_NUM; i++) |
512 |
|
256 |
ecdh_doit[i] = 0; |
513 |
|
|
|
514 |
|
|
|
515 |
|
|
j = 0; |
516 |
|
16 |
argc--; |
517 |
|
16 |
argv++; |
518 |
✓✓ |
128 |
while (argc) { |
519 |
✓✗✓✓
|
104 |
if ((argc > 0) && (strcmp(*argv, "-elapsed") == 0)) { |
520 |
|
12 |
usertime = 0; |
521 |
|
12 |
j--; /* Otherwise, -elapsed gets confused with an |
522 |
|
|
* algorithm. */ |
523 |
✓✗✗✓
|
92 |
} else if ((argc > 0) && (strcmp(*argv, "-evp") == 0)) { |
524 |
|
|
argc--; |
525 |
|
|
argv++; |
526 |
|
|
if (argc == 0) { |
527 |
|
|
BIO_printf(bio_err, "no EVP given\n"); |
528 |
|
|
goto end; |
529 |
|
|
} |
530 |
|
|
evp_cipher = EVP_get_cipherbyname(*argv); |
531 |
|
|
if (!evp_cipher) { |
532 |
|
|
evp_md = EVP_get_digestbyname(*argv); |
533 |
|
|
} |
534 |
|
|
if (!evp_cipher && !evp_md) { |
535 |
|
|
BIO_printf(bio_err, "%s is an unknown cipher or digest\n", *argv); |
536 |
|
|
goto end; |
537 |
|
|
} |
538 |
|
|
doit[D_EVP] = 1; |
539 |
✓✗✗✓
|
80 |
} else if (argc > 0 && !strcmp(*argv, "-decrypt")) { |
540 |
|
|
decrypt = 1; |
541 |
|
|
j--; /* Otherwise, -decrypt gets confused with an |
542 |
|
|
* algorithm. */ |
543 |
|
|
} |
544 |
✓✗✓✓
|
80 |
else if ((argc > 0) && (strcmp(*argv, "-multi") == 0)) { |
545 |
|
12 |
argc--; |
546 |
|
12 |
argv++; |
547 |
✗✓ |
12 |
if (argc == 0) { |
548 |
|
|
BIO_printf(bio_err, "no multi count given\n"); |
549 |
|
|
goto end; |
550 |
|
|
} |
551 |
|
12 |
multi = strtonum(argv[0], 1, INT_MAX, &errstr); |
552 |
✗✓ |
12 |
if (errstr) { |
553 |
|
|
BIO_printf(bio_err, "bad multi count: %s", errstr); |
554 |
|
|
goto end; |
555 |
|
|
} |
556 |
|
12 |
j--; /* Otherwise, -multi gets confused with an |
557 |
|
|
* algorithm. */ |
558 |
|
12 |
} |
559 |
✓✗✗✓
|
56 |
else if (argc > 0 && !strcmp(*argv, "-mr")) { |
560 |
|
|
mr = 1; |
561 |
|
|
j--; /* Otherwise, -mr gets confused with an |
562 |
|
|
* algorithm. */ |
563 |
|
|
} else |
564 |
|
|
#ifndef OPENSSL_NO_MD4 |
565 |
✗✓ |
28 |
if (strcmp(*argv, "md4") == 0) |
566 |
|
|
doit[D_MD4] = 1; |
567 |
|
|
else |
568 |
|
|
#endif |
569 |
|
|
#ifndef OPENSSL_NO_MD5 |
570 |
✗✓ |
28 |
if (strcmp(*argv, "md5") == 0) |
571 |
|
|
doit[D_MD5] = 1; |
572 |
|
|
else |
573 |
|
|
#endif |
574 |
|
|
#ifndef OPENSSL_NO_MD5 |
575 |
✗✓ |
28 |
if (strcmp(*argv, "hmac") == 0) |
576 |
|
|
doit[D_HMAC] = 1; |
577 |
|
|
else |
578 |
|
|
#endif |
579 |
|
|
#ifndef OPENSSL_NO_SHA |
580 |
✗✓ |
28 |
if (strcmp(*argv, "sha1") == 0) |
581 |
|
|
doit[D_SHA1] = 1; |
582 |
✗✓ |
28 |
else if (strcmp(*argv, "sha") == 0) |
583 |
|
|
doit[D_SHA1] = 1, |
584 |
|
|
doit[D_SHA256] = 1, |
585 |
|
|
doit[D_SHA512] = 1; |
586 |
|
|
else |
587 |
|
|
#ifndef OPENSSL_NO_SHA256 |
588 |
✗✓ |
28 |
if (strcmp(*argv, "sha256") == 0) |
589 |
|
|
doit[D_SHA256] = 1; |
590 |
|
|
else |
591 |
|
|
#endif |
592 |
|
|
#ifndef OPENSSL_NO_SHA512 |
593 |
✓✓ |
28 |
if (strcmp(*argv, "sha512") == 0) |
594 |
|
12 |
doit[D_SHA512] = 1; |
595 |
|
|
else |
596 |
|
|
#endif |
597 |
|
|
#endif |
598 |
|
|
#ifndef OPENSSL_NO_WHIRLPOOL |
599 |
✗✓ |
16 |
if (strcmp(*argv, "whirlpool") == 0) |
600 |
|
|
doit[D_WHIRLPOOL] = 1; |
601 |
|
|
else |
602 |
|
|
#endif |
603 |
|
|
#ifndef OPENSSL_NO_RIPEMD |
604 |
✗✓ |
16 |
if (strcmp(*argv, "ripemd") == 0) |
605 |
|
|
doit[D_RMD160] = 1; |
606 |
✗✓ |
16 |
else if (strcmp(*argv, "rmd160") == 0) |
607 |
|
|
doit[D_RMD160] = 1; |
608 |
✗✓ |
16 |
else if (strcmp(*argv, "ripemd160") == 0) |
609 |
|
|
doit[D_RMD160] = 1; |
610 |
|
|
else |
611 |
|
|
#endif |
612 |
|
|
#ifndef OPENSSL_NO_RC4 |
613 |
✗✓ |
16 |
if (strcmp(*argv, "rc4") == 0) |
614 |
|
|
doit[D_RC4] = 1; |
615 |
|
|
else |
616 |
|
|
#endif |
617 |
|
|
#ifndef OPENSSL_NO_DES |
618 |
✗✓ |
16 |
if (strcmp(*argv, "des-cbc") == 0) |
619 |
|
|
doit[D_CBC_DES] = 1; |
620 |
✗✓ |
16 |
else if (strcmp(*argv, "des-ede3") == 0) |
621 |
|
|
doit[D_EDE3_DES] = 1; |
622 |
|
|
else |
623 |
|
|
#endif |
624 |
|
|
#ifndef OPENSSL_NO_AES |
625 |
✗✓ |
16 |
if (strcmp(*argv, "aes-128-cbc") == 0) |
626 |
|
|
doit[D_CBC_128_AES] = 1; |
627 |
✗✓ |
16 |
else if (strcmp(*argv, "aes-192-cbc") == 0) |
628 |
|
|
doit[D_CBC_192_AES] = 1; |
629 |
✗✓ |
16 |
else if (strcmp(*argv, "aes-256-cbc") == 0) |
630 |
|
|
doit[D_CBC_256_AES] = 1; |
631 |
✗✓ |
16 |
else if (strcmp(*argv, "aes-128-ige") == 0) |
632 |
|
|
doit[D_IGE_128_AES] = 1; |
633 |
✗✓ |
16 |
else if (strcmp(*argv, "aes-192-ige") == 0) |
634 |
|
|
doit[D_IGE_192_AES] = 1; |
635 |
✗✓ |
16 |
else if (strcmp(*argv, "aes-256-ige") == 0) |
636 |
|
|
doit[D_IGE_256_AES] = 1; |
637 |
|
|
else |
638 |
|
|
#endif |
639 |
|
|
#ifndef OPENSSL_NO_CAMELLIA |
640 |
✗✓ |
16 |
if (strcmp(*argv, "camellia-128-cbc") == 0) |
641 |
|
|
doit[D_CBC_128_CML] = 1; |
642 |
✗✓ |
16 |
else if (strcmp(*argv, "camellia-192-cbc") == 0) |
643 |
|
|
doit[D_CBC_192_CML] = 1; |
644 |
✗✓ |
16 |
else if (strcmp(*argv, "camellia-256-cbc") == 0) |
645 |
|
|
doit[D_CBC_256_CML] = 1; |
646 |
|
|
else |
647 |
|
|
#endif |
648 |
|
|
#ifndef RSA_NULL |
649 |
✗✓ |
16 |
if (strcmp(*argv, "openssl") == 0) { |
650 |
|
|
RSA_set_default_method(RSA_PKCS1_SSLeay()); |
651 |
|
|
j--; |
652 |
|
|
} else |
653 |
|
|
#endif |
654 |
✗✓ |
16 |
if (strcmp(*argv, "dsa512") == 0) |
655 |
|
|
dsa_doit[R_DSA_512] = 2; |
656 |
✗✓ |
16 |
else if (strcmp(*argv, "dsa1024") == 0) |
657 |
|
|
dsa_doit[R_DSA_1024] = 2; |
658 |
✗✓ |
16 |
else if (strcmp(*argv, "dsa2048") == 0) |
659 |
|
|
dsa_doit[R_DSA_2048] = 2; |
660 |
✗✓ |
16 |
else if (strcmp(*argv, "rsa512") == 0) |
661 |
|
|
rsa_doit[R_RSA_512] = 2; |
662 |
✗✓ |
16 |
else if (strcmp(*argv, "rsa1024") == 0) |
663 |
|
|
rsa_doit[R_RSA_1024] = 2; |
664 |
✓✓ |
16 |
else if (strcmp(*argv, "rsa2048") == 0) |
665 |
|
12 |
rsa_doit[R_RSA_2048] = 2; |
666 |
✗✓ |
4 |
else if (strcmp(*argv, "rsa4096") == 0) |
667 |
|
|
rsa_doit[R_RSA_4096] = 2; |
668 |
|
|
else |
669 |
|
|
#ifndef OPENSSL_NO_RC2 |
670 |
✗✓ |
4 |
if (strcmp(*argv, "rc2-cbc") == 0) |
671 |
|
|
doit[D_CBC_RC2] = 1; |
672 |
✗✓ |
4 |
else if (strcmp(*argv, "rc2") == 0) |
673 |
|
|
doit[D_CBC_RC2] = 1; |
674 |
|
|
else |
675 |
|
|
#endif |
676 |
|
|
#ifndef OPENSSL_NO_IDEA |
677 |
✗✓ |
4 |
if (strcmp(*argv, "idea-cbc") == 0) |
678 |
|
|
doit[D_CBC_IDEA] = 1; |
679 |
✗✓ |
4 |
else if (strcmp(*argv, "idea") == 0) |
680 |
|
|
doit[D_CBC_IDEA] = 1; |
681 |
|
|
else |
682 |
|
|
#endif |
683 |
|
|
#ifndef OPENSSL_NO_BF |
684 |
✗✓ |
4 |
if (strcmp(*argv, "bf-cbc") == 0) |
685 |
|
|
doit[D_CBC_BF] = 1; |
686 |
✗✓ |
4 |
else if (strcmp(*argv, "blowfish") == 0) |
687 |
|
|
doit[D_CBC_BF] = 1; |
688 |
✗✓ |
4 |
else if (strcmp(*argv, "bf") == 0) |
689 |
|
|
doit[D_CBC_BF] = 1; |
690 |
|
|
else |
691 |
|
|
#endif |
692 |
|
|
#ifndef OPENSSL_NO_CAST |
693 |
✗✓ |
4 |
if (strcmp(*argv, "cast-cbc") == 0) |
694 |
|
|
doit[D_CBC_CAST] = 1; |
695 |
✗✓ |
4 |
else if (strcmp(*argv, "cast") == 0) |
696 |
|
|
doit[D_CBC_CAST] = 1; |
697 |
✗✓ |
4 |
else if (strcmp(*argv, "cast5") == 0) |
698 |
|
|
doit[D_CBC_CAST] = 1; |
699 |
|
|
else |
700 |
|
|
#endif |
701 |
|
|
#ifndef OPENSSL_NO_DES |
702 |
✗✓ |
4 |
if (strcmp(*argv, "des") == 0) { |
703 |
|
|
doit[D_CBC_DES] = 1; |
704 |
|
|
doit[D_EDE3_DES] = 1; |
705 |
|
|
} else |
706 |
|
|
#endif |
707 |
|
|
#ifndef OPENSSL_NO_AES |
708 |
✗✓ |
4 |
if (strcmp(*argv, "aes") == 0) { |
709 |
|
|
doit[D_CBC_128_AES] = 1; |
710 |
|
|
doit[D_CBC_192_AES] = 1; |
711 |
|
|
doit[D_CBC_256_AES] = 1; |
712 |
✗✓ |
4 |
} else if (strcmp(*argv, "ghash") == 0) |
713 |
|
|
doit[D_GHASH] = 1; |
714 |
✗✓ |
4 |
else if (strcmp(*argv,"aes-128-gcm") == 0) |
715 |
|
|
doit[D_AES_128_GCM]=1; |
716 |
✗✓ |
4 |
else if (strcmp(*argv,"aes-256-gcm") == 0) |
717 |
|
|
doit[D_AES_256_GCM]=1; |
718 |
|
|
else |
719 |
|
|
#endif |
720 |
|
|
#ifndef OPENSSL_NO_CAMELLIA |
721 |
✗✓ |
4 |
if (strcmp(*argv, "camellia") == 0) { |
722 |
|
|
doit[D_CBC_128_CML] = 1; |
723 |
|
|
doit[D_CBC_192_CML] = 1; |
724 |
|
|
doit[D_CBC_256_CML] = 1; |
725 |
|
|
} else |
726 |
|
|
#endif |
727 |
|
|
#if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305) |
728 |
✗✓ |
4 |
if (strcmp(*argv,"chacha20-poly1305") == 0) |
