1  | 
     | 
     | 
    /* $OpenBSD: umac.c,v 1.13 2017/10/27 01:01:17 djm Exp $ */  | 
    
    
    2  | 
     | 
     | 
    /* -----------------------------------------------------------------------  | 
    
    
    3  | 
     | 
     | 
     *  | 
    
    
    4  | 
     | 
     | 
     * umac.c -- C Implementation UMAC Message Authentication  | 
    
    
    5  | 
     | 
     | 
     *  | 
    
    
    6  | 
     | 
     | 
     * Version 0.93b of rfc4418.txt -- 2006 July 18  | 
    
    
    7  | 
     | 
     | 
     *  | 
    
    
    8  | 
     | 
     | 
     * For a full description of UMAC message authentication see the UMAC  | 
    
    
    9  | 
     | 
     | 
     * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac  | 
    
    
    10  | 
     | 
     | 
     * Please report bugs and suggestions to the UMAC webpage.  | 
    
    
    11  | 
     | 
     | 
     *  | 
    
    
    12  | 
     | 
     | 
     * Copyright (c) 1999-2006 Ted Krovetz  | 
    
    
    13  | 
     | 
     | 
     *  | 
    
    
    14  | 
     | 
     | 
     * Permission to use, copy, modify, and distribute this software and  | 
    
    
    15  | 
     | 
     | 
     * its documentation for any purpose and with or without fee, is hereby  | 
    
    
    16  | 
     | 
     | 
     * granted provided that the above copyright notice appears in all copies  | 
    
    
    17  | 
     | 
     | 
     * and in supporting documentation, and that the name of the copyright  | 
    
    
    18  | 
     | 
     | 
     * holder not be used in advertising or publicity pertaining to  | 
    
    
    19  | 
     | 
     | 
     * distribution of the software without specific, written prior permission.  | 
    
    
    20  | 
     | 
     | 
     *  | 
    
    
    21  | 
     | 
     | 
     * Comments should be directed to Ted Krovetz (tdk@acm.org)  | 
    
    
    22  | 
     | 
     | 
     *  | 
    
    
    23  | 
     | 
     | 
     * ---------------------------------------------------------------------- */  | 
    
    
    24  | 
     | 
     | 
     | 
    
    
    25  | 
     | 
     | 
     /* ////////////////////// IMPORTANT NOTES /////////////////////////////////  | 
    
    
    26  | 
     | 
     | 
      *  | 
    
    
    27  | 
     | 
     | 
      * 1) This version does not work properly on messages larger than 16MB  | 
    
    
    28  | 
     | 
     | 
      *  | 
    
    
    29  | 
     | 
     | 
      * 2) If you set the switch to use SSE2, then all data must be 16-byte  | 
    
    
    30  | 
     | 
     | 
      *    aligned  | 
    
    
    31  | 
     | 
     | 
      *  | 
    
    
    32  | 
     | 
     | 
      * 3) When calling the function umac(), it is assumed that msg is in  | 
    
    
    33  | 
     | 
     | 
      * a writable buffer of length divisible by 32 bytes. The message itself  | 
    
    
    34  | 
     | 
     | 
      * does not have to fill the entire buffer, but bytes beyond msg may be  | 
    
    
    35  | 
     | 
     | 
      * zeroed.  | 
    
    
    36  | 
     | 
     | 
      *  | 
    
    
    37  | 
     | 
     | 
      * 4) Three free AES implementations are supported by this implementation of  | 
    
    
    38  | 
     | 
     | 
      * UMAC. Paulo Barreto's version is in the public domain and can be found  | 
    
    
    39  | 
     | 
     | 
      * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for  | 
    
    
    40  | 
     | 
     | 
      * "Barreto"). The only two files needed are rijndael-alg-fst.c and  | 
    
    
    41  | 
     | 
     | 
      * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU  | 
    
    
    42  | 
     | 
     | 
      * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It  | 
    
    
    43  | 
     | 
     | 
      * includes a fast IA-32 assembly version. The OpenSSL crypo library is  | 
    
    
    44  | 
     | 
     | 
      * the third.  | 
    
    
    45  | 
     | 
     | 
      *  | 
    
    
    46  | 
     | 
     | 
      * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes  | 
    
    
    47  | 
     | 
     | 
      * produced under gcc with optimizations set -O3 or higher. Dunno why.  | 
    
    
    48  | 
     | 
     | 
      *  | 
    
    
    49  | 
     | 
     | 
      /////////////////////////////////////////////////////////////////////// */  | 
    
    
    50  | 
     | 
     | 
     | 
    
    
    51  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    52  | 
     | 
     | 
    /* --- User Switches ---------------------------------------------------- */  | 
    
    
    53  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    54  | 
     | 
     | 
     | 
    
    
    55  | 
     | 
     | 
    #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */  | 
    
    
    56  | 
     | 
     | 
    /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */  | 
    
    
    57  | 
     | 
     | 
    /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */  | 
    
    
    58  | 
     | 
     | 
    /* #define SSE2                0  Is SSE2 is available?                   */  | 
    
    
    59  | 
     | 
     | 
    /* #define RUN_TESTS           0  Run basic correctness/speed tests       */  | 
    
    
    60  | 
     | 
     | 
    /* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */  | 
    
    
    61  | 
     | 
     | 
     | 
    
    
    62  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    63  | 
     | 
     | 
    /* -- Global Includes --------------------------------------------------- */  | 
    
    
    64  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    65  | 
     | 
     | 
     | 
    
    
    66  | 
     | 
     | 
    #include <sys/types.h>  | 
    
    
    67  | 
     | 
     | 
    #include <endian.h>  | 
    
    
    68  | 
     | 
     | 
    #include <string.h>  | 
    
    
    69  | 
     | 
     | 
    #include <stdio.h>  | 
    
    
    70  | 
     | 
     | 
    #include <stdlib.h>  | 
    
    
    71  | 
     | 
     | 
    #include <stddef.h>  | 
    
    
    72  | 
     | 
     | 
     | 
    
    
    73  | 
     | 
     | 
    #include "xmalloc.h"  | 
    
    
    74  | 
     | 
     | 
    #include "umac.h"  | 
    
    
    75  | 
     | 
     | 
    #include "misc.h"  | 
    
    
    76  | 
     | 
     | 
     | 
    
    
    77  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    78  | 
     | 
     | 
    /* --- Primitive Data Types ---                                           */  | 
    
    
    79  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    80  | 
     | 
     | 
     | 
    
    
    81  | 
     | 
     | 
    /* The following assumptions may need change on your system */  | 
    
    
    82  | 
     | 
     | 
    typedef u_int8_t	UINT8;  /* 1 byte   */  | 
    
    
    83  | 
     | 
     | 
    typedef u_int16_t	UINT16; /* 2 byte   */  | 
    
    
    84  | 
     | 
     | 
    typedef u_int32_t	UINT32; /* 4 byte   */  | 
    
    
    85  | 
     | 
     | 
    typedef u_int64_t	UINT64; /* 8 bytes  */  | 
    
    
    86  | 
     | 
     | 
    typedef unsigned int	UWORD;  /* Register */  | 
    
    
    87  | 
     | 
     | 
     | 
    
    
    88  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    89  | 
     | 
     | 
    /* --- Constants -------------------------------------------------------- */  | 
    
    
    90  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    91  | 
     | 
     | 
     | 
    
    
    92  | 
     | 
     | 
    #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */  | 
    
    
    93  | 
     | 
     | 
     | 
    
    
    94  | 
     | 
     | 
    /* Message "words" are read from memory in an endian-specific manner.     */  | 
    
    
    95  | 
     | 
     | 
    /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */  | 
    
    
    96  | 
     | 
     | 
    /* be set true if the host computer is little-endian.                     */  | 
    
    
    97  | 
     | 
     | 
     | 
    
    
    98  | 
     | 
     | 
    #if BYTE_ORDER == LITTLE_ENDIAN  | 
    
    
    99  | 
     | 
     | 
    #define __LITTLE_ENDIAN__ 1  | 
    
    
    100  | 
     | 
     | 
    #else  | 
    
    
    101  | 
     | 
     | 
    #define __LITTLE_ENDIAN__ 0  | 
    
    
    102  | 
     | 
     | 
    #endif  | 
    
    
    103  | 
     | 
     | 
     | 
    
    
    104  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    105  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    106  | 
     | 
     | 
    /* ----- Architecture Specific ------------------------------------------ */  | 
    
