GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: usr.bin/ssh/lib/../ge25519.c Lines: 0 152 0.0 %
Date: 2017-11-13 Branches: 0 18 0.0 %

Line Branch Exec Source
1
/* $OpenBSD: ge25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */
2
3
/*
4
 * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
5
 * Peter Schwabe, Bo-Yin Yang.
6
 * Copied from supercop-20130419/crypto_sign/ed25519/ref/ge25519.c
7
 */
8
9
#include "fe25519.h"
10
#include "sc25519.h"
11
#include "ge25519.h"
12
13
/*
14
 * Arithmetic on the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2
15
 * with d = -(121665/121666) = 37095705934669439343138083508754565189542113879843219016388785533085940283555
16
 * Base point: (15112221349535400772501151409588531511454012693041857206046113283949847762202,46316835694926478169428394003475163141307993866256225615783033603165251855960);
17
 */
18
19
/* d */
20
static const fe25519 ge25519_ecd = {{0xA3, 0x78, 0x59, 0x13, 0xCA, 0x4D, 0xEB, 0x75, 0xAB, 0xD8, 0x41, 0x41, 0x4D, 0x0A, 0x70, 0x00,
21
                      0x98, 0xE8, 0x79, 0x77, 0x79, 0x40, 0xC7, 0x8C, 0x73, 0xFE, 0x6F, 0x2B, 0xEE, 0x6C, 0x03, 0x52}};
22
/* 2*d */
23
static const fe25519 ge25519_ec2d = {{0x59, 0xF1, 0xB2, 0x26, 0x94, 0x9B, 0xD6, 0xEB, 0x56, 0xB1, 0x83, 0x82, 0x9A, 0x14, 0xE0, 0x00,
24
                       0x30, 0xD1, 0xF3, 0xEE, 0xF2, 0x80, 0x8E, 0x19, 0xE7, 0xFC, 0xDF, 0x56, 0xDC, 0xD9, 0x06, 0x24}};
25
/* sqrt(-1) */
26
static const fe25519 ge25519_sqrtm1 = {{0xB0, 0xA0, 0x0E, 0x4A, 0x27, 0x1B, 0xEE, 0xC4, 0x78, 0xE4, 0x2F, 0xAD, 0x06, 0x18, 0x43, 0x2F,
27
                         0xA7, 0xD7, 0xFB, 0x3D, 0x99, 0x00, 0x4D, 0x2B, 0x0B, 0xDF, 0xC1, 0x4F, 0x80, 0x24, 0x83, 0x2B}};
28
29
#define ge25519_p3 ge25519
30
31
typedef struct
32
{
33
  fe25519 x;
34
  fe25519 z;
35
  fe25519 y;
36
  fe25519 t;
37
} ge25519_p1p1;
38
39
typedef struct
40
{
41
  fe25519 x;
42
  fe25519 y;
43
  fe25519 z;
44
} ge25519_p2;
45
46
typedef struct
47
{
48
  fe25519 x;
49
  fe25519 y;
50
} ge25519_aff;
51
52
53
/* Packed coordinates of the base point */
54
const ge25519 ge25519_base = {{{0x1A, 0xD5, 0x25, 0x8F, 0x60, 0x2D, 0x56, 0xC9, 0xB2, 0xA7, 0x25, 0x95, 0x60, 0xC7, 0x2C, 0x69,
55
                                0x5C, 0xDC, 0xD6, 0xFD, 0x31, 0xE2, 0xA4, 0xC0, 0xFE, 0x53, 0x6E, 0xCD, 0xD3, 0x36, 0x69, 0x21}},
56
                              {{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
57
                                0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}},
58
                              {{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
59
                                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
60
                              {{0xA3, 0xDD, 0xB7, 0xA5, 0xB3, 0x8A, 0xDE, 0x6D, 0xF5, 0x52, 0x51, 0x77, 0x80, 0x9F, 0xF0, 0x20,
61
                                0x7D, 0xE3, 0xAB, 0x64, 0x8E, 0x4E, 0xEA, 0x66, 0x65, 0x76, 0x8B, 0xD7, 0x0F, 0x5F, 0x87, 0x67}}};
62
63
/* Multiples of the base point in affine representation */
64
static const ge25519_aff ge25519_base_multiples_affine[425] = {
