GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: usr.bin/ssh/lib/../fe25519.c Lines: 0 180 0.0 %
Date: 2017-11-13 Branches: 0 70 0.0 %

Line Branch Exec Source
1
/* $OpenBSD: fe25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */
2
3
/*
4
 * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
5
 * Peter Schwabe, Bo-Yin Yang.
6
 * Copied from supercop-20130419/crypto_sign/ed25519/ref/fe25519.c
7
 */
8
9
#define WINDOWSIZE 1 /* Should be 1,2, or 4 */
10
#define WINDOWMASK ((1<<WINDOWSIZE)-1)
11
12
#include "fe25519.h"
13
14
static crypto_uint32 equal(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
15
{
16
  crypto_uint32 x = a ^ b; /* 0: yes; 1..65535: no */
17
  x -= 1; /* 4294967295: yes; 0..65534: no */
18
  x >>= 31; /* 1: yes; 0: no */
19
  return x;
20
}
21
22
static crypto_uint32 ge(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
23
{
24
  unsigned int x = a;
25
  x -= (unsigned int) b; /* 0..65535: yes; 4294901761..4294967295: no */
26
  x >>= 31; /* 0: yes; 1: no */
27
  x ^= 1; /* 1: yes; 0: no */
28
  return x;
29
}
30
31
static crypto_uint32 times19(crypto_uint32 a)
32
{
33
  return (a << 4) + (a << 1) + a;
34
}
35
36
static crypto_uint32 times38(crypto_uint32 a)
37
{
38
  return (a << 5) + (a << 2) + (a << 1);
39
}
40
41
static void reduce_add_sub(fe25519 *r)
42
{
43
  crypto_uint32 t;
44
  int i,rep;
45
46
  for(rep=0;rep<4;rep++)
47
  {
48
    t = r->v[31] >> 7;
49
    r->v[31] &= 127;
50
    t = times19(t);
51
    r->v[0] += t;
52
    for(i=0;i<31;i++)
53
    {
54
      t = r->v[i] >> 8;
55
      r->v[i+1] += t;
56
      r->v[i] &= 255;
57
    }
58
  }
59
}
60
61
static void reduce_mul(fe25519 *r)
62
{
63
  crypto_uint32 t;
64
  int i,rep;
65
66
  for(rep=0;rep<2;rep++)
67
  {
68
    t = r->v[31] >> 7;
69
    r->v[31] &= 127;
70
    t = times19(t);
71
    r->v[0] += t;
72
    for(i=0;i<31;i++)
73
    {
74
      t = r->v[i] >> 8;
75
      r->v[i+1] += t;
76
      r->v[i] &= 255;
77
    }
78
  }
79
}
80
81
/* reduction modulo 2^255-19 */
82
void fe25519_freeze(fe25519 *r)
83
{
84
  int i;
85
  crypto_uint32 m = equal(r->v[31],127);
86
  for(i=30;i>0;i--)
87
    m &= equal(r->v[i],255);
88
  m &= ge(r->v[0],237);
89
90
  m = -m;
91
92
  r->v[31] -= m&127;
93
  for(i=30;i>0;i--)
94
    r->v[i] -= m&255;
95
  r->v[0] -= m&237;
96
}
97
98
void fe25519_unpack(fe25519 *r, const unsigned char x[32])
99
{
100
  int i;
101
  for(i=0;i<32;i++) r->v[i] = x[i];
102
  r->v[31] &= 127;
103
}
104
105
/* Assumes input x being reduced below 2^255 */
106
void fe25519_pack(unsigned char r[32], const fe25519 *x)
107
{
108
  int i;
109
  fe25519 y = *x;
110
  fe25519_freeze(&y);
111
  for(i=0;i<32;i++)
112
    r[i] = y.v[i];
113
}
114
115
int fe25519_iszero(const fe25519 *x)
116
{
117
  int i;
118
  int r;
119
  fe25519 t = *x;
120
  fe25519_freeze(&t);
121
  r = equal(t.v[0],0);
122
  for(i=1;i<32;i++)
123
    r &= equal(t.v[i],0);
124
  return r;
125
}
126
127
int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y)
128
{
129
  int i;
130
  fe25519 t1 = *x;
131
  fe25519 t2 = *y;
132
  fe25519_freeze(&t1);
133
  fe25519_freeze(&t2);
134
  for(i=0;i<32;i++)
135
    if(t1.v[i] != t2.v[i]) return 0;
136
  return 1;
137
}
138
139
void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b)
140
{
141
  int i;
142
  crypto_uint32 mask = b;
143
  mask = -mask;
144
  for(i=0;i<32;i++) r->v[i] ^= mask & (x->v[i] ^ r->v[i]);
145
}
146
147
unsigned char fe25519_getparity(const fe25519 *x)
148
{
149
  fe25519 t = *x;
150
  fe25519_freeze(&t);
151
  return t.v[0] & 1;
152
}
153
154
void fe25519_setone(fe25519 *r)
155
{
156
  int i;
157
  r->v[0] = 1;
158
  for(i=1;i<32;i++) r->v[i]=0;
159
}
160
161
void fe25519_setzero(fe25519 *r)
162
{
163
  int i;
164
  for(i=0;i<32;i++) r->v[i]=0;
165
}
166
167
void fe25519_neg(fe25519 *r, const fe25519 *x)
168
{
169
  fe25519 t;
170
  int i;
171
  for(i=0;i<32;i++) t.v[i]=x->v[i];
172
  fe25519_setzero(r);
173
  fe25519_sub(r, r, &t);
174
}
175
176
void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y)
177
{
178
  int i;
179
  for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i];
180
  reduce_add_sub(r);
181
}
182
183
void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y)
184
{
185
  int i;
186
  crypto_uint32 t[32];
187
  t[0] = x->v[0] + 0x1da;
188
  t[31] = x->v[31] + 0xfe;
189
  for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe;
190
  for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i];
191
  reduce_add_sub(r);
192
}
193
194
void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y)
195
{
196
  int i,j;
197
  crypto_uint32 t[63];
198
  for(i=0;i<63;i++)t[i] = 0;
199
200
  for(i=0;i<32;i++)
201
    for(j=0;j<32;j++)
202
      t[i+j] += x->v[i] * y->v[j];
203
204
  for(i=32;i<63;i++)
205
    r->v[i-32] = t[i-32] + times38(t[i]);