    
    107  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    108  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    109  | 
     | 
     | 
     | 
    
    
    110  | 
     | 
     | 
     | 
    
    
    111  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    112  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    113  | 
     | 
     | 
    /* ----- Primitive Routines --------------------------------------------- */  | 
    
    
    114  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    115  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    116  | 
     | 
     | 
     | 
    
    
    117  | 
     | 
     | 
     | 
    
    
    118  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    119  | 
     | 
     | 
    /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */  | 
    
    
    120  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    121  | 
     | 
     | 
     | 
    
    
    122  | 
     | 
     | 
    #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))  | 
    
    
    123  | 
     | 
     | 
     | 
    
    
    124  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    125  | 
     | 
     | 
    /* --- Endian Conversion --- Forcing assembly on some platforms           */  | 
    
    
    126  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    127  | 
     | 
     | 
     | 
    
    
    128  | 
     | 
     | 
    /* The following definitions use the above reversal-primitives to do the right  | 
    
    
    129  | 
     | 
     | 
     * thing on endian specific load and stores.  | 
    
    
    130  | 
     | 
     | 
     */  | 
    
    
    131  | 
     | 
     | 
     | 
    
    
    132  | 
     | 
     | 
    #if BYTE_ORDER == LITTLE_ENDIAN  | 
    
    
    133  | 
     | 
     | 
    #define LOAD_UINT32_REVERSED(p)		get_u32(p)  | 
    
    
    134  | 
     | 
     | 
    #define STORE_UINT32_REVERSED(p,v) 	put_u32(p,v)  | 
    
    
    135  | 
     | 
     | 
    #else  | 
    
    
    136  | 
     | 
     | 
    #define LOAD_UINT32_REVERSED(p)		get_u32_le(p)  | 
    
    
    137  | 
     | 
     | 
    #define STORE_UINT32_REVERSED(p,v) 	put_u32_le(p,v)  | 
    
    
    138  | 
     | 
     | 
    #endif  | 
    
    
    139  | 
     | 
     | 
     | 
    
    
    140  | 
     | 
     | 
    #define LOAD_UINT32_LITTLE(p)           (get_u32_le(p))  | 
    
    
    141  | 
     | 
     | 
    #define STORE_UINT32_BIG(p,v)           put_u32(p, v)  | 
    
    
    142  | 
     | 
     | 
     | 
    
    
    143  | 
     | 
     | 
     | 
    
    
    144  | 
     | 
     | 
     | 
    
    
    145  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    146  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    147  | 
     | 
     | 
    /* ----- Begin KDF & PDF Section ---------------------------------------- */  | 
    
    
    148  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    149  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    150  | 
     | 
     | 
     | 
    
    
    151  | 
     | 
     | 
    /* UMAC uses AES with 16 byte block and key lengths */  | 
    
    
    152  | 
     | 
     | 
    #define AES_BLOCK_LEN  16  | 
    
    
    153  | 
     | 
     | 
     | 
    
    
    154  | 
     | 
     | 
    #ifdef WITH_OPENSSL  | 
    
    
    155  | 
     | 
     | 
    #include <openssl/aes.h>  | 
    
    
    156  | 
     | 
     | 
    typedef AES_KEY aes_int_key[1];  | 
    
    
    157  | 
     | 
     | 
    #define aes_encryption(in,out,int_key)                  \  | 
    
    
    158  | 
     | 
     | 
      AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)  | 
    
    
    159  | 
     | 
     | 
    #define aes_key_setup(key,int_key)                      \  | 
    
    
    160  | 
     | 
     | 
      AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)  | 
    
    
    161  | 
     | 
     | 
    #else  | 
    
    
    162  | 
     | 
     | 
    #include "rijndael.h"  | 
    
    
    163  | 
     | 
     | 
    #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)  | 
    
    
    164  | 
     | 
     | 
    typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */  | 
    
    
    165  | 
     | 
     | 
    #define aes_encryption(in,out,int_key) \  | 
    
    
    166  | 
     | 
     | 
      rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))  | 
    
    
    167  | 
     | 
     | 
    #define aes_key_setup(key,int_key) \  | 
    
    
    168  | 
     | 
     | 
      rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \  | 
    
    
    169  | 
     | 
     | 
      UMAC_KEY_LEN*8)  | 
    
    
    170  | 
     | 
     | 
    #endif  | 
    
    
    171  | 
     | 
     | 
     | 
    
    
    172  | 
     | 
     | 
    /* The user-supplied UMAC key is stretched using AES in a counter  | 
    
    
    173  | 
     | 
     | 
     * mode to supply all random bits needed by UMAC. The kdf function takes  | 
    
    
    174  | 
     | 
     | 
     * an AES internal key representation 'key' and writes a stream of  | 
    
    
    175  | 
     | 
     | 
     * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct  | 
    
    
    176  | 
     | 
     | 
     * 'ndx' causes a distinct byte stream.  | 
    
    
    177  | 
     | 
     | 
     */  | 
    
    
    178  | 
     | 
     | 
    static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)  | 
    
    
    179  | 
     | 
     | 
    { | 
    
    
    180  | 
     | 
     | 
        UINT8 in_buf[AES_BLOCK_LEN] = {0}; | 
    
    
    181  | 
     | 
     | 
        UINT8 out_buf[AES_BLOCK_LEN];  | 
    
    
    182  | 
     | 
     | 
        UINT8 *dst_buf = (UINT8 *)buffer_ptr;  | 
    
    
    183  | 
     | 
     | 
        int i;  | 
    
    
    184  | 
     | 
     | 
     | 
    
    
    185  | 
     | 
     | 
        /* Setup the initial value */  | 
    
    
    186  | 
     | 
     | 
        in_buf[AES_BLOCK_LEN-9] = ndx;  | 
    
    
    187  | 
     | 
     | 
        in_buf[AES_BLOCK_LEN-1] = i = 1;  | 
    
    
    188  | 
     | 
     | 
     | 
    
    
    189  | 
     | 
     | 
        while (nbytes >= AES_BLOCK_LEN) { | 
    
    
    190  | 
     | 
     | 
            aes_encryption(in_buf, out_buf, key);  | 
    
    
    191  | 
     | 
     | 
            memcpy(dst_buf,out_buf,AES_BLOCK_LEN);  | 
    
    
    192  | 
     | 
     | 
            in_buf[AES_BLOCK_LEN-1] = ++i;  | 
    
    
    193  | 
     | 
     | 
            nbytes -= AES_BLOCK_LEN;  | 
    
    
    194  | 
     | 
     | 
            dst_buf += AES_BLOCK_LEN;  | 
    
    
    195  | 
     | 
     | 
        }  | 
    
    
    196  | 
     | 
     | 
        if (nbytes) { | 
    
    
    197  | 
     | 
     | 
            aes_encryption(in_buf, out_buf, key);  | 
    
    
    198  | 
     | 
     | 
            memcpy(dst_buf,out_buf,nbytes);  | 
    
    
    199  | 
     | 
     | 
        }  | 
    
    
    200  | 
     | 
     | 
        explicit_bzero(in_buf, sizeof(in_buf));  | 
    
    
    201  | 
     | 
     | 
        explicit_bzero(out_buf, sizeof(out_buf));  | 
    
    
    202  | 
     | 
     | 
    }  | 
    
    
    203  | 
     | 
     | 
     | 
    
    
    204  | 
     | 
     | 
    /* The final UHASH result is XOR'd with the output of a pseudorandom  | 
    
    
    205  | 
     | 
     | 
     * function. Here, we use AES to generate random output and  | 
    
    
    206  | 
     | 
     | 
     * xor the appropriate bytes depending on the last bits of nonce.  | 
    
    
    207  | 
     | 
     | 
     * This scheme is optimized for sequential, increasing big-endian nonces.  | 
    