65
#include "ge25519_base.data"
66
};
67
68
static void p1p1_to_p2(ge25519_p2 *r, const ge25519_p1p1 *p)
69
{
70
  fe25519_mul(&r->x, &p->x, &p->t);
71
  fe25519_mul(&r->y, &p->y, &p->z);
72
  fe25519_mul(&r->z, &p->z, &p->t);
73
}
74
75
static void p1p1_to_p3(ge25519_p3 *r, const ge25519_p1p1 *p)
76
{
77
  p1p1_to_p2((ge25519_p2 *)r, p);
78
  fe25519_mul(&r->t, &p->x, &p->y);
79
}
80
81
static void ge25519_mixadd2(ge25519_p3 *r, const ge25519_aff *q)
82
{
83
  fe25519 a,b,t1,t2,c,d,e,f,g,h,qt;
84
  fe25519_mul(&qt, &q->x, &q->y);
85
  fe25519_sub(&a, &r->y, &r->x); /* A = (Y1-X1)*(Y2-X2) */
86
  fe25519_add(&b, &r->y, &r->x); /* B = (Y1+X1)*(Y2+X2) */
87
  fe25519_sub(&t1, &q->y, &q->x);
88
  fe25519_add(&t2, &q->y, &q->x);
89
  fe25519_mul(&a, &a, &t1);
90
  fe25519_mul(&b, &b, &t2);
91
  fe25519_sub(&e, &b, &a); /* E = B-A */
92
  fe25519_add(&h, &b, &a); /* H = B+A */
93
  fe25519_mul(&c, &r->t, &qt); /* C = T1*k*T2 */
94
  fe25519_mul(&c, &c, &ge25519_ec2d);
95
  fe25519_add(&d, &r->z, &r->z); /* D = Z1*2 */
96
  fe25519_sub(&f, &d, &c); /* F = D-C */
97
  fe25519_add(&g, &d, &c); /* G = D+C */
98
  fe25519_mul(&r->x, &e, &f);
99
  fe25519_mul(&r->y, &h, &g);
100
  fe25519_mul(&r->z, &g, &f);
101
  fe25519_mul(&r->t, &e, &h);
102
}
103
104
static void add_p1p1(ge25519_p1p1 *r, const ge25519_p3 *p, const ge25519_p3 *q)
105
{
106
  fe25519 a, b, c, d, t;
107
108
  fe25519_sub(&a, &p->y, &p->x); /* A = (Y1-X1)*(Y2-X2) */
109
  fe25519_sub(&t, &q->y, &q->x);
110
  fe25519_mul(&a, &a, &t);
111
  fe25519_add(&b, &p->x, &p->y); /* B = (Y1+X1)*(Y2+X2) */
112
  fe25519_add(&t, &q->x, &q->y);
113
  fe25519_mul(&b, &b, &t);
114
  fe25519_mul(&c, &p->t, &q->t); /* C = T1*k*T2 */
115
  fe25519_mul(&c, &c, &ge25519_ec2d);
116
  fe25519_mul(&d, &p->z, &q->z); /* D = Z1*2*Z2 */
117
  fe25519_add(&d, &d, &d);
118
  fe25519_sub(&r->x, &b, &a); /* E = B-A */
119
  fe25519_sub(&r->t, &d, &c); /* F = D-C */
120
  fe25519_add(&r->z, &d, &c); /* G = D+C */
121
  fe25519_add(&r->y, &b, &a); /* H = B+A */
122
}
123
124
/* See http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd */
125
static void dbl_p1p1(ge25519_p1p1 *r, const ge25519_p2 *p)
126
{
127
  fe25519 a,b,c,d;
128
  fe25519_square(&a, &p->x);
129
  fe25519_square(&b, &p->y);
130
  fe25519_square(&c, &p->z);
131
  fe25519_add(&c, &c, &c);
132
  fe25519_neg(&d, &a);
133
134
  fe25519_add(&r->x, &p->x, &p->y);
135
  fe25519_square(&r->x, &r->x);
136
  fe25519_sub(&r->x, &r->x, &a);
137
  fe25519_sub(&r->x, &r->x, &b);
138
  fe25519_add(&r->z, &d, &b);
139
  fe25519_sub(&r->t, &r->z, &c);
140
  fe25519_sub(&r->y, &d, &b);
141
}
142
143
/* Constant-time version of: if(b) r = p */
144
static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b)
145
{
146
  fe25519_cmov(&r->x, &p->x, b);
147
  fe25519_cmov(&r->y, &p->y, b);
148
}
149
150
static unsigned char equal(signed char b,signed char c)
151
{
152
  unsigned char ub = b;
153
  unsigned char uc = c;
154
  unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */
155
  crypto_uint32 y = x; /* 0: yes; 1..255: no */
156