729 |
|
|
doit[D_CHACHA20_POLY1305]=1; |
730 |
|
|
else |
731 |
|
|
#endif |
732 |
✗✓ |
4 |
if (strcmp(*argv, "rsa") == 0) { |
733 |
|
|
rsa_doit[R_RSA_512] = 1; |
734 |
|
|
rsa_doit[R_RSA_1024] = 1; |
735 |
|
|
rsa_doit[R_RSA_2048] = 1; |
736 |
|
|
rsa_doit[R_RSA_4096] = 1; |
737 |
|
|
} else |
738 |
✗✓ |
4 |
if (strcmp(*argv, "dsa") == 0) { |
739 |
|
|
dsa_doit[R_DSA_512] = 1; |
740 |
|
|
dsa_doit[R_DSA_1024] = 1; |
741 |
|
|
dsa_doit[R_DSA_2048] = 1; |
742 |
|
|
} else |
743 |
✗✓ |
4 |
if (strcmp(*argv, "ecdsap160") == 0) |
744 |
|
|
ecdsa_doit[R_EC_P160] = 2; |
745 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsap192") == 0) |
746 |
|
|
ecdsa_doit[R_EC_P192] = 2; |
747 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsap224") == 0) |
748 |
|
|
ecdsa_doit[R_EC_P224] = 2; |
749 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsap256") == 0) |
750 |
|
|
ecdsa_doit[R_EC_P256] = 2; |
751 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsap384") == 0) |
752 |
|
|
ecdsa_doit[R_EC_P384] = 2; |
753 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsap521") == 0) |
754 |
|
|
ecdsa_doit[R_EC_P521] = 2; |
755 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsak163") == 0) |
756 |
|
|
ecdsa_doit[R_EC_K163] = 2; |
757 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsak233") == 0) |
758 |
|
|
ecdsa_doit[R_EC_K233] = 2; |
759 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsak283") == 0) |
760 |
|
|
ecdsa_doit[R_EC_K283] = 2; |
761 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsak409") == 0) |
762 |
|
|
ecdsa_doit[R_EC_K409] = 2; |
763 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsak571") == 0) |
764 |
|
|
ecdsa_doit[R_EC_K571] = 2; |
765 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsab163") == 0) |
766 |
|
|
ecdsa_doit[R_EC_B163] = 2; |
767 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsab233") == 0) |
768 |
|
|
ecdsa_doit[R_EC_B233] = 2; |
769 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsab283") == 0) |
770 |
|
|
ecdsa_doit[R_EC_B283] = 2; |
771 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsab409") == 0) |
772 |
|
|
ecdsa_doit[R_EC_B409] = 2; |
773 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsab571") == 0) |
774 |
|
|
ecdsa_doit[R_EC_B571] = 2; |
775 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdsa") == 0) { |
776 |
|
|
for (i = 0; i < EC_NUM; i++) |
777 |
|
|
ecdsa_doit[i] = 1; |
778 |
|
|
} else |
779 |
✗✓ |
4 |
if (strcmp(*argv, "ecdhp160") == 0) |
780 |
|
|
ecdh_doit[R_EC_P160] = 2; |
781 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhp192") == 0) |
782 |
|
|
ecdh_doit[R_EC_P192] = 2; |
783 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhp224") == 0) |
784 |
|
|
ecdh_doit[R_EC_P224] = 2; |
785 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhp256") == 0) |
786 |
|
|
ecdh_doit[R_EC_P256] = 2; |
787 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhp384") == 0) |
788 |
|
|
ecdh_doit[R_EC_P384] = 2; |
789 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhp521") == 0) |
790 |
|
|
ecdh_doit[R_EC_P521] = 2; |
791 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhk163") == 0) |
792 |
|
|
ecdh_doit[R_EC_K163] = 2; |
793 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhk233") == 0) |
794 |
|
|
ecdh_doit[R_EC_K233] = 2; |
795 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhk283") == 0) |
796 |
|
|
ecdh_doit[R_EC_K283] = 2; |
797 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhk409") == 0) |
798 |
|
|
ecdh_doit[R_EC_K409] = 2; |
799 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhk571") == 0) |
800 |
|
|
ecdh_doit[R_EC_K571] = 2; |
801 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhb163") == 0) |
802 |
|
|
ecdh_doit[R_EC_B163] = 2; |
803 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhb233") == 0) |
804 |
|
|
ecdh_doit[R_EC_B233] = 2; |
805 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhb283") == 0) |
806 |
|
|
ecdh_doit[R_EC_B283] = 2; |
807 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhb409") == 0) |
808 |
|
|
ecdh_doit[R_EC_B409] = 2; |
809 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdhb571") == 0) |
810 |
|
|
ecdh_doit[R_EC_B571] = 2; |
811 |
✗✓ |
4 |
else if (strcmp(*argv, "ecdh") == 0) { |
812 |
|
|
for (i = 0; i < EC_NUM; i++) |
813 |
|
|
ecdh_doit[i] = 1; |
814 |
|
|
} else |
815 |
|
|
{ |
816 |
|
4 |
BIO_printf(bio_err, "Error: bad option or value\n"); |
817 |
|
4 |
BIO_printf(bio_err, "\n"); |
818 |
|
4 |
BIO_printf(bio_err, "Available values:\n"); |
819 |
|
|
#ifndef OPENSSL_NO_MD4 |
820 |
|
4 |
BIO_printf(bio_err, "md4 "); |
821 |
|
|
#endif |
822 |
|
|
#ifndef OPENSSL_NO_MD5 |
823 |
|
4 |
BIO_printf(bio_err, "md5 "); |
824 |
|
|
#ifndef OPENSSL_NO_HMAC |
825 |
|
4 |
BIO_printf(bio_err, "hmac "); |
826 |
|
|
#endif |
827 |
|
|
#endif |
828 |
|
|
#ifndef OPENSSL_NO_SHA1 |
829 |
|
4 |
BIO_printf(bio_err, "sha1 "); |
830 |
|
|
#endif |
831 |
|
|
#ifndef OPENSSL_NO_SHA256 |
832 |
|
4 |
BIO_printf(bio_err, "sha256 "); |
833 |
|
|
#endif |
834 |
|
|
#ifndef OPENSSL_NO_SHA512 |
835 |
|
4 |
BIO_printf(bio_err, "sha512 "); |
836 |
|
|
#endif |
837 |
|
|
#ifndef OPENSSL_NO_WHIRLPOOL |
838 |
|
4 |
BIO_printf(bio_err, "whirlpool"); |
839 |
|
|
#endif |
840 |
|
|
#ifndef OPENSSL_NO_RIPEMD160 |
841 |
|
4 |
BIO_printf(bio_err, "rmd160"); |
842 |
|
|
#endif |
843 |
|
|
#if !defined(OPENSSL_NO_MD2) || \ |
844 |
|
|
!defined(OPENSSL_NO_MD4) || !defined(OPENSSL_NO_MD5) || \ |
845 |
|
|
!defined(OPENSSL_NO_SHA1) || !defined(OPENSSL_NO_RIPEMD160) || \ |
846 |
|
|
!defined(OPENSSL_NO_WHIRLPOOL) |
847 |
|
4 |
BIO_printf(bio_err, "\n"); |
848 |
|
|
#endif |
849 |
|
|
|
850 |
|
|
#ifndef OPENSSL_NO_IDEA |
851 |
|
4 |
BIO_printf(bio_err, "idea-cbc "); |
852 |
|
|
#endif |
853 |
|
|
#ifndef OPENSSL_NO_RC2 |
854 |
|
4 |
BIO_printf(bio_err, "rc2-cbc "); |
855 |
|
|
#endif |
856 |
|
|
#ifndef OPENSSL_NO_BF |
857 |
|
4 |
BIO_printf(bio_err, "bf-cbc "); |
858 |
|
|
#endif |
859 |
|
|
#ifndef OPENSSL_NO_DES |
860 |
|
4 |
BIO_printf(bio_err, "des-cbc des-ede3\n"); |
861 |
|
|
#endif |
862 |
|
|
#ifndef OPENSSL_NO_AES |
863 |
|
4 |
BIO_printf(bio_err, "aes-128-cbc aes-192-cbc aes-256-cbc "); |
864 |
|
4 |
BIO_printf(bio_err, "aes-128-ige aes-192-ige aes-256-ige\n"); |
865 |
|
4 |
BIO_printf(bio_err, "aes-128-gcm aes-256-gcm "); |
866 |
|
|
#endif |
867 |
|
|
#ifndef OPENSSL_NO_CAMELLIA |
868 |
|
4 |
BIO_printf(bio_err, "\n"); |
869 |
|
4 |
BIO_printf(bio_err, "camellia-128-cbc camellia-192-cbc camellia-256-cbc "); |
870 |
|
|
#endif |
871 |
|
|
#ifndef OPENSSL_NO_RC4 |
872 |
|
4 |
BIO_printf(bio_err, "rc4"); |
873 |
|
|
#endif |
874 |
|
|
#if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305) |
875 |
|
4 |
BIO_printf(bio_err," chacha20-poly1305"); |
876 |
|
|
#endif |
877 |
|
4 |
BIO_printf(bio_err, "\n"); |
878 |
|
|
|
879 |
|
4 |
BIO_printf(bio_err, "rsa512 rsa1024 rsa2048 rsa4096\n"); |
880 |
|
|
|
881 |
|
4 |
BIO_printf(bio_err, "dsa512 dsa1024 dsa2048\n"); |
882 |
|
4 |
BIO_printf(bio_err, "ecdsap160 ecdsap192 ecdsap224 ecdsap256 ecdsap384 ecdsap521\n"); |
883 |
|
4 |
BIO_printf(bio_err, "ecdsak163 ecdsak233 ecdsak283 ecdsak409 ecdsak571\n"); |
884 |
|
4 |
BIO_printf(bio_err, "ecdsab163 ecdsab233 ecdsab283 ecdsab409 ecdsab571 ecdsa\n"); |
885 |
|
4 |
BIO_printf(bio_err, "ecdhp160 ecdhp192 ecdhp224 ecdhp256 ecdhp384 ecdhp521\n"); |
886 |
|
4 |
BIO_printf(bio_err, "ecdhk163 ecdhk233 ecdhk283 ecdhk409 ecdhk571\n"); |
887 |
|
4 |
BIO_printf(bio_err, "ecdhb163 ecdhb233 ecdhb283 ecdhb409 ecdhb571 ecdh\n"); |
888 |
|
|
|
889 |
|
|
#ifndef OPENSSL_NO_IDEA |
890 |
|
4 |
BIO_printf(bio_err, "idea "); |
891 |
|
|
#endif |
892 |
|
|
#ifndef OPENSSL_NO_RC2 |
893 |
|
4 |
BIO_printf(bio_err, "rc2 "); |
894 |
|
|
#endif |
895 |
|
|
#ifndef OPENSSL_NO_DES |
896 |
|
4 |
BIO_printf(bio_err, "des "); |
897 |
|
|
#endif |
898 |
|
|
#ifndef OPENSSL_NO_AES |
899 |
|
4 |
BIO_printf(bio_err, "aes "); |
900 |
|
|
#endif |
901 |
|
|
#ifndef OPENSSL_NO_CAMELLIA |
902 |
|
4 |
BIO_printf(bio_err, "camellia "); |