    
    208  | 
     | 
     | 
     */  | 
    
    
    209  | 
     | 
     | 
     | 
    
    
    210  | 
     | 
     | 
    typedef struct { | 
    
    
    211  | 
     | 
     | 
        UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */  | 
    
    
    212  | 
     | 
     | 
        UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */  | 
    
    
    213  | 
     | 
     | 
        aes_int_key prf_key;         /* Expanded AES key for PDF          */  | 
    
    
    214  | 
     | 
     | 
    } pdf_ctx;  | 
    
    
    215  | 
     | 
     | 
     | 
    
    
    216  | 
     | 
     | 
    static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)  | 
    
    
    217  | 
     | 
     | 
    { | 
    
    
    218  | 
     | 
     | 
        UINT8 buf[UMAC_KEY_LEN];  | 
    
    
    219  | 
     | 
     | 
     | 
    
    
    220  | 
     | 
     | 
        kdf(buf, prf_key, 0, UMAC_KEY_LEN);  | 
    
    
    221  | 
     | 
     | 
        aes_key_setup(buf, pc->prf_key);  | 
    
    
    222  | 
     | 
     | 
     | 
    
    
    223  | 
     | 
     | 
        /* Initialize pdf and cache */  | 
    
    
    224  | 
     | 
     | 
        memset(pc->nonce, 0, sizeof(pc->nonce));  | 
    
    
    225  | 
     | 
     | 
        aes_encryption(pc->nonce, pc->cache, pc->prf_key);  | 
    
    
    226  | 
     | 
     | 
        explicit_bzero(buf, sizeof(buf));  | 
    
    
    227  | 
     | 
     | 
    }  | 
    
    
    228  | 
     | 
     | 
     | 
    
    
    229  | 
     | 
     | 
    static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])  | 
    
    
    230  | 
     | 
     | 
    { | 
    
    
    231  | 
     | 
     | 
        /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes  | 
    
    
    232  | 
     | 
     | 
         * of the AES output. If last time around we returned the ndx-1st  | 
    
    
    233  | 
     | 
     | 
         * element, then we may have the result in the cache already.  | 
    
    
    234  | 
     | 
     | 
         */  | 
    
    
    235  | 
     | 
     | 
     | 
    
    
    236  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN == 4)  | 
    
    
    237  | 
     | 
     | 
    #define LOW_BIT_MASK 3  | 
    
    
    238  | 
     | 
     | 
    #elif (UMAC_OUTPUT_LEN == 8)  | 
    
    
    239  | 
     | 
     | 
    #define LOW_BIT_MASK 1  | 
    
    
    240  | 
     | 
     | 
    #elif (UMAC_OUTPUT_LEN > 8)  | 
    
    
    241  | 
     | 
     | 
    #define LOW_BIT_MASK 0  | 
    
    
    242  | 
     | 
     | 
    #endif  | 
    
    
    243  | 
     | 
     | 
        union { | 
    
    
    244  | 
     | 
     | 
            UINT8 tmp_nonce_lo[4];  | 
    
    
    245  | 
     | 
     | 
            UINT32 align;  | 
    
    
    246  | 
     | 
     | 
        } t;  | 
    
    
    247  | 
     | 
     | 
    #if LOW_BIT_MASK != 0  | 
    
    
    248  | 
     | 
     | 
        int ndx = nonce[7] & LOW_BIT_MASK;  | 
    
    
    249  | 
     | 
     | 
    #endif  | 
    
    
    250  | 
     | 
     | 
        *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];  | 
    
    
    251  | 
     | 
     | 
        t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */  | 
    
    
    252  | 
     | 
     | 
     | 
    
    
    253  | 
     | 
     | 
        if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||  | 
    
    
    254  | 
     | 
     | 
             (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )  | 
    
    
    255  | 
     | 
     | 
        { | 
    
    
    256  | 
     | 
     | 
            ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];  | 
    
    
    257  | 
     | 
     | 
            ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];  | 
    
    
    258  | 
     | 
     | 
            aes_encryption(pc->nonce, pc->cache, pc->prf_key);  | 
    
    
    259  | 
     | 
     | 
        }  | 
    
    
    260  | 
     | 
     | 
     | 
    
    
    261  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN == 4)  | 
    
    
    262  | 
     | 
     | 
        *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];  | 
    
    
    263  | 
     | 
     | 
    #elif (UMAC_OUTPUT_LEN == 8)  | 
    
    
    264  | 
     | 
     | 
        *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];  | 
    
    
    265  | 
     | 
     | 
    #elif (UMAC_OUTPUT_LEN == 12)  | 
    
    
    266  | 
     | 
     | 
        ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];  | 
    
    
    267  | 
     | 
     | 
        ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];  | 
    
    
    268  | 
     | 
     | 
    #elif (UMAC_OUTPUT_LEN == 16)  | 
    
    
    269  | 
     | 
     | 
        ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];  | 
    
    
    270  | 
     | 
     | 
        ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];  | 
    
    
    271  | 
     | 
     | 
    #endif  | 
    
    
    272  | 
     | 
     | 
    }  | 
    
    
    273  | 
     | 
     | 
     | 
    
    
    274  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    275  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    276  | 
     | 
     | 
    /* ----- Begin NH Hash Section ------------------------------------------ */  | 
    
    
    277  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    278  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    279  | 
     | 
     | 
     | 
    
    
    280  | 
     | 
     | 
    /* The NH-based hash functions used in UMAC are described in the UMAC paper  | 
    
    
    281  | 
     | 
     | 
     * and specification, both of which can be found at the UMAC website.  | 
    
    
    282  | 
     | 
     | 
     * The interface to this implementation has two  | 
    
    
    283  | 
     | 
     | 
     * versions, one expects the entire message being hashed to be passed  | 
    
    
    284  | 
     | 
     | 
     * in a single buffer and returns the hash result immediately. The second  | 
    
    
    285  | 
     | 
     | 
     * allows the message to be passed in a sequence of buffers. In the  | 
    
    
    286  | 
     | 
     | 
     * muliple-buffer interface, the client calls the routine nh_update() as  | 
    
    
    287  | 
     | 
     | 
     * many times as necessary. When there is no more data to be fed to the  | 
    
    
    288  | 
     | 
     | 
     * hash, the client calls nh_final() which calculates the hash output.  | 
    
    
    289  | 
     | 
     | 
     * Before beginning another hash calculation the nh_reset() routine  | 
    
    
    290  | 
     | 
     | 
     * must be called. The single-buffer routine, nh(), is equivalent to  | 
    
    
    291  | 
     | 
     | 
     * the sequence of calls nh_update() and nh_final(); however it is  | 
    
    
    292  | 
     | 
     | 
     * optimized and should be prefered whenever the multiple-buffer interface  | 
    
    
    293  | 
     | 
     | 
     * is not necessary. When using either interface, it is the client's  | 
    
    
    294  | 
     | 
     | 
     * responsability to pass no more than L1_KEY_LEN bytes per hash result.  | 
    
    
    295  | 
     | 
     | 
     *  | 
    
    
    296  | 
     | 
     | 
     * The routine nh_init() initializes the nh_ctx data structure and  | 
    
    
    297  | 
     | 
     | 
     * must be called once, before any other PDF routine.  | 
    
    
    298  | 
     | 
     | 
     */  | 
    
    
    299  | 
     | 
     | 
     | 
    
    
    300  | 
     | 
     | 
     /* The "nh_aux" routines do the actual NH hashing work. They  | 
    
    
    301  | 
     | 
     | 
      * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines  | 
    
    
    302  | 
     | 
     | 
      * produce output for all STREAMS NH iterations in one call,  | 
    
    
    303  | 
     | 
     | 
      * allowing the parallel implementation of the streams.  | 
    
    
    304  | 
     | 
     | 
      */  | 
    
    
    305  | 
     | 
     | 
     | 
    
    
    306  | 
     | 
     | 
    #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */  | 
    
    
    307  | 
     | 
     | 
    #define L1_KEY_LEN         1024     /* Internal key bytes                 */  | 
    
    
    308  | 
     | 
     | 
    #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */  | 
    
    
    309  | 
     | 
     | 
    #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */  | 
    