206
  r->v[31] = t[31]; /* result now in r[0]...r[31] */
207
208
  reduce_mul(r);
209
}
210
211
void fe25519_square(fe25519 *r, const fe25519 *x)
212
{
213
  fe25519_mul(r, x, x);
214
}
215
216
void fe25519_invert(fe25519 *r, const fe25519 *x)
217
{
218
	fe25519 z2;
219
	fe25519 z9;
220
	fe25519 z11;
221
	fe25519 z2_5_0;
222
	fe25519 z2_10_0;
223
	fe25519 z2_20_0;
224
	fe25519 z2_50_0;
225
	fe25519 z2_100_0;
226
	fe25519 t0;
227
	fe25519 t1;
228
	int i;
229
230
	/* 2 */ fe25519_square(&z2,x);
231
	/* 4 */ fe25519_square(&t1,&z2);
232
	/* 8 */ fe25519_square(&t0,&t1);
233
	/* 9 */ fe25519_mul(&z9,&t0,x);
234
	/* 11 */ fe25519_mul(&z11,&z9,&z2);
235
	/* 22 */ fe25519_square(&t0,&z11);
236
	/* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9);
237
238
	/* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0);
239
	/* 2^7 - 2^2 */ fe25519_square(&t1,&t0);
240
	/* 2^8 - 2^3 */ fe25519_square(&t0,&t1);
241
	/* 2^9 - 2^4 */ fe25519_square(&t1,&t0);
242
	/* 2^10 - 2^5 */ fe25519_square(&t0,&t1);
243
	/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0);
244
245
	/* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0);
246
	/* 2^12 - 2^2 */ fe25519_square(&t1,&t0);
247
	/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
248
	/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0);
249
250
	/* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0);
251
	/* 2^22 - 2^2 */ fe25519_square(&t1,&t0);
252
	/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
253
	/* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0);
254
255
	/* 2^41 - 2^1 */ fe25519_square(&t1,&t0);
256
	/* 2^42 - 2^2 */ fe25519_square(&t0,&t1);
257
	/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
258
	/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0);
259
260
	/* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0);
261
	/* 2^52 - 2^2 */ fe25519_square(&t1,&t0);
262
	/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
263
	/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0);
264
265
	/* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0);
266
	/* 2^102 - 2^2 */ fe25519_square(&t0,&t1);
267
	/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
268
	/* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0);
269
270
	/* 2^201 - 2^1 */ fe25519_square(&t0,&t1);
271
	/* 2^202 - 2^2 */ fe25519_square(&t1,&t0);
272
	/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
273
	/* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0);
274
275
	/* 2^251 - 2^1 */ fe25519_square(&t1,&t0);
276
	/* 2^252 - 2^2 */ fe25519_square(&t0,&t1);
277
	/* 2^253 - 2^3 */ fe25519_square(&t1,&t0);
278
	/* 2^254 - 2^4 */ fe25519_square(&t0,&t1);
279
	/* 2^255 - 2^5 */ fe25519_square(&t1,&t0);
280
	/* 2^255 - 21 */ fe25519_mul(r,&t1,&z11);
281
}
282
283
void fe25519_pow2523(fe25519 *r, const fe25519 *x)
284
{
285
	fe25519 z2;
286
	fe25519 z9;
287
	fe25519 z11;
288
	fe25519 z2_5_0;
289
	fe25519 z2_10_0;
290
	fe25519 z2_20_0;
291
	fe25519 z2_50_0;
292
	fe25519 z2_100_0;
293
	fe25519 t;
294
	int i;
295
296
	/* 2 */ fe25519_square(&z2,x);
297
	/* 4 */ fe25519_square(&t,&z2);
298
	/* 8 */ fe25519_square(&t,&t);
299
	/* 9 */ fe25519_mul(&z9,&t,x);
300
	/* 11 */ fe25519_mul(&z11,&z9,&z2);
301
	/* 22 */ fe25519_square(&t,&z11);
302
	/* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t,&z9);
303
304
	/* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0);
305
	/* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); }
306
	/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0);
307
308
	/* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0);
309
	/* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
310
	/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0);
311
312
	/* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0);
313
	/* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); }
314
	/* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0);
315
316
	/* 2^41 - 2^1 */ fe25519_square(&t,&t);
317
	/* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
318
	/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0);
319
320
	/* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0);
321
	/* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
322
	/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0);
323
324
	/* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0);
325
	/* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
326
	/* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0);
327
328
	/* 2^201 - 2^1 */ fe25519_square(&t,&t);
329
	/* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
330
	/* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0);
331
332
	/* 2^251 - 2^1 */ fe25519_square(&t,&t);
333
	/* 2^252 - 2^2 */ fe25519_square(&t,&t);
334
	/* 2^252 - 3 */ fe25519_mul(r,&t,x);
335
}