  y -= 1; /* 4294967295: yes; 0..254: no */
157
  y >>= 31; /* 1: yes; 0: no */
158
  return y;
159
}
160
161
static unsigned char negative(signed char b)
162
{
163
  unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */
164
  x >>= 63; /* 1: yes; 0: no */
165
  return x;
166
}
167
168
static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b)
169
{
170
  /* constant time */
171
  fe25519 v;
172
  *t = ge25519_base_multiples_affine[5*pos+0];
173
  cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],equal(b,1) | equal(b,-1));
174
  cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],equal(b,2) | equal(b,-2));
175
  cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],equal(b,3) | equal(b,-3));
176
  cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],equal(b,-4));
177
  fe25519_neg(&v, &t->x);
178
  fe25519_cmov(&t->x, &v, negative(b));
179
}
180
181
static void setneutral(ge25519 *r)
182
{
183
  fe25519_setzero(&r->x);
184
  fe25519_setone(&r->y);
185
  fe25519_setone(&r->z);
186
  fe25519_setzero(&r->t);
187
}
188
189
/* ********************************************************************
190
 *                    EXPORTED FUNCTIONS
191
 ******************************************************************** */
192
193
/* return 0 on success, -1 otherwise */
194
int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32])
195
{
196
  unsigned char par;
197
  fe25519 t, chk, num, den, den2, den4, den6;
198
  fe25519_setone(&r->z);
199
  par = p[31] >> 7;
200
  fe25519_unpack(&r->y, p);
201
  fe25519_square(&num, &r->y); /* x = y^2 */
202
  fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */
203
  fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */
204
  fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */
205
206
  /* Computation of sqrt(num/den) */
207
  /* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */
208
  fe25519_square(&den2, &den);
209
  fe25519_square(&den4, &den2);
210
  fe25519_mul(&den6, &den4, &den2);
211
  fe25519_mul(&t, &den6, &num);
212
  fe25519_mul(&t, &t, &den);
213
214
  fe25519_pow2523(&t, &t);
215
  /* 2. computation of r->x = t * num * den^3 */
216
  fe25519_mul(&t, &t, &num);
217
  fe25519_mul(&t, &t, &den);
218
  fe25519_mul(&t, &t, &den);
219
  fe25519_mul(&r->x, &t, &den);
220
221
  /* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */
222
  fe25519_square(&chk, &r->x);
223
  fe25519_mul(&chk, &chk, &den);
224
  if (!fe25519_iseq_vartime(&chk, &num))
225
    fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1);
226
227
  /* 4. Now we have one of the two square roots, except if input was not a square */
228
  fe25519_square(&chk, &r->x);
229
  fe25519_mul(&chk, &chk, &den);
230
  if (!fe25519_iseq_vartime(&chk, &num))
231
    return -1;
232
233
  /* 5. Choose the desired square root according to parity: */
234
  if(fe25519_getparity(&r->x) != (1-par))
235
    fe25519_neg(&r->x, &r->x);
236
237
  fe25519_mul(&r->t, &r->x, &r->y);
238
  return 0;
239
}
240
241
void ge25519_pack(unsigned char r[32], const ge25519_p3 *p)
242
{
243
  fe25519 tx, ty, zi;
244
  fe25519_invert(&zi, &p->z);