    
    310  | 
     | 
     | 
    #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */  | 
    
    
    311  | 
     | 
     | 
    #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */  | 
    
    
    312  | 
     | 
     | 
     | 
    
    
    313  | 
     | 
     | 
    typedef struct { | 
    
    
    314  | 
     | 
     | 
        UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */  | 
    
    
    315  | 
     | 
     | 
        UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */  | 
    
    
    316  | 
     | 
     | 
        int next_data_empty;    /* Bookeeping variable for data buffer.       */  | 
    
    
    317  | 
     | 
     | 
        int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */  | 
    
    
    318  | 
     | 
     | 
        UINT64 state[STREAMS];               /* on-line state     */  | 
    
    
    319  | 
     | 
     | 
    } nh_ctx;  | 
    
    
    320  | 
     | 
     | 
     | 
    
    
    321  | 
     | 
     | 
     | 
    
    
    322  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN == 4)  | 
    
    
    323  | 
     | 
     | 
     | 
    
    
    324  | 
     | 
     | 
    static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)  | 
    
    
    325  | 
     | 
     | 
    /* NH hashing primitive. Previous (partial) hash result is loaded and  | 
    
    
    326  | 
     | 
     | 
    * then stored via hp pointer. The length of the data pointed at by "dp",  | 
    
    
    327  | 
     | 
     | 
    * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key  | 
    
    
    328  | 
     | 
     | 
    * is expected to be endian compensated in memory at key setup.  | 
    
    
    329  | 
     | 
     | 
    */  | 
    
    
    330  | 
     | 
     | 
    { | 
    
    
    331  | 
     | 
     | 
        UINT64 h;  | 
    
    
    332  | 
     | 
     | 
        UWORD c = dlen / 32;  | 
    
    
    333  | 
     | 
     | 
        UINT32 *k = (UINT32 *)kp;  | 
    
    
    334  | 
     | 
     | 
        const UINT32 *d = (const UINT32 *)dp;  | 
    
    
    335  | 
     | 
     | 
        UINT32 d0,d1,d2,d3,d4,d5,d6,d7;  | 
    
    
    336  | 
     | 
     | 
        UINT32 k0,k1,k2,k3,k4,k5,k6,k7;  | 
    
    
    337  | 
     | 
     | 
     | 
    
    
    338  | 
     | 
     | 
        h = *((UINT64 *)hp);  | 
    
    
    339  | 
     | 
     | 
        do { | 
    
    
    340  | 
     | 
     | 
            d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);  | 
    
    
    341  | 
     | 
     | 
            d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);  | 
    
    
    342  | 
     | 
     | 
            d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);  | 
    
    
    343  | 
     | 
     | 
            d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);  | 
    
    
    344  | 
     | 
     | 
            k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);  | 
    
    
    345  | 
     | 
     | 
            k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);  | 
    
    
    346  | 
     | 
     | 
            h += MUL64((k0 + d0), (k4 + d4));  | 
    
    
    347  | 
     | 
     | 
            h += MUL64((k1 + d1), (k5 + d5));  | 
    
    
    348  | 
     | 
     | 
            h += MUL64((k2 + d2), (k6 + d6));  | 
    
    
    349  | 
     | 
     | 
            h += MUL64((k3 + d3), (k7 + d7));  | 
    
    
    350  | 
     | 
     | 
     | 
    
    
    351  | 
     | 
     | 
            d += 8;  | 
    
    
    352  | 
     | 
     | 
            k += 8;  | 
    
    
    353  | 
     | 
     | 
        } while (--c);  | 
    
    
    354  | 
     | 
     | 
      *((UINT64 *)hp) = h;  | 
    
    
    355  | 
     | 
     | 
    }  | 
    
    
    356  | 
     | 
     | 
     | 
    
    
    357  | 
     | 
     | 
    #elif (UMAC_OUTPUT_LEN == 8)  | 
    
    
    358  | 
     | 
     | 
     | 
    
    
    359  | 
     | 
     | 
    static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)  | 
    
    
    360  | 
     | 
     | 
    /* Same as previous nh_aux, but two streams are handled in one pass,  | 
    
    
    361  | 
     | 
     | 
     * reading and writing 16 bytes of hash-state per call.  | 
    
    
    362  | 
     | 
     | 
     */  | 
    
    
    363  | 
     | 
     | 
    { | 
    
    
    364  | 
     | 
     | 
      UINT64 h1,h2;  | 
    
    
    365  | 
     | 
     | 
      UWORD c = dlen / 32;  | 
    
    
    366  | 
     | 
     | 
      UINT32 *k = (UINT32 *)kp;  | 
    
    
    367  | 
     | 
     | 
      const UINT32 *d = (const UINT32 *)dp;  | 
    
    
    368  | 
     | 
     | 
      UINT32 d0,d1,d2,d3,d4,d5,d6,d7;  | 
    
    
    369  | 
     | 
     | 
      UINT32 k0,k1,k2,k3,k4,k5,k6,k7,  | 
    
    
    370  | 
     | 
     | 
            k8,k9,k10,k11;  | 
    
    
    371  | 
     | 
     | 
     | 
    
    
    372  | 
     | 
     | 
      h1 = *((UINT64 *)hp);  | 
    
    
    373  | 
     | 
     | 
      h2 = *((UINT64 *)hp + 1);  | 
    
    
    374  | 
     | 
     | 
      k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);  | 
    
    
    375  | 
     | 
     | 
      do { | 
    
    
    376  | 
     | 
     | 
        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);  | 
    
    
    377  | 
     | 
     | 
        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);  | 
    
    
    378  | 
     | 
     | 
        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);  | 
    
    
    379  | 
     | 
     | 
        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);  | 
    
    
    380  | 
     | 
     | 
        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);  | 
    
    
    381  | 
     | 
     | 
        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);  | 
    
    
    382  | 
     | 
     | 
     | 
    
    
    383  | 
     | 
     | 
        h1 += MUL64((k0 + d0), (k4 + d4));  | 
    
    
    384  | 
     | 
     | 
        h2 += MUL64((k4 + d0), (k8 + d4));  | 
    
    
    385  | 
     | 
     | 
     | 
    
    
    386  | 
     | 
     | 
        h1 += MUL64((k1 + d1), (k5 + d5));  | 
    
    
    387  | 
     | 
     | 
        h2 += MUL64((k5 + d1), (k9 + d5));  | 
    
    
    388  | 
     | 
     | 
     | 
    
    
    389  | 
     | 
     | 
        h1 += MUL64((k2 + d2), (k6 + d6));  | 
    
    
    390  | 
     | 
     | 
        h2 += MUL64((k6 + d2), (k10 + d6));  | 
    
    
    391  | 
     | 
     | 
     | 
    
    
    392  | 
     | 
     | 
        h1 += MUL64((k3 + d3), (k7 + d7));  | 
    
    
    393  | 
     | 
     | 
        h2 += MUL64((k7 + d3), (k11 + d7));  | 
    
    
    394  | 
     | 
     | 
     | 
    
    
    395  | 
     | 
     | 
        k0 = k8; k1 = k9; k2 = k10; k3 = k11;  | 
    
    
    396  | 
     | 
     | 
     | 
    
    
    397  | 
     | 
     | 
        d += 8;  | 
    
    
    398  | 
     | 
     | 
        k += 8;  | 
    
    
    399  | 
     | 
     | 
      } while (--c);  | 
    
    
    400  | 
     | 
     | 
      ((UINT64 *)hp)[0] = h1;  | 
    
    
    401  | 
     | 
     | 
      ((UINT64 *)hp)[1] = h2;  | 
    
    
    402  | 
     | 
     | 
    }  | 
    
    
    403  | 
     | 
     | 
     | 
    
    
    404  | 
     | 
     | 
    #elif (UMAC_OUTPUT_LEN == 12)  | 
    
    
    405  | 
     | 
     | 
     | 
    
    
    406  | 
     | 
     | 
    static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)  | 
    
    
    407  | 
     | 
     | 
    /* Same as previous nh_aux, but two streams are handled in one pass,  | 
    
    
    408  | 
     | 
     | 
     * reading and writing 24 bytes of hash-state per call.  | 
    