903 |
|
|
#endif |
904 |
|
4 |
BIO_printf(bio_err, "rsa "); |
905 |
|
|
#ifndef OPENSSL_NO_BF |
906 |
|
4 |
BIO_printf(bio_err, "blowfish"); |
907 |
|
|
#endif |
908 |
|
|
#if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || \ |
909 |
|
|
!defined(OPENSSL_NO_RC2) || !defined(OPENSSL_NO_DES) || \ |
910 |
|
|
!defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_BF) || \ |
911 |
|
|
!defined(OPENSSL_NO_AES) || !defined(OPENSSL_NO_CAMELLIA) |
912 |
|
4 |
BIO_printf(bio_err, "\n"); |
913 |
|
|
#endif |
914 |
|
|
|
915 |
|
4 |
BIO_printf(bio_err, "\n"); |
916 |
|
4 |
BIO_printf(bio_err, "Available options:\n"); |
917 |
|
4 |
BIO_printf(bio_err, "-elapsed measure time in real time instead of CPU user time.\n"); |
918 |
|
4 |
BIO_printf(bio_err, "-evp e use EVP e.\n"); |
919 |
|
4 |
BIO_printf(bio_err, "-decrypt time decryption instead of encryption (only EVP).\n"); |
920 |
|
4 |
BIO_printf(bio_err, "-mr produce machine readable output.\n"); |
921 |
|
4 |
BIO_printf(bio_err, "-multi n run n benchmarks in parallel.\n"); |
922 |
|
4 |
goto end; |
923 |
|
|
} |
924 |
|
48 |
argc--; |
925 |
|
48 |
argv++; |
926 |
|
48 |
j++; |
927 |
|
|
} |
928 |
|
|
|
929 |
✓✗✓✓
|
24 |
if (multi && do_multi(multi)) |
930 |
|
|
goto show_res; |
931 |
|
|
|
932 |
✗✓ |
8 |
if (j == 0) { |
933 |
|
|
for (i = 0; i < ALGOR_NUM; i++) { |
934 |
|
|
if (i != D_EVP) |
935 |
|
|
doit[i] = 1; |
936 |
|
|
} |
937 |
|
|
for (i = 0; i < RSA_NUM; i++) |
938 |
|
|
rsa_doit[i] = 1; |
939 |
|
|
for (i = 0; i < DSA_NUM; i++) |
940 |
|
|
dsa_doit[i] = 1; |
941 |
|
|
for (i = 0; i < EC_NUM; i++) |
942 |
|
|
ecdsa_doit[i] = 1; |
943 |
|
|
for (i = 0; i < EC_NUM; i++) |
944 |
|
|
ecdh_doit[i] = 1; |
945 |
|
|
} |
946 |
✓✓ |
528 |
for (i = 0; i < ALGOR_NUM; i++) |
947 |
✓✓ |
256 |
if (doit[i]) |
948 |
|
8 |
pr_header++; |
949 |
|
|
|
950 |
✗✓ |
8 |
if (usertime == 0 && !mr) |
951 |
|
|
BIO_printf(bio_err, "You have chosen to measure elapsed time instead of user CPU time.\n"); |
952 |
|
|
|
953 |
✓✓ |
80 |
for (i = 0; i < RSA_NUM; i++) { |
954 |
|
32 |
const unsigned char *p; |
955 |
|
|
|
956 |
|
32 |
p = rsa_data[i]; |
957 |
|
32 |
rsa_key[i] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[i]); |
958 |
✗✓ |
32 |
if (rsa_key[i] == NULL) { |
959 |
|
|
BIO_printf(bio_err, "internal error loading RSA key number %d\n", i); |
960 |
|
|
goto end; |
961 |
|
|
} |
962 |
✓✓✓ |
80 |
} |
963 |
|
|
|
964 |
|
8 |
dsa_key[0] = get_dsa512(); |
965 |
|
8 |
dsa_key[1] = get_dsa1024(); |
966 |
|
8 |
dsa_key[2] = get_dsa2048(); |
967 |
|
|
|
968 |
|
|
#ifndef OPENSSL_NO_DES |
969 |
|
8 |
DES_set_key_unchecked(&key, &sch); |
970 |
|
8 |
DES_set_key_unchecked(&key2, &sch2); |
971 |
|
8 |
DES_set_key_unchecked(&key3, &sch3); |
972 |
|
|
#endif |
973 |
|
|
#ifndef OPENSSL_NO_AES |
974 |
|
8 |
AES_set_encrypt_key(key16, 128, &aes_ks1); |
975 |
|
8 |
AES_set_encrypt_key(key24, 192, &aes_ks2); |
976 |
|
8 |
AES_set_encrypt_key(key32, 256, &aes_ks3); |
977 |
|
|
#endif |
978 |
|
|
#ifndef OPENSSL_NO_CAMELLIA |
979 |
|
8 |
Camellia_set_key(key16, 128, &camellia_ks1); |
980 |
|
8 |
Camellia_set_key(ckey24, 192, &camellia_ks2); |
981 |
|
8 |
Camellia_set_key(ckey32, 256, &camellia_ks3); |
982 |
|
|
#endif |
983 |
|
|
#ifndef OPENSSL_NO_IDEA |
984 |
|
8 |
idea_set_encrypt_key(key16, &idea_ks); |
985 |
|
|
#endif |
986 |
|
|
#ifndef OPENSSL_NO_RC4 |
987 |
|
8 |
RC4_set_key(&rc4_ks, 16, key16); |
988 |
|
|
#endif |
989 |
|
|
#ifndef OPENSSL_NO_RC2 |
990 |
|
8 |
RC2_set_key(&rc2_ks, 16, key16, 128); |
991 |
|
|
#endif |
992 |
|
|
#ifndef OPENSSL_NO_BF |
993 |
|
8 |
BF_set_key(&bf_ks, 16, key16); |
994 |
|
|
#endif |
995 |
|
|
#ifndef OPENSSL_NO_CAST |
996 |
|
8 |
CAST_set_key(&cast_ks, 16, key16); |
997 |
|
|
#endif |
998 |
|
8 |
memset(rsa_c, 0, sizeof(rsa_c)); |
999 |
|
|
#define COND(c) (run && count<0x7fffffff) |
1000 |
|
|
#define COUNT(d) (count) |
1001 |
|
8 |
signal(SIGALRM, sig_done); |
1002 |
|
|
|
1003 |
|
|
#ifndef OPENSSL_NO_MD4 |
1004 |
✗✓ |
8 |
if (doit[D_MD4]) { |
1005 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1006 |
|
|
print_message(names[D_MD4], c[D_MD4][j], lengths[j]); |
1007 |
|
|
Time_F(START); |
1008 |
|
|
for (count = 0, run = 1; COND(c[D_MD4][j]); count++) |
1009 |
|
|
EVP_Digest(&(buf[0]), (unsigned long) lengths[j], &(md4[0]), NULL, EVP_md4(), NULL); |
1010 |
|
|
d = Time_F(STOP); |
1011 |
|
|
print_result(D_MD4, j, count, d); |
1012 |
|
|
} |
1013 |
|
|
} |
1014 |
|
|
#endif |
1015 |
|
|
|
1016 |
|
|
#ifndef OPENSSL_NO_MD5 |
1017 |
✗✓ |
8 |
if (doit[D_MD5]) { |
1018 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1019 |
|
|
print_message(names[D_MD5], c[D_MD5][j], lengths[j]); |
1020 |
|
|
Time_F(START); |
1021 |
|
|
for (count = 0, run = 1; COND(c[D_MD5][j]); count++) |
1022 |
|
|
EVP_Digest(&(buf[0]), (unsigned long) lengths[j], &(md5[0]), NULL, EVP_get_digestbyname("md5"), NULL); |
1023 |
|
|
d = Time_F(STOP); |
1024 |
|
|
print_result(D_MD5, j, count, d); |
1025 |
|
|
} |
1026 |
|
|
} |
1027 |
|
|
#endif |
1028 |
|
|
|
1029 |
|
|
#if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_HMAC) |
1030 |
✗✓ |
8 |
if (doit[D_HMAC]) { |
1031 |
|
|
HMAC_CTX hctx; |
1032 |
|
|
|
1033 |
|
|
HMAC_CTX_init(&hctx); |
1034 |
|
|
HMAC_Init_ex(&hctx, (unsigned char *) "This is a key...", |
1035 |
|
|
16, EVP_md5(), NULL); |
1036 |
|
|
|
1037 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1038 |
|
|
print_message(names[D_HMAC], c[D_HMAC][j], lengths[j]); |
1039 |
|
|
Time_F(START); |
1040 |
|
|
for (count = 0, run = 1; COND(c[D_HMAC][j]); count++) { |
1041 |
|
|
HMAC_Init_ex(&hctx, NULL, 0, NULL, NULL); |
1042 |
|
|
HMAC_Update(&hctx, buf, lengths[j]); |
1043 |
|
|
HMAC_Final(&hctx, &(hmac[0]), NULL); |
1044 |
|
|
} |
1045 |
|
|
d = Time_F(STOP); |
1046 |
|
|
print_result(D_HMAC, j, count, d); |
1047 |
|
|
} |
1048 |
|
|
HMAC_CTX_cleanup(&hctx); |
1049 |
|
|
} |
1050 |
|
|
#endif |
1051 |
|
|
#ifndef OPENSSL_NO_SHA |
1052 |
✗✓ |
8 |
if (doit[D_SHA1]) { |
1053 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1054 |
|
|
print_message(names[D_SHA1], c[D_SHA1][j], lengths[j]); |
1055 |
|
|
Time_F(START); |
1056 |
|
|
for (count = 0, run = 1; COND(c[D_SHA1][j]); count++) |
1057 |
|
|
EVP_Digest(buf, (unsigned long) lengths[j], &(sha[0]), NULL, EVP_sha1(), NULL); |
1058 |
|
|
d = Time_F(STOP); |
1059 |
|
|
print_result(D_SHA1, j, count, d); |
1060 |
|
|
} |
1061 |
|
|
} |
1062 |
|
|
#ifndef OPENSSL_NO_SHA256 |
1063 |
✗✓ |
8 |
if (doit[D_SHA256]) { |
1064 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1065 |
|
|
print_message(names[D_SHA256], c[D_SHA256][j], lengths[j]); |
1066 |
|
|
Time_F(START); |
1067 |
|
|
for (count = 0, run = 1; COND(c[D_SHA256][j]); count++) |
1068 |
|
|
SHA256(buf, lengths[j], sha256); |
1069 |
|
|
d = Time_F(STOP); |
1070 |
|
|
print_result(D_SHA256, j, count, d); |
1071 |
|
|
} |
1072 |
|
|
} |
1073 |
|
|
#endif |
1074 |
|
|
|
1075 |
|
|
#ifndef OPENSSL_NO_SHA512 |
1076 |
✓✗ |
8 |
if (doit[D_SHA512]) { |
1077 |
✓✓ |
96 |
for (j = 0; j < SIZE_NUM; j++) { |
1078 |
|
40 |
print_message(names[D_SHA512], c[D_SHA512][j], lengths[j]); |
1079 |
|
40 |
Time_F(START); |
1080 |
✓✓ |
156601086 |
for (count = 0, run = 1; COND(c[D_SHA512][j]); count++) |
1081 |
|
78300503 |
SHA512(buf, lengths[j], sha512); |
1082 |
|
40 |
d = Time_F(STOP); |
1083 |
|
40 |
print_result(D_SHA512, j, count, d); |
1084 |
|
|
} |
1085 |
|
|
} |
1086 |
|
|
#endif |
1087 |
|
|
#endif |
1088 |
|
|
|
1089 |
|
|
#ifndef OPENSSL_NO_WHIRLPOOL |
1090 |
✗✓ |
8 |
if (doit[D_WHIRLPOOL]) { |
1091 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1092 |
|
|
print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][j], lengths[j]); |
1093 |
|
|
Time_F(START); |
1094 |
|
|
for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j]); count++) |
1095 |
|
|
WHIRLPOOL(buf, lengths[j], whirlpool); |
1096 |
|
|
d = Time_F(STOP); |
1097 |
|
|
print_result(D_WHIRLPOOL, j, count, d); |
1098 |
|
|
} |
1099 |
|
|
} |
1100 |
|
|
#endif |
1101 |
|
|
|
1102 |
|
|
#ifndef OPENSSL_NO_RIPEMD |