245
  fe25519_mul(&tx, &p->x, &zi);
246
  fe25519_mul(&ty, &p->y, &zi);
247
  fe25519_pack(r, &ty);
248
  r[31] ^= fe25519_getparity(&tx) << 7;
249
}
250
251
int ge25519_isneutral_vartime(const ge25519_p3 *p)
252
{
253
  int ret = 1;
254
  if(!fe25519_iszero(&p->x)) ret = 0;
255
  if(!fe25519_iseq_vartime(&p->y, &p->z)) ret = 0;
256
  return ret;
257
}
258
259
/* computes [s1]p1 + [s2]p2 */
260
void ge25519_double_scalarmult_vartime(ge25519_p3 *r, const ge25519_p3 *p1, const sc25519 *s1, const ge25519_p3 *p2, const sc25519 *s2)
261
{
262
  ge25519_p1p1 tp1p1;
263
  ge25519_p3 pre[16];
264
  unsigned char b[127];
265
  int i;
266
267
  /* precomputation                                                        s2 s1 */
268
  setneutral(pre);                                                      /* 00 00 */
269
  pre[1] = *p1;                                                         /* 00 01 */
270
  dbl_p1p1(&tp1p1,(ge25519_p2 *)p1);      p1p1_to_p3( &pre[2], &tp1p1); /* 00 10 */
271
  add_p1p1(&tp1p1,&pre[1], &pre[2]);      p1p1_to_p3( &pre[3], &tp1p1); /* 00 11 */
272
  pre[4] = *p2;                                                         /* 01 00 */
273
  add_p1p1(&tp1p1,&pre[1], &pre[4]);      p1p1_to_p3( &pre[5], &tp1p1); /* 01 01 */
274
  add_p1p1(&tp1p1,&pre[2], &pre[4]);      p1p1_to_p3( &pre[6], &tp1p1); /* 01 10 */
275
  add_p1p1(&tp1p1,&pre[3], &pre[4]);      p1p1_to_p3( &pre[7], &tp1p1); /* 01 11 */
276
  dbl_p1p1(&tp1p1,(ge25519_p2 *)p2);      p1p1_to_p3( &pre[8], &tp1p1); /* 10 00 */
277
  add_p1p1(&tp1p1,&pre[1], &pre[8]);      p1p1_to_p3( &pre[9], &tp1p1); /* 10 01 */
278
  dbl_p1p1(&tp1p1,(ge25519_p2 *)&pre[5]); p1p1_to_p3(&pre[10], &tp1p1); /* 10 10 */
279
  add_p1p1(&tp1p1,&pre[3], &pre[8]);      p1p1_to_p3(&pre[11], &tp1p1); /* 10 11 */
280
  add_p1p1(&tp1p1,&pre[4], &pre[8]);      p1p1_to_p3(&pre[12], &tp1p1); /* 11 00 */
281
  add_p1p1(&tp1p1,&pre[1],&pre[12]);      p1p1_to_p3(&pre[13], &tp1p1); /* 11 01 */
282
  add_p1p1(&tp1p1,&pre[2],&pre[12]);      p1p1_to_p3(&pre[14], &tp1p1); /* 11 10 */
283
  add_p1p1(&tp1p1,&pre[3],&pre[12]);      p1p1_to_p3(&pre[15], &tp1p1); /* 11 11 */
284
285
  sc25519_2interleave2(b,s1,s2);
286
287
  /* scalar multiplication */
288
  *r = pre[b[126]];
289
  for(i=125;i>=0;i--)
290
  {
291
    dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
292
    p1p1_to_p2((ge25519_p2 *) r, &tp1p1);
293
    dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
294
    if(b[i]!=0)
295
    {
296
      p1p1_to_p3(r, &tp1p1);
297
      add_p1p1(&tp1p1, r, &pre[b[i]]);
298
    }
299
    if(i != 0) p1p1_to_p2((ge25519_p2 *)r, &tp1p1);
300
    else p1p1_to_p3(r, &tp1p1);
301
  }
302
}
303
304
void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s)
305
{
306
  signed char b[85];
307
  int i;
308
  ge25519_aff t;
309
  sc25519_window3(b,s);
310
311
  choose_t((ge25519_aff *)r, 0, b[0]);
312
  fe25519_setone(&r->z);
313
  fe25519_mul(&r->t, &r->x, &r->y);
314
  for(i=1;i<85;i++)
315
  {
316
    choose_t(&t, (unsigned long long) i, b[i]);
317
    ge25519_mixadd2(r, &t);
318
  }
319
}