    
    409  | 
     | 
     | 
    */  | 
    
    
    410  | 
     | 
     | 
    { | 
    
    
    411  | 
     | 
     | 
        UINT64 h1,h2,h3;  | 
    
    
    412  | 
     | 
     | 
        UWORD c = dlen / 32;  | 
    
    
    413  | 
     | 
     | 
        UINT32 *k = (UINT32 *)kp;  | 
    
    
    414  | 
     | 
     | 
        const UINT32 *d = (const UINT32 *)dp;  | 
    
    
    415  | 
     | 
     | 
        UINT32 d0,d1,d2,d3,d4,d5,d6,d7;  | 
    
    
    416  | 
     | 
     | 
        UINT32 k0,k1,k2,k3,k4,k5,k6,k7,  | 
    
    
    417  | 
     | 
     | 
            k8,k9,k10,k11,k12,k13,k14,k15;  | 
    
    
    418  | 
     | 
     | 
     | 
    
    
    419  | 
     | 
     | 
        h1 = *((UINT64 *)hp);  | 
    
    
    420  | 
     | 
     | 
        h2 = *((UINT64 *)hp + 1);  | 
    
    
    421  | 
     | 
     | 
        h3 = *((UINT64 *)hp + 2);  | 
    
    
    422  | 
     | 
     | 
        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);  | 
    
    
    423  | 
     | 
     | 
        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);  | 
    
    
    424  | 
     | 
     | 
        do { | 
    
    
    425  | 
     | 
     | 
            d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);  | 
    
    
    426  | 
     | 
     | 
            d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);  | 
    
    
    427  | 
     | 
     | 
            d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);  | 
    
    
    428  | 
     | 
     | 
            d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);  | 
    
    
    429  | 
     | 
     | 
            k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);  | 
    
    
    430  | 
     | 
     | 
            k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);  | 
    
    
    431  | 
     | 
     | 
     | 
    
    
    432  | 
     | 
     | 
            h1 += MUL64((k0 + d0), (k4 + d4));  | 
    
    
    433  | 
     | 
     | 
            h2 += MUL64((k4 + d0), (k8 + d4));  | 
    
    
    434  | 
     | 
     | 
            h3 += MUL64((k8 + d0), (k12 + d4));  | 
    
    
    435  | 
     | 
     | 
     | 
    
    
    436  | 
     | 
     | 
            h1 += MUL64((k1 + d1), (k5 + d5));  | 
    
    
    437  | 
     | 
     | 
            h2 += MUL64((k5 + d1), (k9 + d5));  | 
    
    
    438  | 
     | 
     | 
            h3 += MUL64((k9 + d1), (k13 + d5));  | 
    
    
    439  | 
     | 
     | 
     | 
    
    
    440  | 
     | 
     | 
            h1 += MUL64((k2 + d2), (k6 + d6));  | 
    
    
    441  | 
     | 
     | 
            h2 += MUL64((k6 + d2), (k10 + d6));  | 
    
    
    442  | 
     | 
     | 
            h3 += MUL64((k10 + d2), (k14 + d6));  | 
    
    
    443  | 
     | 
     | 
     | 
    
    
    444  | 
     | 
     | 
            h1 += MUL64((k3 + d3), (k7 + d7));  | 
    
    
    445  | 
     | 
     | 
            h2 += MUL64((k7 + d3), (k11 + d7));  | 
    
    
    446  | 
     | 
     | 
            h3 += MUL64((k11 + d3), (k15 + d7));  | 
    
    
    447  | 
     | 
     | 
     | 
    
    
    448  | 
     | 
     | 
            k0 = k8; k1 = k9; k2 = k10; k3 = k11;  | 
    
    
    449  | 
     | 
     | 
            k4 = k12; k5 = k13; k6 = k14; k7 = k15;  | 
    
    
    450  | 
     | 
     | 
     | 
    
    
    451  | 
     | 
     | 
            d += 8;  | 
    
    
    452  | 
     | 
     | 
            k += 8;  | 
    
    
    453  | 
     | 
     | 
        } while (--c);  | 
    
    
    454  | 
     | 
     | 
        ((UINT64 *)hp)[0] = h1;  | 
    
    
    455  | 
     | 
     | 
        ((UINT64 *)hp)[1] = h2;  | 
    
    
    456  | 
     | 
     | 
        ((UINT64 *)hp)[2] = h3;  | 
    
    
    457  | 
     | 
     | 
    }  | 
    
    
    458  | 
     | 
     | 
     | 
    
    
    459  | 
     | 
     | 
    #elif (UMAC_OUTPUT_LEN == 16)  | 
    
    
    460  | 
     | 
     | 
     | 
    
    
    461  | 
     | 
     | 
    static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)  | 
    
    
    462  | 
     | 
     | 
    /* Same as previous nh_aux, but two streams are handled in one pass,  | 
    
    
    463  | 
     | 
     | 
     * reading and writing 24 bytes of hash-state per call.  | 
    
    
    464  | 
     | 
     | 
    */  | 
    
    
    465  | 
     | 
     | 
    { | 
    
    
    466  | 
     | 
     | 
        UINT64 h1,h2,h3,h4;  | 
    
    
    467  | 
     | 
     | 
        UWORD c = dlen / 32;  | 
    
    
    468  | 
     | 
     | 
        UINT32 *k = (UINT32 *)kp;  | 
    
    
    469  | 
     | 
     | 
        const UINT32 *d = (const UINT32 *)dp;  | 
    
    
    470  | 
     | 
     | 
        UINT32 d0,d1,d2,d3,d4,d5,d6,d7;  | 
    
    
    471  | 
     | 
     | 
        UINT32 k0,k1,k2,k3,k4,k5,k6,k7,  | 
    
    
    472  | 
     | 
     | 
            k8,k9,k10,k11,k12,k13,k14,k15,  | 
    
    
    473  | 
     | 
     | 
            k16,k17,k18,k19;  | 
    
    
    474  | 
     | 
     | 
     | 
    
    
    475  | 
     | 
     | 
        h1 = *((UINT64 *)hp);  | 
    
    
    476  | 
     | 
     | 
        h2 = *((UINT64 *)hp + 1);  | 
    
    
    477  | 
     | 
     | 
        h3 = *((UINT64 *)hp + 2);  | 
    
    
    478  | 
     | 
     | 
        h4 = *((UINT64 *)hp + 3);  | 
    
    
    479  | 
     | 
     | 
        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);  | 
    
    
    480  | 
     | 
     | 
        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);  | 
    
    
    481  | 
     | 
     | 
        do { | 
    
    
    482  | 
     | 
     | 
            d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);  | 
    
    
    483  | 
     | 
     | 
            d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);  | 
    
    
    484  | 
     | 
     | 
            d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);  | 
    
    
    485  | 
     | 
     | 
            d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);  | 
    
    
    486  | 
     | 
     | 
            k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);  | 
    
    
    487  | 
     | 
     | 
            k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);  | 
    
    
    488  | 
     | 
     | 
            k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);  | 
    