1103 |
✗✓ |
8 |
if (doit[D_RMD160]) { |
1104 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1105 |
|
|
print_message(names[D_RMD160], c[D_RMD160][j], lengths[j]); |
1106 |
|
|
Time_F(START); |
1107 |
|
|
for (count = 0, run = 1; COND(c[D_RMD160][j]); count++) |
1108 |
|
|
EVP_Digest(buf, (unsigned long) lengths[j], &(rmd160[0]), NULL, EVP_ripemd160(), NULL); |
1109 |
|
|
d = Time_F(STOP); |
1110 |
|
|
print_result(D_RMD160, j, count, d); |
1111 |
|
|
} |
1112 |
|
|
} |
1113 |
|
|
#endif |
1114 |
|
|
#ifndef OPENSSL_NO_RC4 |
1115 |
✗✓ |
8 |
if (doit[D_RC4]) { |
1116 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1117 |
|
|
print_message(names[D_RC4], c[D_RC4][j], lengths[j]); |
1118 |
|
|
Time_F(START); |
1119 |
|
|
for (count = 0, run = 1; COND(c[D_RC4][j]); count++) |
1120 |
|
|
RC4(&rc4_ks, (unsigned int) lengths[j], |
1121 |
|
|
buf, buf); |
1122 |
|
|
d = Time_F(STOP); |
1123 |
|
|
print_result(D_RC4, j, count, d); |
1124 |
|
|
} |
1125 |
|
|
} |
1126 |
|
|
#endif |
1127 |
|
|
#ifndef OPENSSL_NO_DES |
1128 |
✗✓ |
8 |
if (doit[D_CBC_DES]) { |
1129 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1130 |
|
|
print_message(names[D_CBC_DES], c[D_CBC_DES][j], lengths[j]); |
1131 |
|
|
Time_F(START); |
1132 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_DES][j]); count++) |
1133 |
|
|
DES_ncbc_encrypt(buf, buf, lengths[j], &sch, |
1134 |
|
|
&DES_iv, DES_ENCRYPT); |
1135 |
|
|
d = Time_F(STOP); |
1136 |
|
|
print_result(D_CBC_DES, j, count, d); |
1137 |
|
|
} |
1138 |
|
|
} |
1139 |
✗✓ |
8 |
if (doit[D_EDE3_DES]) { |
1140 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1141 |
|
|
print_message(names[D_EDE3_DES], c[D_EDE3_DES][j], lengths[j]); |
1142 |
|
|
Time_F(START); |
1143 |
|
|
for (count = 0, run = 1; COND(c[D_EDE3_DES][j]); count++) |
1144 |
|
|
DES_ede3_cbc_encrypt(buf, buf, lengths[j], |
1145 |
|
|
&sch, &sch2, &sch3, |
1146 |
|
|
&DES_iv, DES_ENCRYPT); |
1147 |
|
|
d = Time_F(STOP); |
1148 |
|
|
print_result(D_EDE3_DES, j, count, d); |
1149 |
|
|
} |
1150 |
|
|
} |
1151 |
|
|
#endif |
1152 |
|
|
#ifndef OPENSSL_NO_AES |
1153 |
✗✓ |
8 |
if (doit[D_CBC_128_AES]) { |
1154 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1155 |
|
|
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][j], lengths[j]); |
1156 |
|
|
Time_F(START); |
1157 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_128_AES][j]); count++) |
1158 |
|
|
AES_cbc_encrypt(buf, buf, |
1159 |
|
|
(unsigned long) lengths[j], &aes_ks1, |
1160 |
|
|
iv, AES_ENCRYPT); |
1161 |
|
|
d = Time_F(STOP); |
1162 |
|
|
print_result(D_CBC_128_AES, j, count, d); |
1163 |
|
|
} |
1164 |
|
|
} |
1165 |
✗✓ |
8 |
if (doit[D_CBC_192_AES]) { |
1166 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1167 |
|
|
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][j], lengths[j]); |
1168 |
|
|
Time_F(START); |
1169 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_192_AES][j]); count++) |
1170 |
|
|
AES_cbc_encrypt(buf, buf, |
1171 |
|
|
(unsigned long) lengths[j], &aes_ks2, |
1172 |
|
|
iv, AES_ENCRYPT); |
1173 |
|
|
d = Time_F(STOP); |
1174 |
|
|
print_result(D_CBC_192_AES, j, count, d); |
1175 |
|
|
} |
1176 |
|
|
} |
1177 |
✗✓ |
8 |
if (doit[D_CBC_256_AES]) { |
1178 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1179 |
|
|
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][j], lengths[j]); |
1180 |
|
|
Time_F(START); |
1181 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_256_AES][j]); count++) |
1182 |
|
|
AES_cbc_encrypt(buf, buf, |
1183 |
|
|
(unsigned long) lengths[j], &aes_ks3, |
1184 |
|
|
iv, AES_ENCRYPT); |
1185 |
|
|
d = Time_F(STOP); |
1186 |
|
|
print_result(D_CBC_256_AES, j, count, d); |
1187 |
|
|
} |
1188 |
|
|
} |
1189 |
✗✓ |
8 |
if (doit[D_IGE_128_AES]) { |
1190 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1191 |
|
|
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][j], lengths[j]); |
1192 |
|
|
Time_F(START); |
1193 |
|
|
for (count = 0, run = 1; COND(c[D_IGE_128_AES][j]); count++) |
1194 |
|
|
AES_ige_encrypt(buf, buf2, |
1195 |
|
|
(unsigned long) lengths[j], &aes_ks1, |
1196 |
|
|
iv, AES_ENCRYPT); |
1197 |
|
|
d = Time_F(STOP); |
1198 |
|
|
print_result(D_IGE_128_AES, j, count, d); |
1199 |
|
|
} |
1200 |
|
|
} |
1201 |
✗✓ |
8 |
if (doit[D_IGE_192_AES]) { |
1202 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1203 |
|
|
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][j], lengths[j]); |
1204 |
|
|
Time_F(START); |
1205 |
|
|
for (count = 0, run = 1; COND(c[D_IGE_192_AES][j]); count++) |
1206 |
|
|
AES_ige_encrypt(buf, buf2, |
1207 |
|
|
(unsigned long) lengths[j], &aes_ks2, |
1208 |
|
|
iv, AES_ENCRYPT); |
1209 |
|
|
d = Time_F(STOP); |
1210 |
|
|
print_result(D_IGE_192_AES, j, count, d); |
1211 |
|
|
} |
1212 |
|
|
} |
1213 |
✗✓ |
8 |
if (doit[D_IGE_256_AES]) { |
1214 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1215 |
|
|
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][j], lengths[j]); |
1216 |
|
|
Time_F(START); |
1217 |
|
|
for (count = 0, run = 1; COND(c[D_IGE_256_AES][j]); count++) |
1218 |
|
|
AES_ige_encrypt(buf, buf2, |
1219 |
|
|
(unsigned long) lengths[j], &aes_ks3, |
1220 |
|
|
iv, AES_ENCRYPT); |
1221 |
|
|
d = Time_F(STOP); |
1222 |
|
|
print_result(D_IGE_256_AES, j, count, d); |
1223 |
|
|
} |
1224 |
|
|
} |
1225 |
✗✓ |
8 |
if (doit[D_GHASH]) { |
1226 |
|
|
GCM128_CONTEXT *ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); |
1227 |
|
|
CRYPTO_gcm128_setiv(ctx, (unsigned char *) "0123456789ab", 12); |
1228 |
|
|
|
1229 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1230 |
|
|
print_message(names[D_GHASH], c[D_GHASH][j], lengths[j]); |
1231 |
|
|
Time_F(START); |
1232 |
|
|
for (count = 0, run = 1; COND(c[D_GHASH][j]); count++) |
1233 |
|
|
CRYPTO_gcm128_aad(ctx, buf, lengths[j]); |
1234 |
|
|
d = Time_F(STOP); |
1235 |
|
|
print_result(D_GHASH, j, count, d); |
1236 |
|
|
} |
1237 |
|
|
CRYPTO_gcm128_release(ctx); |
1238 |
|
|
} |
1239 |
✗✓ |
8 |
if (doit[D_AES_128_GCM]) { |
1240 |
|
|
const EVP_AEAD *aead = EVP_aead_aes_128_gcm(); |
1241 |
|
|
static const unsigned char nonce[32] = {0}; |
1242 |
|
|
size_t buf_len, nonce_len; |
1243 |
|
|
EVP_AEAD_CTX ctx; |
1244 |
|
|
|
1245 |
|
|
EVP_AEAD_CTX_init(&ctx, aead, key32, EVP_AEAD_key_length(aead), |
1246 |
|
|
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL); |
1247 |
|
|
nonce_len = EVP_AEAD_nonce_length(aead); |
1248 |
|
|
|
1249 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1250 |
|
|
print_message(names[D_AES_128_GCM],c[D_AES_128_GCM][j],lengths[j]); |
1251 |
|
|
Time_F(START); |
1252 |
|
|
for (count = 0, run = 1; COND(c[D_AES_128_GCM][j]); count++) |
1253 |
|
|
EVP_AEAD_CTX_seal(&ctx, buf, &buf_len, BUFSIZE, nonce, |
1254 |
|
|
nonce_len, buf, lengths[j], NULL, 0); |
1255 |
|
|
d=Time_F(STOP); |
1256 |
|
|
print_result(D_AES_128_GCM,j,count,d); |
1257 |
|
|
} |
1258 |
|
|
EVP_AEAD_CTX_cleanup(&ctx); |
1259 |
|
|
} |
1260 |
|
|
|
1261 |
✗✓ |
8 |
if (doit[D_AES_256_GCM]) { |
1262 |
|
|
const EVP_AEAD *aead = EVP_aead_aes_256_gcm(); |
1263 |
|
|
static const unsigned char nonce[32] = {0}; |
1264 |
|
|
size_t buf_len, nonce_len; |
1265 |
|
|
EVP_AEAD_CTX ctx; |
1266 |
|
|
|
1267 |
|
|
EVP_AEAD_CTX_init(&ctx, aead, key32, EVP_AEAD_key_length(aead), |
1268 |
|
|
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL); |
1269 |
|
|
nonce_len = EVP_AEAD_nonce_length(aead); |
1270 |
|
|
|
1271 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1272 |
|
|
print_message(names[D_AES_256_GCM],c[D_AES_256_GCM][j],lengths[j]); |
1273 |
|
|
Time_F(START); |
1274 |
|
|
for (count = 0, run = 1; COND(c[D_AES_256_GCM][j]); count++) |
1275 |
|
|
EVP_AEAD_CTX_seal(&ctx, buf, &buf_len, BUFSIZE, nonce, |
1276 |
|
|
nonce_len, buf, lengths[j], NULL, 0); |
1277 |
|
|
d=Time_F(STOP); |
1278 |
|
|
print_result(D_AES_256_GCM, j, count, d); |
1279 |
|
|
} |
1280 |
|
|
EVP_AEAD_CTX_cleanup(&ctx); |
1281 |
|
|
} |
1282 |
|
|
#endif |
1283 |
|
|
#if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305) |
1284 |
✗✓ |