    
    489  | 
     | 
     | 
     | 
    
    
    490  | 
     | 
     | 
            h1 += MUL64((k0 + d0), (k4 + d4));  | 
    
    
    491  | 
     | 
     | 
            h2 += MUL64((k4 + d0), (k8 + d4));  | 
    
    
    492  | 
     | 
     | 
            h3 += MUL64((k8 + d0), (k12 + d4));  | 
    
    
    493  | 
     | 
     | 
            h4 += MUL64((k12 + d0), (k16 + d4));  | 
    
    
    494  | 
     | 
     | 
     | 
    
    
    495  | 
     | 
     | 
            h1 += MUL64((k1 + d1), (k5 + d5));  | 
    
    
    496  | 
     | 
     | 
            h2 += MUL64((k5 + d1), (k9 + d5));  | 
    
    
    497  | 
     | 
     | 
            h3 += MUL64((k9 + d1), (k13 + d5));  | 
    
    
    498  | 
     | 
     | 
            h4 += MUL64((k13 + d1), (k17 + d5));  | 
    
    
    499  | 
     | 
     | 
     | 
    
    
    500  | 
     | 
     | 
            h1 += MUL64((k2 + d2), (k6 + d6));  | 
    
    
    501  | 
     | 
     | 
            h2 += MUL64((k6 + d2), (k10 + d6));  | 
    
    
    502  | 
     | 
     | 
            h3 += MUL64((k10 + d2), (k14 + d6));  | 
    
    
    503  | 
     | 
     | 
            h4 += MUL64((k14 + d2), (k18 + d6));  | 
    
    
    504  | 
     | 
     | 
     | 
    
    
    505  | 
     | 
     | 
            h1 += MUL64((k3 + d3), (k7 + d7));  | 
    
    
    506  | 
     | 
     | 
            h2 += MUL64((k7 + d3), (k11 + d7));  | 
    
    
    507  | 
     | 
     | 
            h3 += MUL64((k11 + d3), (k15 + d7));  | 
    
    
    508  | 
     | 
     | 
            h4 += MUL64((k15 + d3), (k19 + d7));  | 
    
    
    509  | 
     | 
     | 
     | 
    
    
    510  | 
     | 
     | 
            k0 = k8; k1 = k9; k2 = k10; k3 = k11;  | 
    
    
    511  | 
     | 
     | 
            k4 = k12; k5 = k13; k6 = k14; k7 = k15;  | 
    
    
    512  | 
     | 
     | 
            k8 = k16; k9 = k17; k10 = k18; k11 = k19;  | 
    
    
    513  | 
     | 
     | 
     | 
    
    
    514  | 
     | 
     | 
            d += 8;  | 
    
    
    515  | 
     | 
     | 
            k += 8;  | 
    
    
    516  | 
     | 
     | 
        } while (--c);  | 
    
    
    517  | 
     | 
     | 
        ((UINT64 *)hp)[0] = h1;  | 
    
    
    518  | 
     | 
     | 
        ((UINT64 *)hp)[1] = h2;  | 
    
    
    519  | 
     | 
     | 
        ((UINT64 *)hp)[2] = h3;  | 
    
    
    520  | 
     | 
     | 
        ((UINT64 *)hp)[3] = h4;  | 
    
    
    521  | 
     | 
     | 
    }  | 
    
    
    522  | 
     | 
     | 
     | 
    
    
    523  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    524  | 
     | 
     | 
    #endif  /* UMAC_OUTPUT_LENGTH */  | 
    
    
    525  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    526  | 
     | 
     | 
     | 
    
    
    527  | 
     | 
     | 
     | 
    
    
    528  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    529  | 
     | 
     | 
     | 
    
    
    530  | 
     | 
     | 
    static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)  | 
    
    
    531  | 
     | 
     | 
    /* This function is a wrapper for the primitive NH hash functions. It takes  | 
    
    
    532  | 
     | 
     | 
     * as argument "hc" the current hash context and a buffer which must be a  | 
    
    
    533  | 
     | 
     | 
     * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset  | 
    
    
    534  | 
     | 
     | 
     * appropriately according to how much message has been hashed already.  | 
    
    
    535  | 
     | 
     | 
     */  | 
    
    
    536  | 
     | 
     | 
    { | 
    
    
    537  | 
     | 
     | 
        UINT8 *key;  | 
    
    
    538  | 
     | 
     | 
     | 
    
    
    539  | 
     | 
     | 
        key = hc->nh_key + hc->bytes_hashed;  | 
    
    
    540  | 
     | 
     | 
        nh_aux(key, buf, hc->state, nbytes);  | 
    
    
    541  | 
     | 
     | 
    }  | 
    
    
    542  | 
     | 
     | 
     | 
    
    
    543  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    544  | 
     | 
     | 
     | 
    
    
    545  | 
     | 
     | 
    #if (__LITTLE_ENDIAN__)  | 
    
    
    546  | 
     | 
     | 
    static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)  | 
    
    
    547  | 
     | 
     | 
    /* We endian convert the keys on little-endian computers to               */  | 
    
    
    548  | 
     | 
     | 
    /* compensate for the lack of big-endian memory reads during hashing.     */  | 
    
    
    549  | 
     | 
     | 
    { | 
    
    
    550  | 
     | 
     | 
        UWORD iters = num_bytes / bpw;  | 
    
    
    551  | 
     | 
     | 
        if (bpw == 4) { | 
    
    
    552  | 
     | 
     | 
            UINT32 *p = (UINT32 *)buf;  | 
    
    
    553  | 
     | 
     | 
            do { | 
    
    
    554  | 
     | 
     | 
                *p = LOAD_UINT32_REVERSED(p);  | 
    
    
    555  | 
     | 
     | 
                p++;  | 
    
    
    556  | 
     | 
     | 
            } while (--iters);  | 
    
    
    557  | 
     | 
     | 
        } else if (bpw == 8) { | 
    
    
    558  | 
     | 
     | 
            UINT32 *p = (UINT32 *)buf;  | 
    
    
    559  | 
     | 
     | 
            UINT32 t;  | 
    
    
    560  | 
     | 
     | 
            do { | 
    
    
    561  | 
     | 
     | 
                t = LOAD_UINT32_REVERSED(p+1);  | 
    
    
    562  | 
     | 
     | 
                p[1] = LOAD_UINT32_REVERSED(p);  | 
    
    
    563  | 
     | 
     | 
                p[0] = t;  | 
    
    
    564  | 
     | 
     | 
                p += 2;  | 
    
    
    565  | 
     | 
     | 
            } while (--iters);  | 
    
    
    566  | 
     | 
     | 
        }  | 
    
    
    567  | 
     | 
     | 
    }  | 
    
    
    568  | 
     | 
     | 
    #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))  | 
    
    
    569  | 
     | 
     | 
    #else  | 
    
    
    570  | 
     | 
     | 
    #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */ | 
    
    
    571  | 
     | 
     | 
    #endif  | 
    
    
    572  | 
     | 
     | 
     | 
    
    
    573  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    574  | 
     | 
     | 
     | 
    
    
    575  | 
     | 
     | 
    static void nh_reset(nh_ctx *hc)  | 
    
    
    576  | 
     | 
     | 
    /* Reset nh_ctx to ready for hashing of new data */  | 
    
    
    577  | 
     | 
     | 
    { | 
    
    
    578  | 
     | 
     | 
        hc->bytes_hashed = 0;  | 
    
    
    579  | 
     | 
     | 
        hc->next_data_empty = 0;  | 
    
    
    580  | 
     | 
     | 
        hc->state[0] = 0;  | 
    
    
    581  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN >= 8)  | 
    
    
    582  | 
     | 
     | 
        hc->state[1] = 0;  | 
    
    
    583  | 
     | 
     | 
    #endif  | 
    
    
    584  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN >= 12)  | 
    
    
    585  | 
     | 
     | 
        hc->state[2] = 0;  | 
    
    
    586  | 
     | 
     | 
    #endif  | 
    
    
    587  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN == 16)  | 
    
    
    588  | 
     | 
     | 
        hc->state[3] = 0;  | 
    
    
    589  | 
     | 
     | 
    #endif  | 
    
    
    590  | 
     | 
     | 
     | 
    
    
    591  | 
     | 
     | 
    }  | 
    
    
    592  | 
     | 
     | 
     | 
    
    
    593  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    594  | 
     | 
     | 
     | 
    
    
    595  | 
     | 
     | 
    static void nh_init(nh_ctx *hc, aes_int_key prf_key)  | 
    
    
    596  | 
     | 
     | 
    /* Generate nh_key, endian convert and reset to be ready for hashing.   */  | 
    
    
    597  | 
     | 
     | 
    { | 
    
    
    598  | 
     | 
     | 
        kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));  | 
    
    
    599  | 
     | 
     | 
        endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));  | 
    
    
    600  | 
     | 
     | 
        nh_reset(hc);  | 
    
    
    601  | 
     | 
     | 
    }  | 
    
    
    602  | 
     | 
     | 
     | 
    
    
    603  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    604  | 
     | 
     | 
     | 
    
    
    605  | 
     | 
     | 
    static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)  | 
    
    
    606  | 
     | 
     | 
    /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */  | 
    
    
    607  | 
     | 
     | 
    /* even multiple of HASH_BUF_BYTES.                                       */  | 
    