8 |
if (doit[D_CHACHA20_POLY1305]) { |
1285 |
|
|
const EVP_AEAD *aead = EVP_aead_chacha20_poly1305(); |
1286 |
|
|
static const unsigned char nonce[32] = {0}; |
1287 |
|
|
size_t buf_len, nonce_len; |
1288 |
|
|
EVP_AEAD_CTX ctx; |
1289 |
|
|
|
1290 |
|
|
EVP_AEAD_CTX_init(&ctx, aead, key32, EVP_AEAD_key_length(aead), |
1291 |
|
|
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL); |
1292 |
|
|
nonce_len = EVP_AEAD_nonce_length(aead); |
1293 |
|
|
|
1294 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1295 |
|
|
print_message(names[D_CHACHA20_POLY1305], |
1296 |
|
|
c[D_CHACHA20_POLY1305][j], lengths[j]); |
1297 |
|
|
Time_F(START); |
1298 |
|
|
for (count = 0, run = 1; COND(c[D_CHACHA20_POLY1305][j]); count++) |
1299 |
|
|
EVP_AEAD_CTX_seal(&ctx, buf, &buf_len, BUFSIZE, nonce, |
1300 |
|
|
nonce_len, buf, lengths[j], NULL, 0); |
1301 |
|
|
d=Time_F(STOP); |
1302 |
|
|
print_result(D_CHACHA20_POLY1305, j, count, d); |
1303 |
|
|
} |
1304 |
|
|
EVP_AEAD_CTX_cleanup(&ctx); |
1305 |
|
|
} |
1306 |
|
|
#endif |
1307 |
|
|
#ifndef OPENSSL_NO_CAMELLIA |
1308 |
✗✓ |
8 |
if (doit[D_CBC_128_CML]) { |
1309 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1310 |
|
|
print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][j], lengths[j]); |
1311 |
|
|
Time_F(START); |
1312 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_128_CML][j]); count++) |
1313 |
|
|
Camellia_cbc_encrypt(buf, buf, |
1314 |
|
|
(unsigned long) lengths[j], &camellia_ks1, |
1315 |
|
|
iv, CAMELLIA_ENCRYPT); |
1316 |
|
|
d = Time_F(STOP); |
1317 |
|
|
print_result(D_CBC_128_CML, j, count, d); |
1318 |
|
|
} |
1319 |
|
|
} |
1320 |
✗✓ |
8 |
if (doit[D_CBC_192_CML]) { |
1321 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1322 |
|
|
print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][j], lengths[j]); |
1323 |
|
|
Time_F(START); |
1324 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_192_CML][j]); count++) |
1325 |
|
|
Camellia_cbc_encrypt(buf, buf, |
1326 |
|
|
(unsigned long) lengths[j], &camellia_ks2, |
1327 |
|
|
iv, CAMELLIA_ENCRYPT); |
1328 |
|
|
d = Time_F(STOP); |
1329 |
|
|
print_result(D_CBC_192_CML, j, count, d); |
1330 |
|
|
} |
1331 |
|
|
} |
1332 |
✗✓ |
8 |
if (doit[D_CBC_256_CML]) { |
1333 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1334 |
|
|
print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][j], lengths[j]); |
1335 |
|
|
Time_F(START); |
1336 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_256_CML][j]); count++) |
1337 |
|
|
Camellia_cbc_encrypt(buf, buf, |
1338 |
|
|
(unsigned long) lengths[j], &camellia_ks3, |
1339 |
|
|
iv, CAMELLIA_ENCRYPT); |
1340 |
|
|
d = Time_F(STOP); |
1341 |
|
|
print_result(D_CBC_256_CML, j, count, d); |
1342 |
|
|
} |
1343 |
|
|
} |
1344 |
|
|
#endif |
1345 |
|
|
#ifndef OPENSSL_NO_IDEA |
1346 |
✗✓ |
8 |
if (doit[D_CBC_IDEA]) { |
1347 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1348 |
|
|
print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][j], lengths[j]); |
1349 |
|
|
Time_F(START); |
1350 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_IDEA][j]); count++) |
1351 |
|
|
idea_cbc_encrypt(buf, buf, |
1352 |
|
|
(unsigned long) lengths[j], &idea_ks, |
1353 |
|
|
iv, IDEA_ENCRYPT); |
1354 |
|
|
d = Time_F(STOP); |
1355 |
|
|
print_result(D_CBC_IDEA, j, count, d); |
1356 |
|
|
} |
1357 |
|
|
} |
1358 |
|
|
#endif |
1359 |
|
|
#ifndef OPENSSL_NO_RC2 |
1360 |
✗✓ |
8 |
if (doit[D_CBC_RC2]) { |
1361 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1362 |
|
|
print_message(names[D_CBC_RC2], c[D_CBC_RC2][j], lengths[j]); |
1363 |
|
|
Time_F(START); |
1364 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_RC2][j]); count++) |
1365 |
|
|
RC2_cbc_encrypt(buf, buf, |
1366 |
|
|
(unsigned long) lengths[j], &rc2_ks, |
1367 |
|
|
iv, RC2_ENCRYPT); |
1368 |
|
|
d = Time_F(STOP); |
1369 |
|
|
print_result(D_CBC_RC2, j, count, d); |
1370 |
|
|
} |
1371 |
|
|
} |
1372 |
|
|
#endif |
1373 |
|
|
#ifndef OPENSSL_NO_BF |
1374 |
✗✓ |
8 |
if (doit[D_CBC_BF]) { |
1375 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1376 |
|
|
print_message(names[D_CBC_BF], c[D_CBC_BF][j], lengths[j]); |
1377 |
|
|
Time_F(START); |
1378 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_BF][j]); count++) |
1379 |
|
|
BF_cbc_encrypt(buf, buf, |
1380 |
|
|
(unsigned long) lengths[j], &bf_ks, |
1381 |
|
|
iv, BF_ENCRYPT); |
1382 |
|
|
d = Time_F(STOP); |
1383 |
|
|
print_result(D_CBC_BF, j, count, d); |
1384 |
|
|
} |
1385 |
|
|
} |
1386 |
|
|
#endif |
1387 |
|
|
#ifndef OPENSSL_NO_CAST |
1388 |
✗✓ |
8 |
if (doit[D_CBC_CAST]) { |
1389 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1390 |
|
|
print_message(names[D_CBC_CAST], c[D_CBC_CAST][j], lengths[j]); |
1391 |
|
|
Time_F(START); |
1392 |
|
|
for (count = 0, run = 1; COND(c[D_CBC_CAST][j]); count++) |
1393 |
|
|
CAST_cbc_encrypt(buf, buf, |
1394 |
|
|
(unsigned long) lengths[j], &cast_ks, |
1395 |
|
|
iv, CAST_ENCRYPT); |
1396 |
|
|
d = Time_F(STOP); |
1397 |
|
|
print_result(D_CBC_CAST, j, count, d); |
1398 |
|
|
} |
1399 |
|
|
} |
1400 |
|
|
#endif |
1401 |
|
|
|
1402 |
✗✓ |
8 |
if (doit[D_EVP]) { |
1403 |
|
|
for (j = 0; j < SIZE_NUM; j++) { |
1404 |
|
|
if (evp_cipher) { |
1405 |
|
|
EVP_CIPHER_CTX ctx; |
1406 |
|
|
int outl; |
1407 |
|
|
|
1408 |
|
|
names[D_EVP] = OBJ_nid2ln(evp_cipher->nid); |
1409 |
|
|
/* |
1410 |
|
|
* -O3 -fschedule-insns messes up an |
1411 |
|
|
* optimization here! names[D_EVP] somehow |
1412 |
|
|
* becomes NULL |
1413 |
|
|
*/ |
1414 |
|
|
print_message(names[D_EVP], save_count, |
1415 |
|
|
lengths[j]); |
1416 |
|
|
|
1417 |
|
|
EVP_CIPHER_CTX_init(&ctx); |
1418 |
|
|
if (decrypt) |
1419 |
|
|
EVP_DecryptInit_ex(&ctx, evp_cipher, NULL, key16, iv); |
1420 |
|
|
else |
1421 |
|
|
EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, key16, iv); |
1422 |
|
|
EVP_CIPHER_CTX_set_padding(&ctx, 0); |
1423 |
|
|
|
1424 |
|
|
Time_F(START); |
1425 |
|
|
if (decrypt) |
1426 |
|
|
for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j]); count++) |
1427 |
|
|
EVP_DecryptUpdate(&ctx, buf, &outl, buf, lengths[j]); |
1428 |
|
|
else |
1429 |
|
|
for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j]); count++) |
1430 |
|
|
EVP_EncryptUpdate(&ctx, buf, &outl, buf, lengths[j]); |
1431 |
|
|
if (decrypt) |
1432 |
|
|
EVP_DecryptFinal_ex(&ctx, buf, &outl); |
1433 |
|
|
else |
1434 |
|
|
EVP_EncryptFinal_ex(&ctx, buf, &outl); |
1435 |
|
|
d = Time_F(STOP); |
1436 |
|
|
EVP_CIPHER_CTX_cleanup(&ctx); |
1437 |
|
|
} |
1438 |
|
|
if (evp_md) { |
1439 |
|
|
names[D_EVP] = OBJ_nid2ln(evp_md->type); |
1440 |
|
|
print_message(names[D_EVP], save_count, |
1441 |
|
|
lengths[j]); |
1442 |
|
|
|
1443 |
|
|
Time_F(START); |
1444 |
|
|
for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j]); count++) |
1445 |
|
|
EVP_Digest(buf, lengths[j], &(md[0]), NULL, evp_md, NULL); |
1446 |
|
|
|
1447 |
|
|
d = Time_F(STOP); |
1448 |
|
|
} |
1449 |
|
|
print_result(D_EVP, j, count, d); |
1450 |
|
|
} |
1451 |
|
|
} |
1452 |
|
8 |
arc4random_buf(buf, 36); |
1453 |
✓✓ |
80 |
for (j = 0; j < RSA_NUM; j++) { |
1454 |
|
|
int ret; |
1455 |
✓✓ |
32 |
if (!rsa_doit[j]) |
1456 |
|
24 |
continue; |
1457 |
|
8 |
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[j]); |
1458 |
✗✓ |
8 |
if (ret == 0) { |
1459 |
|
|
BIO_printf(bio_err, "RSA sign failure. No RSA sign will be done.\n"); |
1460 |
|
|
ERR_print_errors(bio_err); |
1461 |
|
|
rsa_count = 1; |
1462 |
|
|
} else { |
1463 |
|
8 |
pkey_print_message("private", "rsa", |
1464 |
|
8 |
rsa_c[j][0], rsa_bits[j], |
1465 |
|
|
RSA_SECONDS); |
1466 |
|
|
/* RSA_blinding_on(rsa_key[j],NULL); */ |
1467 |
|
8 |
Time_F(START); |
1468 |
✓✓ |
81842 |
for (count = 0, run = 1; COND(rsa_c[j][0]); count++) { |
1469 |
|
40913 |
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, |
1470 |
|
40913 |
&rsa_num, rsa_key[j]); |
1471 |
✗✓ |
40913 |
if (ret == 0) { |
1472 |
|
|
BIO_printf(bio_err, |
1473 |
|
|
"RSA sign failure\n"); |
1474 |
|
|
ERR_print_errors(bio_err); |
1475 |
|
|
count = 1; |
1476 |
|
|
break; |
1477 |
|
|
} |
1478 |
|
|
} |
1479 |
|
8 |
d = Time_F(STOP); |
1480 |
|
16 |
BIO_printf(bio_err, mr ? "+R1:%ld:%d:%.2f\n" |
1481 |
|
|
: "%ld %d bit private RSA's in %.2fs\n", |
1482 |
|
8 |
count, rsa_bits[j], d); |
1483 |
|
8 |
rsa_results[j][0] = d / (double) count; |
1484 |
|
|
rsa_count = count; |
1485 |
|
|
} |
1486 |
|
|
|
1487 |
|
8 |
ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[j]); |
1488 |
✗✓ |
8 |
if (ret <= 0) { |
1489 |
|
|
BIO_printf(bio_err, "RSA verify failure. No RSA verify will be done.\n"); |
1490 |
|
|
ERR_print_errors(bio_err); |
1491 |
|
|
rsa_doit[j] = 0; |
1492 |
|
|
} else { |
1493 |
|
8 |
pkey_print_message("public", "rsa", |
1494 |
|
8 |
rsa_c[j][1], rsa_bits[j], |
1495 |
|
|
RSA_SECONDS); |
1496 |
|
8 |
Time_F(START); |
1497 |
✓✓ |
1446830 |
for (count = 0, run = 1; COND(rsa_c[j][1]); count++) { |
1498 |
|
723407 |
ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, |
1499 |
|
723407 |
rsa_num, rsa_key[j]); |
1500 |
✗✓ |
723407 |
if (ret <= 0) { |
1501 |
|
|
BIO_printf(bio_err, |
1502 |
|
|
"RSA verify failure\n"); |
1503 |
|
|
ERR_print_errors(bio_err); |
1504 |
|
|
count = 1; |
1505 |
|
|
break; |
1506 |
|
|
} |
1507 |
|
|
} |
1508 |
|
8 |
d = Time_F(STOP); |
1509 |
|
16 |
BIO_printf(bio_err, mr ? "+R2:%ld:%d:%.2f\n" |
1510 |
|
|
: "%ld %d bit public RSA's in %.2fs\n", |
1511 |
|
8 |
count, rsa_bits[j], d); |
1512 |
|
8 |
rsa_results[j][1] = d / (double) count; |
1513 |
|
|
} |
1514 |
|
|
|
1515 |
✗✓ |
8 |
if (rsa_count <= 1) { |
1516 |
|
|
/* if longer than 10s, don't do any more */ |
1517 |
|
|
for (j++; j < RSA_NUM; j++) |
1518 |
|
|
rsa_doit[j] = 0; |
1519 |
|
|
} |
1520 |
|
8 |
} |
1521 |
|
|
|
1522 |
|
8 |
arc4random_buf(buf, 20); |
1523 |
✓✓ |
64 |
for (j = 0; j < DSA_NUM; j++) { |
1524 |
|
24 |
unsigned int kk; |
1525 |
|
|
int ret; |
1526 |
|
|
|
1527 |
✓✗ |
24 |
if (!dsa_doit[j]) |
1528 |
|
24 |
continue; |
1529 |
|
|
/* DSA_generate_key(dsa_key[j]); */ |
1530 |
|
|
/* DSA_sign_setup(dsa_key[j],NULL); */ |
1531 |
|
|
ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, |
1532 |
|
|
&kk, dsa_key[j]); |
1533 |
|
|
if (ret == 0) { |
1534 |
|
|
BIO_printf(bio_err, "DSA sign failure. No DSA sign will be done.\n"); |
1535 |
|
|
ERR_print_errors(bio_err); |
1536 |
|
|
rsa_count = 1; |
1537 |
|
|
} else { |
1538 |
|
|
pkey_print_message("sign", "dsa", |
1539 |
|
|
dsa_c[j][0], dsa_bits[j], |
1540 |
|
|
DSA_SECONDS); |
1541 |
|
|
Time_F(START); |
1542 |
|
|
for (count = 0, run = 1; COND(dsa_c[j][0]); count++) { |
1543 |
|
|
ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, |
1544 |
|
|
&kk, dsa_key[j]); |
1545 |
|
|
if (ret == 0) { |
1546 |
|
|
BIO_printf(bio_err, |
1547 |
|
|
"DSA sign failure\n"); |
1548 |
|
|
ERR_print_errors(bio_err); |
1549 |
|
|
count = 1; |
1550 |
|
|
break; |
1551 |
|
|
} |
1552 |
|
|
} |
1553 |
|
|
d = Time_F(STOP); |
1554 |
|
|
BIO_printf(bio_err, mr ? "+R3:%ld:%d:%.2f\n" |
1555 |
|
|
: "%ld %d bit DSA signs in %.2fs\n", |
1556 |
|
|
count, dsa_bits[j], d); |
1557 |
|
|
dsa_results[j][0] = d / (double) count; |
1558 |
|
|
rsa_count = count; |
1559 |
|
|
} |
1560 |
|
|
|
1561 |
|
|
ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, |
1562 |
|
|
kk, dsa_key[j]); |
1563 |
|
|
if (ret <= 0) { |
1564 |
|
|
BIO_printf(bio_err, "DSA verify failure. No DSA verify will be done.\n"); |
1565 |
|
|
ERR_print_errors(bio_err); |
1566 |
|
|
dsa_doit[j] = 0; |
1567 |
|
|
} else { |
1568 |
|
|
pkey_print_message("verify", "dsa", |
1569 |
|
|
dsa_c[j][1], dsa_bits[j], |
1570 |
|
|
DSA_SECONDS); |
1571 |
|
|
Time_F(START); |
1572 |
|
|
for (count = 0, run = 1; COND(dsa_c[j][1]); count++) { |
1573 |
|
|
ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, |
1574 |
|
|
kk, dsa_key[j]); |
1575 |
|
|
if (ret <= 0) { |
1576 |
|
|
BIO_printf(bio_err, |
1577 |
|
|
"DSA verify failure\n"); |
1578 |
|
|
ERR_print_errors(bio_err); |
1579 |
|
|
count = 1; |
1580 |
|
|
break; |
1581 |
|
|
} |
1582 |
|
|
} |
1583 |
|
|
d = Time_F(STOP); |
1584 |
|
|
BIO_printf(bio_err, mr ? "+R4:%ld:%d:%.2f\n" |
1585 |
|
|
: "%ld %d bit DSA verify in %.2fs\n", |
1586 |
|
|
count, dsa_bits[j], d); |
1587 |
|
|
dsa_results[j][1] = d / (double) count; |
1588 |
|
|
} |
1589 |
|
|
|
1590 |
|
|
if (rsa_count <= 1) { |
1591 |
|
|
/* if longer than 10s, don't do any more */ |
1592 |
|
|
for (j++; j < DSA_NUM; j++) |
1593 |
|
|
dsa_doit[j] = 0; |
1594 |
|
|
} |
1595 |
|
24 |
} |
1596 |
|
|
|
1597 |
✓✓ |
272 |
for (j = 0; j < EC_NUM; j++) { |
1598 |
|
|
int ret; |
1599 |
|
|
|
1600 |
✓✗ |
128 |
if (!ecdsa_doit[j]) |
1601 |
|
128 |
continue; /* Ignore Curve */ |
1602 |
|
|
ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
1603 |
|
|
if (ecdsa[j] == NULL) { |
1604 |
|
|
BIO_printf(bio_err, "ECDSA failure.\n"); |
1605 |
|
|
ERR_print_errors(bio_err); |
1606 |
|
|
rsa_count = 1; |
1607 |
|
|
} else { |
1608 |
|
|
EC_KEY_precompute_mult(ecdsa[j], NULL); |
1609 |
|
|
|
1610 |
|
|
/* Perform ECDSA signature test */ |
1611 |
|
|
EC_KEY_generate_key(ecdsa[j]); |
1612 |
|
|
ret = ECDSA_sign(0, buf, 20, ecdsasig, |
1613 |
|
|
&ecdsasiglen, ecdsa[j]); |
1614 |
|
|
if (ret == 0) { |
1615 |
|
|
BIO_printf(bio_err, "ECDSA sign failure. No ECDSA sign will be done.\n"); |
1616 |
|
|
ERR_print_errors(bio_err); |
1617 |
|
|
rsa_count = 1; |
1618 |
|
|
} else { |
1619 |
|
|
pkey_print_message("sign", "ecdsa", |
1620 |
|
|
ecdsa_c[j][0], |
1621 |
|
|
test_curves_bits[j], |
1622 |
|
|
ECDSA_SECONDS); |
1623 |
|
|
|
1624 |
|
|
Time_F(START); |
1625 |
|
|
for (count = 0, run = 1; COND(ecdsa_c[j][0]); |
1626 |
|
|
count++) { |
1627 |
|
|
ret = ECDSA_sign(0, buf, 20, |
1628 |
|
|
ecdsasig, &ecdsasiglen, |
1629 |
|
|
ecdsa[j]); |
1630 |
|
|
if (ret == 0) { |
1631 |
|
|
BIO_printf(bio_err, "ECDSA sign failure\n"); |
1632 |
|
|
ERR_print_errors(bio_err); |
1633 |
|
|
count = 1; |
1634 |
|
|
break; |
1635 |
|
|
} |
1636 |
|
|
} |
1637 |
|
|
d = Time_F(STOP); |
1638 |
|
|
|
1639 |
|
|
BIO_printf(bio_err, mr ? "+R5:%ld:%d:%.2f\n" : |
1640 |
|
|
"%ld %d bit ECDSA signs in %.2fs \n", |
1641 |
|
|
count, test_curves_bits[j], d); |
1642 |
|
|
ecdsa_results[j][0] = d / (double) count; |
1643 |
|
|
rsa_count = count; |
1644 |
|
|
} |
1645 |
|
|
|
1646 |
|
|
/* Perform ECDSA verification test */ |
1647 |
|
|
ret = ECDSA_verify(0, buf, 20, ecdsasig, |
1648 |
|
|
ecdsasiglen, ecdsa[j]); |
1649 |
|
|
if (ret != 1) { |
1650 |
|
|
BIO_printf(bio_err, "ECDSA verify failure. No ECDSA verify will be done.\n"); |
1651 |
|
|
ERR_print_errors(bio_err); |
1652 |
|
|
ecdsa_doit[j] = 0; |
1653 |
|
|
} else { |
1654 |
|
|
pkey_print_message("verify", "ecdsa", |
1655 |
|
|
ecdsa_c[j][1], |
1656 |
|
|
test_curves_bits[j], |
1657 |
|
|
ECDSA_SECONDS); |
1658 |
|
|
Time_F(START); |
1659 |
|
|
for (count = 0, run = 1; COND(ecdsa_c[j][1]); count++) { |
1660 |
|
|
ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]); |
1661 |
|
|
if (ret != 1) { |
1662 |
|
|
BIO_printf(bio_err, "ECDSA verify failure\n"); |
1663 |
|
|
ERR_print_errors(bio_err); |
1664 |
|
|
count = 1; |
1665 |
|
|
break; |
1666 |
|
|
} |
1667 |
|
|
} |
1668 |
|
|
d = Time_F(STOP); |
1669 |
|
|
BIO_printf(bio_err, mr ? "+R6:%ld:%d:%.2f\n" |
1670 |
|
|
: "%ld %d bit ECDSA verify in %.2fs\n", |
1671 |
|
|
count, test_curves_bits[j], d); |
1672 |
|
|
ecdsa_results[j][1] = d / (double) count; |
1673 |
|
|
} |
1674 |
|
|
|
1675 |
|
|
if (rsa_count <= 1) { |
1676 |
|
|
/* if longer than 10s, don't do any more */ |
1677 |
|
|
for (j++; j < EC_NUM; j++) |
1678 |
|
|
ecdsa_doit[j] = 0; |
1679 |
|
|
} |
1680 |
|
|
} |
1681 |
|
|
} |
1682 |
|
|
|
1683 |
✓✓ |
272 |
for (j = 0; j < EC_NUM; j++) { |
1684 |
✗✓ |
128 |
if (!ecdh_doit[j]) |
1685 |
|
|
continue; |
1686 |
|
|
ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
1687 |
|
|
ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
1688 |
|
|
if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL)) { |
1689 |
|
|
BIO_printf(bio_err, "ECDH failure.\n"); |
1690 |
|
|
ERR_print_errors(bio_err); |
1691 |
|
|
rsa_count = 1; |
1692 |
|
|
} else { |
1693 |