    
    608  | 
     | 
     | 
    { | 
    
    
    609  | 
     | 
     | 
        UINT32 i,j;  | 
    
    
    610  | 
     | 
     | 
     | 
    
    
    611  | 
     | 
     | 
        j = hc->next_data_empty;  | 
    
    
    612  | 
     | 
     | 
        if ((j + nbytes) >= HASH_BUF_BYTES) { | 
    
    
    613  | 
     | 
     | 
            if (j) { | 
    
    
    614  | 
     | 
     | 
                i = HASH_BUF_BYTES - j;  | 
    
    
    615  | 
     | 
     | 
                memcpy(hc->data+j, buf, i);  | 
    
    
    616  | 
     | 
     | 
                nh_transform(hc,hc->data,HASH_BUF_BYTES);  | 
    
    
    617  | 
     | 
     | 
                nbytes -= i;  | 
    
    
    618  | 
     | 
     | 
                buf += i;  | 
    
    
    619  | 
     | 
     | 
                hc->bytes_hashed += HASH_BUF_BYTES;  | 
    
    
    620  | 
     | 
     | 
            }  | 
    
    
    621  | 
     | 
     | 
            if (nbytes >= HASH_BUF_BYTES) { | 
    
    
    622  | 
     | 
     | 
                i = nbytes & ~(HASH_BUF_BYTES - 1);  | 
    
    
    623  | 
     | 
     | 
                nh_transform(hc, buf, i);  | 
    
    
    624  | 
     | 
     | 
                nbytes -= i;  | 
    
    
    625  | 
     | 
     | 
                buf += i;  | 
    
    
    626  | 
     | 
     | 
                hc->bytes_hashed += i;  | 
    
    
    627  | 
     | 
     | 
            }  | 
    
    
    628  | 
     | 
     | 
            j = 0;  | 
    
    
    629  | 
     | 
     | 
        }  | 
    
    
    630  | 
     | 
     | 
        memcpy(hc->data + j, buf, nbytes);  | 
    
    
    631  | 
     | 
     | 
        hc->next_data_empty = j + nbytes;  | 
    
    
    632  | 
     | 
     | 
    }  | 
    
    
    633  | 
     | 
     | 
     | 
    
    
    634  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    635  | 
     | 
     | 
     | 
    
    
    636  | 
     | 
     | 
    static void zero_pad(UINT8 *p, int nbytes)  | 
    
    
    637  | 
     | 
     | 
    { | 
    
    
    638  | 
     | 
     | 
    /* Write "nbytes" of zeroes, beginning at "p" */  | 
    
    
    639  | 
     | 
     | 
        if (nbytes >= (int)sizeof(UWORD)) { | 
    
    
    640  | 
     | 
     | 
            while ((ptrdiff_t)p % sizeof(UWORD)) { | 
    
    
    641  | 
     | 
     | 
                *p = 0;  | 
    
    
    642  | 
     | 
     | 
                nbytes--;  | 
    
    
    643  | 
     | 
     | 
                p++;  | 
    
    
    644  | 
     | 
     | 
            }  | 
    
    
    645  | 
     | 
     | 
            while (nbytes >= (int)sizeof(UWORD)) { | 
    
    
    646  | 
     | 
     | 
                *(UWORD *)p = 0;  | 
    
    
    647  | 
     | 
     | 
                nbytes -= sizeof(UWORD);  | 
    
    
    648  | 
     | 
     | 
                p += sizeof(UWORD);  | 
    
    
    649  | 
     | 
     | 
            }  | 
    
    
    650  | 
     | 
     | 
        }  | 
    
    
    651  | 
     | 
     | 
        while (nbytes) { | 
    
    
    652  | 
     | 
     | 
            *p = 0;  | 
    
    
    653  | 
     | 
     | 
            nbytes--;  | 
    
    
    654  | 
     | 
     | 
            p++;  | 
    
    
    655  | 
     | 
     | 
        }  | 
    
    
    656  | 
     | 
     | 
    }  | 
    
    
    657  | 
     | 
     | 
     | 
    
    
    658  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    659  | 
     | 
     | 
     | 
    
    
    660  | 
     | 
     | 
    static void nh_final(nh_ctx *hc, UINT8 *result)  | 
    
    
    661  | 
     | 
     | 
    /* After passing some number of data buffers to nh_update() for integration  | 
    
    
    662  | 
     | 
     | 
     * into an NH context, nh_final is called to produce a hash result. If any  | 
    
    
    663  | 
     | 
     | 
     * bytes are in the buffer hc->data, incorporate them into the  | 
    
    
    664  | 
     | 
     | 
     * NH context. Finally, add into the NH accumulation "state" the total number  | 
    
    
    665  | 
     | 
     | 
     * of bits hashed. The resulting numbers are written to the buffer "result".  | 
    
    
    666  | 
     | 
     | 
     * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.  | 
    
    
    667  | 
     | 
     | 
     */  | 
    
    
    668  | 
     | 
     | 
    { | 
    
    
    669  | 
     | 
     | 
        int nh_len, nbits;  | 
    
    
    670  | 
     | 
     | 
     | 
    
    
    671  | 
     | 
     | 
        if (hc->next_data_empty != 0) { | 
    
    
    672  | 
     | 
     | 
            nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &  | 
    
    
    673  | 
     | 
     | 
                                                    ~(L1_PAD_BOUNDARY - 1));  | 
    
    
    674  | 
     | 
     | 
            zero_pad(hc->data + hc->next_data_empty,  | 
    
    
    675  | 
     | 
     | 
                                              nh_len - hc->next_data_empty);  | 
    
    
    676  | 
     | 
     | 
            nh_transform(hc, hc->data, nh_len);  | 
    
    
    677  | 
     | 
     | 
            hc->bytes_hashed += hc->next_data_empty;  | 
    
    
    678  | 
     | 
     | 
        } else if (hc->bytes_hashed == 0) { | 
    
    
    679  | 
     | 
     | 
        	nh_len = L1_PAD_BOUNDARY;  | 
    
    
    680  | 
     | 
     | 
            zero_pad(hc->data, L1_PAD_BOUNDARY);  | 
    
    
    681  | 
     | 
     | 
            nh_transform(hc, hc->data, nh_len);  | 
    
    
    682  | 
     | 
     | 
        }  | 
    
    
    683  | 
     | 
     | 
     | 
    
    
    684  | 
     | 
     | 
        nbits = (hc->bytes_hashed << 3);  | 
    
    
    685  | 
     | 
     | 
        ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;  | 
    
    
    686  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN >= 8)  | 
    
    
    687  | 
     | 
     | 
        ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;  | 
    
    
    688  | 
     | 
     | 
    #endif  | 
    
    
    689  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN >= 12)  | 
    
    
    690  | 
     | 
     | 
        ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;  | 
    
    
    691  | 
     | 
     | 
    #endif  | 
    
    
    692  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN == 16)  | 
    
    
    693  | 
     | 
     | 
        ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;  | 
    
    
    694  | 
     | 
     | 
    #endif  | 
    
    
    695  | 
     | 
     | 
        nh_reset(hc);  | 
    
    
    696  | 
     | 
     | 
    }  | 
    
    
    697  | 
     | 
     | 
     | 
    
    
    698  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    699  | 
     | 
     | 
     | 
    
    
    700  | 
     | 
     | 
    static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,  | 
    
    
    701  | 
     | 
     | 
                   UINT32 unpadded_len, UINT8 *result)  | 
    
    
    702  | 
     | 
     | 
    /* All-in-one nh_update() and nh_final() equivalent.  | 
    
    
    703  | 
     | 
     | 
     * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is  | 
    