|
|
/* generate two ECDH key pairs */ |
1694 |
|
|
if (!EC_KEY_generate_key(ecdh_a[j]) || |
1695 |
|
|
!EC_KEY_generate_key(ecdh_b[j])) { |
1696 |
|
|
BIO_printf(bio_err, "ECDH key generation failure.\n"); |
1697 |
|
|
ERR_print_errors(bio_err); |
1698 |
|
|
rsa_count = 1; |
1699 |
|
|
} else { |
1700 |
|
|
/* |
1701 |
|
|
* If field size is not more than 24 octets, |
1702 |
|
|
* then use SHA-1 hash of result; otherwise, |
1703 |
|
|
* use result (see section 4.8 of |
1704 |
|
|
* draft-ietf-tls-ecc-03.txt). |
1705 |
|
|
*/ |
1706 |
|
|
int field_size, outlen; |
1707 |
|
|
void *(*kdf) (const void *in, size_t inlen, void *out, size_t * xoutlen); |
1708 |
|
|
field_size = EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j])); |
1709 |
|
|
if (field_size <= 24 * 8) { |
1710 |
|
|
outlen = KDF1_SHA1_len; |
1711 |
|
|
kdf = KDF1_SHA1; |
1712 |
|
|
} else { |
1713 |
|
|
outlen = (field_size + 7) / 8; |
1714 |
|
|
kdf = NULL; |
1715 |
|
|
} |
1716 |
|
|
secret_size_a = ECDH_compute_key(secret_a, outlen, |
1717 |
|
|
EC_KEY_get0_public_key(ecdh_b[j]), |
1718 |
|
|
ecdh_a[j], kdf); |
1719 |
|
|
secret_size_b = ECDH_compute_key(secret_b, outlen, |
1720 |
|
|
EC_KEY_get0_public_key(ecdh_a[j]), |
1721 |
|
|
ecdh_b[j], kdf); |
1722 |
|
|
if (secret_size_a != secret_size_b) |
1723 |
|
|
ecdh_checks = 0; |
1724 |
|
|
else |
1725 |
|
|
ecdh_checks = 1; |
1726 |
|
|
|
1727 |
|
|
for (secret_idx = 0; |
1728 |
|
|
(secret_idx < secret_size_a) |
1729 |
|
|
&& (ecdh_checks == 1); |
1730 |
|
|
secret_idx++) { |
1731 |
|
|
if (secret_a[secret_idx] != secret_b[secret_idx]) |
1732 |
|
|
ecdh_checks = 0; |
1733 |
|
|
} |
1734 |
|
|
|
1735 |
|
|
if (ecdh_checks == 0) { |
1736 |
|
|
BIO_printf(bio_err, |
1737 |
|
|
"ECDH computations don't match.\n"); |
1738 |
|
|
ERR_print_errors(bio_err); |
1739 |
|
|
rsa_count = 1; |
1740 |
|
|
} else { |
1741 |
|
|
pkey_print_message("", "ecdh", |
1742 |
|
|
ecdh_c[j][0], |
1743 |
|
|
test_curves_bits[j], |
1744 |
|
|
ECDH_SECONDS); |
1745 |
|
|
Time_F(START); |
1746 |
|
|
for (count = 0, run = 1; |
1747 |
|
|
COND(ecdh_c[j][0]); count++) { |
1748 |
|
|
ECDH_compute_key(secret_a, |
1749 |
|
|
outlen, |
1750 |
|
|
EC_KEY_get0_public_key(ecdh_b[j]), |
1751 |
|
|
ecdh_a[j], kdf); |
1752 |
|
|
} |
1753 |
|
|
d = Time_F(STOP); |
1754 |
|
|
BIO_printf(bio_err, mr |
1755 |
|
|
? "+R7:%ld:%d:%.2f\n" |
1756 |
|
|
: "%ld %d-bit ECDH ops in %.2fs\n", |
1757 |
|
|
count, test_curves_bits[j], d); |
1758 |
|
|
ecdh_results[j][0] = d / (double) count; |
1759 |
|
|
rsa_count = count; |
1760 |
|
|
} |
1761 |
|
|
} |
1762 |
|
|
} |
1763 |
|
|
|
1764 |
|
|
|
1765 |
|
|
if (rsa_count <= 1) { |
1766 |
|
|
/* if longer than 10s, don't do any more */ |
1767 |
|
|
for (j++; j < EC_NUM; j++) |
1768 |
|
|
ecdh_doit[j] = 0; |
1769 |
|
|
} |
1770 |
|
|
} |
1771 |
|
|
show_res: |
1772 |
✓✓ |
12 |
if (!mr) { |
1773 |
|
4 |
fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_VERSION)); |
1774 |
|
4 |
fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_BUILT_ON)); |
1775 |
|
4 |
printf("options:"); |
1776 |
|
4 |
printf("%s ", BN_options()); |
1777 |
|
|
#ifndef OPENSSL_NO_RC4 |
1778 |
|
4 |
printf("%s ", RC4_options()); |
1779 |
|
|
#endif |
1780 |
|
|
#ifndef OPENSSL_NO_DES |
1781 |
|
4 |
printf("%s ", DES_options()); |
1782 |
|
|
#endif |
1783 |
|
|
#ifndef OPENSSL_NO_AES |
1784 |
|
4 |
printf("%s ", AES_options()); |
1785 |
|
|
#endif |
1786 |
|
|
#ifndef OPENSSL_NO_IDEA |
1787 |
|
4 |
printf("%s ", idea_options()); |
1788 |
|
|
#endif |
1789 |
|
|
#ifndef OPENSSL_NO_BF |
1790 |
|
4 |
printf("%s ", BF_options()); |
1791 |
|
|
#endif |
1792 |
|
4 |
fprintf(stdout, "\n%s\n", SSLeay_version(SSLEAY_CFLAGS)); |
1793 |
|
4 |
} |
1794 |
✓✓ |
12 |
if (pr_header) { |
1795 |
✓✗ |
8 |
if (mr) |
1796 |
|
8 |
fprintf(stdout, "+H"); |
1797 |
|
|
else { |
1798 |
|
|
fprintf(stdout, "The 'numbers' are in 1000s of bytes per second processed.\n"); |
1799 |
|
|
fprintf(stdout, "type "); |
1800 |
|
|
} |
1801 |
✓✓ |
96 |
for (j = 0; j < SIZE_NUM; j++) |
1802 |
|
40 |
fprintf(stdout, mr ? ":%d" : "%7d bytes", lengths[j]); |
1803 |
|
8 |
fprintf(stdout, "\n"); |
1804 |
|
8 |
} |
1805 |
✓✓ |
792 |
for (k = 0; k < ALGOR_NUM; k++) { |
1806 |
✓✓ |
384 |
if (!doit[k]) |
1807 |
|
|
continue; |
1808 |
✓✓ |
12 |
if (mr) |
1809 |
|
8 |
fprintf(stdout, "+F:%d:%s", k, names[k]); |
1810 |
|
|
else |
1811 |
|
4 |
fprintf(stdout, "%-13s", names[k]); |
1812 |
✓✓ |
144 |
for (j = 0; j < SIZE_NUM; j++) { |
1813 |
✓✓ |
60 |
if (results[k][j] > 10000 && !mr) |
1814 |
|
20 |
fprintf(stdout, " %11.2fk", results[k][j] / 1e3); |
1815 |
|
|
else |
1816 |
|
40 |
fprintf(stdout, mr ? ":%.2f" : " %11.2f ", results[k][j]); |
1817 |
|
|
} |
1818 |
|
12 |
fprintf(stdout, "\n"); |
1819 |
|
12 |
} |
1820 |
|
|
j = 1; |
1821 |
✓✓ |
120 |
for (k = 0; k < RSA_NUM; k++) { |
1822 |
✓✓ |
48 |
if (!rsa_doit[k]) |
1823 |
|
|
continue; |
1824 |
✓✓ |
12 |
if (j && !mr) { |
1825 |
|
4 |
printf("%18ssign verify sign/s verify/s\n", " "); |
1826 |
|
|
j = 0; |
1827 |
|
4 |
} |
1828 |
✓✓ |
12 |
if (mr) |
1829 |
|
8 |
fprintf(stdout, "+F2:%u:%u:%f:%f\n", |
1830 |
|
8 |
k, rsa_bits[k], rsa_results[k][0], |
1831 |
|
8 |
rsa_results[k][1]); |
1832 |
|
|
else |
1833 |
|
4 |
fprintf(stdout, "rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
1834 |
|
4 |
rsa_bits[k], rsa_results[k][0], rsa_results[k][1], |
1835 |
|
4 |
1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]); |
1836 |
|
|
} |
1837 |
|
|
j = 1; |
1838 |
✓✓ |
96 |
for (k = 0; k < DSA_NUM; k++) { |
1839 |
✗✓ |
36 |
if (!dsa_doit[k]) |
1840 |
|
|
continue; |
1841 |
|
|
if (j && !mr) { |
1842 |
|
|
printf("%18ssign verify sign/s verify/s\n", " "); |
1843 |
|
|
j = 0; |
1844 |
|
|
} |
1845 |
|
|
if (mr) |
1846 |
|
|
fprintf(stdout, "+F3:%u:%u:%f:%f\n", |
1847 |
|
|
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); |
1848 |
|
|
else |
1849 |
|
|
fprintf(stdout, "dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
1850 |
|
|
dsa_bits[k], dsa_results[k][0], dsa_results[k][1], |
1851 |
|
|
1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]); |
1852 |
|
|
} |
1853 |
|
|
j = 1; |
1854 |
✓✓ |
408 |
for (k = 0; k < EC_NUM; k++) { |
1855 |
✗✓ |
192 |
if (!ecdsa_doit[k]) |
1856 |
|
|
continue; |
1857 |
|
|
if (j && !mr) { |
1858 |
|
|
printf("%30ssign verify sign/s verify/s\n", " "); |
1859 |
|
|
j = 0; |
1860 |
|
|
} |
1861 |
|
|
if (mr) |
1862 |
|
|
fprintf(stdout, "+F4:%u:%u:%f:%f\n", |
1863 |
|
|
k, test_curves_bits[k], |
1864 |
|
|
ecdsa_results[k][0], ecdsa_results[k][1]); |
1865 |
|
|
else |
1866 |
|
|
fprintf(stdout, |
1867 |
|
|
"%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", |
1868 |
|
|
test_curves_bits[k], |
1869 |
|
|
test_curves_names[k], |
1870 |
|
|
ecdsa_results[k][0], ecdsa_results[k][1], |
1871 |
|
|
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]); |
1872 |
|
|
} |
1873 |
|
|
|
1874 |
|
|
|
1875 |
|
|
j = 1; |
1876 |
✓✓ |
408 |
for (k = 0; k < EC_NUM; k++) { |
1877 |
✗✓ |
192 |
if (!ecdh_doit[k]) |
1878 |
|
|
continue; |
1879 |
|
|
if (j && !mr) { |
1880 |
|
|
printf("%30sop op/s\n", " "); |
1881 |
|
|
j = 0; |
1882 |
|
|
} |
1883 |
|
|
if (mr) |
1884 |
|
|
fprintf(stdout, "+F5:%u:%u:%f:%f\n", |
1885 |
|
|
k, test_curves_bits[k], |
1886 |
|
|
ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
1887 |
|
|
|
1888 |
|
|
else |
1889 |
|
|
fprintf(stdout, "%4u bit ecdh (%s) %8.4fs %8.1f\n", |
1890 |
|
|
test_curves_bits[k], |
1891 |
|
|
test_curves_names[k], |
1892 |
|
|
ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
1893 |
|
|
} |
1894 |
|
|
|
1895 |
|
12 |
mret = 0; |
1896 |
|
|
|
1897 |
|
|
end: |
1898 |
|
16 |
ERR_print_errors(bio_err); |
1899 |
|
16 |
free(buf); |
1900 |
|
16 |
free(buf2); |
1901 |
✓✓ |
160 |
for (i = 0; i < RSA_NUM; i++) |
1902 |
✓✓ |
64 |
if (rsa_key[i] != NULL) |
1903 |
|
32 |
RSA_free(rsa_key[i]); |
1904 |
✓✓ |
128 |
for (i = 0; i < DSA_NUM; i++) |
1905 |
✓✓ |
48 |
if (dsa_key[i] != NULL) |
1906 |
|
24 |
DSA_free(dsa_key[i]); |
1907 |
|
|
|
1908 |
✓✓ |
544 |
for (i = 0; i < EC_NUM; i++) |
1909 |
✗✓ |
256 |
if (ecdsa[i] != NULL) |
1910 |
|
|
EC_KEY_free(ecdsa[i]); |
1911 |
✓✓ |
544 |
for (i = 0; i < EC_NUM; i++) { |
1912 |
✗✓ |
256 |
if (ecdh_a[i] != NULL) |
1913 |
|
|
EC_KEY_free(ecdh_a[i]); |
1914 |
✗✓ |
256 |
if (ecdh_b[i] != NULL) |
1915 |
|
|
EC_KEY_free(ecdh_b[i]); |
1916 |
|
|
} |
1917 |
|
|
|
1918 |
|
|
|
1919 |
|
16 |
return (mret); |
1920 |
|
16 |
} |
1921 |
|
|
|
1922 |
|
|
static void |
1923 |
|
|
print_message(const char *s, long num, int length) |
1924 |
|
|
{ |
1925 |
|
80 |
BIO_printf(bio_err, mr ? "+DT:%s:%d:%d\n" |
1926 |
|
|
: "Doing %s for %ds on %d size blocks: ", s, SECONDS, length); |
1927 |
|
40 |
(void) BIO_flush(bio_err); |
1928 |
|
40 |
alarm(SECONDS); |
1929 |
|
40 |
} |
1930 |
|
|
|
1931 |
|
|
static void |
1932 |
|
|
pkey_print_message(const char *str, const char *str2, long num, |
1933 |
|
|
int bits, int tm) |
1934 |
|
|
{ |
1935 |
|
32 |
BIO_printf(bio_err, mr ? "+DTP:%d:%s:%s:%d\n" |
1936 |
|
|
: "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm); |
1937 |
|
16 |
(void) BIO_flush(bio_err); |
1938 |
|
16 |
alarm(tm); |
1939 |
|
16 |
} |
1940 |
|
|
|
1941 |
|
|
static void |
1942 |
|
|
print_result(int alg, int run_no, int count, double time_used) |
1943 |
|
|
{ |
1944 |
|
120 |
BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" |
1945 |
|
40 |
: "%d %s's in %.2fs\n", count, names[alg], time_used); |
1946 |
|
40 |
results[alg][run_no] = ((double) count) / time_used * lengths[run_no]; |
1947 |
|
40 |
} |
1948 |
|
|
|
1949 |
|
|
static char * |
1950 |
|
|
sstrsep(char **string, const char *delim) |
1951 |
|
|
{ |
1952 |
|
176 |
char isdelim[256]; |
1953 |
|
88 |
char *token = *string; |
1954 |
|
|
|
1955 |
✗✓ |
88 |
if (**string == 0) |
1956 |
|
|
return NULL; |
1957 |
|
|
|
1958 |
|
88 |
memset(isdelim, 0, sizeof isdelim); |
1959 |
|
88 |
isdelim[0] = 1; |
1960 |
|
|
|
1961 |
✓✓ |
352 |
while (*delim) { |
1962 |
|
88 |
isdelim[(unsigned char) (*delim)] = 1; |
1963 |
|
88 |
delim++; |
1964 |
|
|
} |
1965 |
|
|
|
1966 |
✓✓ |
1568 |
while (!isdelim[(unsigned char) (**string)]) { |
1967 |
|
696 |
(*string)++; |
1968 |
|
|
} |
1969 |
|
|
|
1970 |
✓✓ |
88 |
if (**string) { |
1971 |
|
72 |
**string = 0; |
1972 |
|
72 |
(*string)++; |
1973 |
|
72 |
} |
1974 |
|
88 |
return token; |
1975 |
|
88 |
} |
1976 |
|
|
|
1977 |
|
|
static int |
1978 |
|
|
do_multi(int multi) |
1979 |
|
|
{ |
1980 |
|
|
int n; |
1981 |
|
24 |
int fd[2]; |
1982 |
|
|
int *fds; |
1983 |
|
|
static char sep[] = ":"; |
1984 |
|
12 |
const char *errstr = NULL; |
1985 |
|
|
|
1986 |
|
12 |
fds = reallocarray(NULL, multi, sizeof *fds); |
1987 |
✗✓ |
12 |
if (fds == NULL) { |
1988 |
|
|
fprintf(stderr, "reallocarray failure\n"); |
1989 |
|
|
exit(1); |
1990 |
|
|
} |
1991 |
✓✓ |
48 |
for (n = 0; n < multi; ++n) { |
1992 |
✗✓ |
20 |
if (pipe(fd) == -1) { |
1993 |
|
|
fprintf(stderr, "pipe failure\n"); |
1994 |
|
|
exit(1); |
1995 |
|
|
} |
1996 |
|
20 |
fflush(stdout); |
1997 |
|
20 |
fflush(stderr); |
1998 |
✓✓ |
20 |
if (fork()) { |
1999 |
|
12 |
close(fd[1]); |
2000 |
|
12 |
fds[n] = fd[0]; |
2001 |
|
|
} else { |
2002 |
|
8 |
close(fd[0]); |
2003 |
|
8 |
close(1); |
2004 |
✗✓ |
8 |
if (dup(fd[1]) == -1) { |
2005 |
|
|
fprintf(stderr, "dup failed\n"); |
2006 |
|
|
exit(1); |
2007 |
|
|
} |
2008 |
|
8 |
close(fd[1]); |
2009 |
|
8 |
mr = 1; |
2010 |
|
8 |
usertime = 0; |
2011 |
|
8 |
free(fds); |
2012 |
|
8 |
return 0; |
2013 |
|
|
} |
2014 |
|
12 |
printf("Forked child %d\n", n); |
2015 |
|
|
} |
2016 |
|
|
|
2017 |
|
|
/* for now, assume the pipe is long enough to take all the output */ |
2018 |
✓✓ |
24 |
for (n = 0; n < multi; ++n) { |
2019 |
|
|
FILE *f; |
2020 |
|
8 |
char buf[1024]; |
2021 |
|
8 |
char *p; |
2022 |
|
|
|
2023 |
|
8 |
f = fdopen(fds[n], "r"); |
2024 |
✓✓ |
64 |
while (fgets(buf, sizeof buf, f)) { |
2025 |
|
24 |
p = strchr(buf, '\n'); |
2026 |
✓✗ |
24 |
if (p) |
2027 |
|
24 |
*p = '\0'; |
2028 |
✗✓ |
24 |
if (buf[0] != '+') { |
2029 |
|
|
fprintf(stderr, "Don't understand line '%s' from child %d\n", |
2030 |
|
|
buf, n); |
2031 |
|
|
continue; |
2032 |
|
|
} |
2033 |
|
24 |
printf("Got: %s from %d\n", buf, n); |
2034 |
✓✓ |
24 |
if (!strncmp(buf, "+F:", 3)) { |
2035 |
|
|
int alg; |
2036 |
|
|
int j; |
2037 |
|
|
|
2038 |
|
8 |
p = buf + 3; |
2039 |
|
8 |
alg = strtonum(sstrsep(&p, sep), |
2040 |
|
|
0, ALGOR_NUM - 1, &errstr); |
2041 |
|
8 |
sstrsep(&p, sep); |
2042 |
✓✓ |
96 |
for (j = 0; j < SIZE_NUM; ++j) |
2043 |
|
40 |
results[alg][j] += atof(sstrsep(&p, sep)); |
2044 |
✓✓ |
24 |
} else if (!strncmp(buf, "+F2:", 4)) { |
2045 |
|
|
int k; |
2046 |
|
|
double d; |
2047 |
|
|
|
2048 |
|
8 |
p = buf + 4; |
2049 |
|
8 |
k = strtonum(sstrsep(&p, sep), |
2050 |
|
|
0, ALGOR_NUM - 1, &errstr); |
2051 |
|
8 |
sstrsep(&p, sep); |
2052 |
|
|
|
2053 |
|
8 |
d = atof(sstrsep(&p, sep)); |
2054 |
✓✓ |
8 |
if (n) |
2055 |
|
4 |
rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d); |
2056 |
|
|
else |
2057 |
|
|
rsa_results[k][0] = d; |
2058 |
|
|
|
2059 |
|
8 |
d = atof(sstrsep(&p, sep)); |
2060 |
✓✓ |
8 |
if (n) |
2061 |
|
4 |
rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d); |
2062 |
|
|
else |
2063 |
|
|
rsa_results[k][1] = d; |
2064 |
✗✓ |
16 |
} else if (!strncmp(buf, "+F2:", 4)) { |
2065 |
|
|
int k; |
2066 |
|
|
double d; |
2067 |
|
|
|
2068 |
|
|
p = buf + 4; |
2069 |
|
|
k = strtonum(sstrsep(&p, sep), |
2070 |
|
|
0, ALGOR_NUM - 1, &errstr); |
2071 |
|
|
sstrsep(&p, sep); |
2072 |
|
|
|
2073 |
|
|
d = atof(sstrsep(&p, sep)); |
2074 |
|
|
if (n) |
2075 |
|
|
rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d); |
2076 |
|
|
else |
2077 |
|
|
rsa_results[k][0] = d; |
2078 |
|
|
|
2079 |
|
|
d = atof(sstrsep(&p, sep)); |
2080 |
|
|
if (n) |
2081 |
|
|
rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d); |
2082 |
|
|
else |
2083 |
|
|
rsa_results[k][1] = d; |
2084 |
|
|
} |
2085 |
✗✓ |
8 |
else if (!strncmp(buf, "+F3:", 4)) { |
2086 |
|
|
int k; |
2087 |
|
|
double d; |
2088 |
|
|
|
2089 |
|
|
p = buf + 4; |
2090 |
|
|
k = strtonum(sstrsep(&p, sep), |
2091 |
|
|
0, ALGOR_NUM - 1, &errstr); |
2092 |
|
|
sstrsep(&p, sep); |
2093 |
|
|
|
2094 |
|
|
d = atof(sstrsep(&p, sep)); |
2095 |
|
|
if (n) |
2096 |
|
|
dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d); |
2097 |
|
|
else |
2098 |
|
|
dsa_results[k][0] = d; |
2099 |
|
|
|
2100 |
|
|
d = atof(sstrsep(&p, sep)); |
2101 |
|
|
if (n) |
2102 |
|
|
dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d); |
2103 |
|
|
else |
2104 |
|
|
dsa_results[k][1] = d; |
2105 |
|
|
} |
2106 |
✗✓ |
8 |
else if (!strncmp(buf, "+F4:", 4)) { |
2107 |
|
|
int k; |
2108 |
|
|
double d; |
2109 |
|
|
|
2110 |
|
|
p = buf + 4; |
2111 |
|
|
k = strtonum(sstrsep(&p, sep), |
2112 |
|
|
0, ALGOR_NUM - 1, &errstr); |
2113 |
|
|
sstrsep(&p, sep); |
2114 |
|
|
|
2115 |
|
|
d = atof(sstrsep(&p, sep)); |
2116 |
|
|
if (n) |
2117 |
|
|
ecdsa_results[k][0] = 1 / (1 / ecdsa_results[k][0] + 1 / d); |
2118 |
|
|
else |
2119 |
|
|
ecdsa_results[k][0] = d; |
2120 |
|
|
|
2121 |
|
|
d = atof(sstrsep(&p, sep)); |
2122 |
|
|
if (n) |
2123 |
|
|
ecdsa_results[k][1] = 1 / (1 / ecdsa_results[k][1] + 1 / d); |
2124 |
|
|
else |
2125 |
|
|
ecdsa_results[k][1] = d; |
2126 |
|
|
} |
2127 |
|
|
|
2128 |
✗✓ |
8 |
else if (!strncmp(buf, "+F5:", 4)) { |
2129 |
|
|
int k; |
2130 |
|
|
double d; |
2131 |
|
|
|
2132 |
|
|
p = buf + 4; |
2133 |
|
|
k = strtonum(sstrsep(&p, sep), |
2134 |
|
|
0, ALGOR_NUM - 1, &errstr); |
2135 |
|
|
sstrsep(&p, sep); |
2136 |
|
|
|
2137 |
|
|
d = atof(sstrsep(&p, sep)); |
2138 |
|
|
if (n) |
2139 |
|
|
ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d); |
2140 |
|
|
else |
2141 |
|
|
ecdh_results[k][0] = d; |
2142 |
|
|
|
2143 |
|
|
} |
2144 |
|
|
|
2145 |
✗✓ |
8 |
else if (!strncmp(buf, "+H:", 3)) { |
2146 |
|
|
} else |
2147 |
|
|
fprintf(stderr, "Unknown type '%s' from child %d\n", buf, n); |
2148 |
|
|
} |
2149 |
|
|
|
2150 |
|
8 |
fclose(f); |
2151 |
|
8 |
} |
2152 |
|
4 |
free(fds); |
2153 |
|
4 |
return 1; |
2154 |
|
12 |
} |
2155 |
|
|
#endif |