    
    704  | 
     | 
     | 
     * well aligned  | 
    
    
    705  | 
     | 
     | 
     */  | 
    
    
    706  | 
     | 
     | 
    { | 
    
    
    707  | 
     | 
     | 
        UINT32 nbits;  | 
    
    
    708  | 
     | 
     | 
     | 
    
    
    709  | 
     | 
     | 
        /* Initialize the hash state */  | 
    
    
    710  | 
     | 
     | 
        nbits = (unpadded_len << 3);  | 
    
    
    711  | 
     | 
     | 
     | 
    
    
    712  | 
     | 
     | 
        ((UINT64 *)result)[0] = nbits;  | 
    
    
    713  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN >= 8)  | 
    
    
    714  | 
     | 
     | 
        ((UINT64 *)result)[1] = nbits;  | 
    
    
    715  | 
     | 
     | 
    #endif  | 
    
    
    716  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN >= 12)  | 
    
    
    717  | 
     | 
     | 
        ((UINT64 *)result)[2] = nbits;  | 
    
    
    718  | 
     | 
     | 
    #endif  | 
    
    
    719  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN == 16)  | 
    
    
    720  | 
     | 
     | 
        ((UINT64 *)result)[3] = nbits;  | 
    
    
    721  | 
     | 
     | 
    #endif  | 
    
    
    722  | 
     | 
     | 
     | 
    
    
    723  | 
     | 
     | 
        nh_aux(hc->nh_key, buf, result, padded_len);  | 
    
    
    724  | 
     | 
     | 
    }  | 
    
    
    725  | 
     | 
     | 
     | 
    
    
    726  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    727  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    728  | 
     | 
     | 
    /* ----- Begin UHASH Section -------------------------------------------- */  | 
    
    
    729  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    730  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    731  | 
     | 
     | 
     | 
    
    
    732  | 
     | 
     | 
    /* UHASH is a multi-layered algorithm. Data presented to UHASH is first  | 
    
    
    733  | 
     | 
     | 
     * hashed by NH. The NH output is then hashed by a polynomial-hash layer  | 
    
    
    734  | 
     | 
     | 
     * unless the initial data to be hashed is short. After the polynomial-  | 
    
    
    735  | 
     | 
     | 
     * layer, an inner-product hash is used to produce the final UHASH output.  | 
    
    
    736  | 
     | 
     | 
     *  | 
    
    
    737  | 
     | 
     | 
     * UHASH provides two interfaces, one all-at-once and another where data  | 
    
    
    738  | 
     | 
     | 
     * buffers are presented sequentially. In the sequential interface, the  | 
    
    
    739  | 
     | 
     | 
     * UHASH client calls the routine uhash_update() as many times as necessary.  | 
    
    
    740  | 
     | 
     | 
     * When there is no more data to be fed to UHASH, the client calls  | 
    
    
    741  | 
     | 
     | 
     * uhash_final() which  | 
    
    
    742  | 
     | 
     | 
     * calculates the UHASH output. Before beginning another UHASH calculation  | 
    
    
    743  | 
     | 
     | 
     * the uhash_reset() routine must be called. The all-at-once UHASH routine,  | 
    
    
    744  | 
     | 
     | 
     * uhash(), is equivalent to the sequence of calls uhash_update() and  | 
    
    
    745  | 
     | 
     | 
     * uhash_final(); however it is optimized and should be  | 
    
    
    746  | 
     | 
     | 
     * used whenever the sequential interface is not necessary.  | 
    
    
    747  | 
     | 
     | 
     *  | 
    
    
    748  | 
     | 
     | 
     * The routine uhash_init() initializes the uhash_ctx data structure and  | 
    
    
    749  | 
     | 
     | 
     * must be called once, before any other UHASH routine.  | 
    
    
    750  | 
     | 
     | 
     */  | 
    
    
    751  | 
     | 
     | 
     | 
    
    
    752  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    753  | 
     | 
     | 
    /* ----- Constants and uhash_ctx ---------------------------------------- */  | 
    
    
    754  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    755  | 
     | 
     | 
     | 
    
    
    756  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    757  | 
     | 
     | 
    /* ----- Poly hash and Inner-Product hash Constants --------------------- */  | 
    
    
    758  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    759  | 
     | 
     | 
     | 
    
    
    760  | 
     | 
     | 
    /* Primes and masks */  | 
    
    
    761  | 
     | 
     | 
    #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */  | 
    
    
    762  | 
     | 
     | 
    #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */  | 
    
    
    763  | 
     | 
     | 
    #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */  | 
    
    
    764  | 
     | 
     | 
     | 
    
    
    765  | 
     | 
     | 
     | 
    
    
    766  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    767  | 
     | 
     | 
     | 
    
    
    768  | 
     | 
     | 
    typedef struct uhash_ctx { | 
    
    
    769  | 
     | 
     | 
        nh_ctx hash;                          /* Hash context for L1 NH hash  */  | 
    
    
    770  | 
     | 
     | 
        UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */  | 
    
    
    771  | 
     | 
     | 
        UINT64 poly_accum[STREAMS];           /* poly hash result             */  | 
    
    
    772  | 
     | 
     | 
        UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */  | 
    
    
    773  | 
     | 
     | 
        UINT32 ip_trans[STREAMS];             /* Inner-product translation    */  | 
    
    
    774  | 
     | 
     | 
        UINT32 msg_len;                       /* Total length of data passed  */  | 
    
    
    775  | 
     | 
     | 
                                              /* to uhash */  | 
    
    
    776  | 
     | 
     | 
    } uhash_ctx;  | 
    
    
    777  | 
     | 
     | 
    typedef struct uhash_ctx *uhash_ctx_t;  | 
    
    
    778  | 
     | 
     | 
     | 
    
    
    779  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    780  | 
     | 
     | 
     | 
    
    
    781  | 
     | 
     | 
     | 
    
    
    782  | 
     | 
     | 
    /* The polynomial hashes use Horner's rule to evaluate a polynomial one  | 
    
    
    783  | 
     | 
     | 
     * word at a time. As described in the specification, poly32 and poly64  | 
    
    
    784  | 
     | 
     | 
     * require keys from special domains. The following implementations exploit  | 
    
    
    785  | 
     | 
     | 
     * the special domains to avoid overflow. The results are not guaranteed to  | 
    
    
    786  | 
     | 
     | 
     * be within Z_p32 and Z_p64, but the Inner-Product hash implementation  | 
    
    
    787  | 
     | 
     | 
     * patches any errant values.  | 
    
    
    788  | 
     | 
     | 
     */  | 
    
    
    789  | 
     | 
     | 
     | 
    
    
    790  | 
     | 
     | 
    static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)  | 
    
    
    791  | 
     | 
     | 
    { | 
    
    
    792  | 
     | 
     | 
        UINT32 key_hi = (UINT32)(key >> 32),  | 
    
    
    793  | 
     | 
     | 
               key_lo = (UINT32)key,  | 
    
    
    794  | 
     | 
     | 
               cur_hi = (UINT32)(cur >> 32),  | 
    
    
    795  | 
     | 
     | 
               cur_lo = (UINT32)cur,  | 
    
    
    796  | 
     | 
     | 
               x_lo,  | 
    
    
    797  | 
     | 
     | 
               x_hi;  | 
    
    
    798  | 
     | 
     | 
        UINT64 X,T,res;  | 
    
    
    799  | 
     | 
     | 
     | 
    
    
    800  | 
     | 
     | 
        X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);  | 
    
    
    801  | 
     | 
     | 
        x_lo = (UINT32)X;  | 
    
    
    802  | 
     | 
     | 
        x_hi = (UINT32)(X >> 32);  | 
    
    
    803  | 
     | 
     | 
     | 
    
    
    804  | 
     | 
     | 
        res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);  | 
    
    
    805  | 
     | 
     | 
     | 
    
    
    806  | 
     | 
     | 
        T = ((UINT64)x_lo << 32);  | 
    
    
    807  | 
     | 
     | 
        res += T;  | 
    
    
    808  | 
     | 
     | 
        if (res < T)  | 
    
    
    809  | 
     | 
     | 
            res += 59;  | 
    
    
    810  | 
     | 
     | 
     | 
    
    
    811  | 
     | 
     | 
        res += data;  | 
    
    
    812  | 
     | 
     | 
        if (res < data)  | 
    
    
    813  | 
     | 
     | 
            res += 59;  | 
    
    
    814  | 
     | 
     | 
     | 
    
    
    815  | 
     | 
     | 
        return res;  | 
    
    
    816  | 
     | 
     | 
    }  | 
    
    
    817  | 
     | 
     | 
     | 
    
    
    818  | 
     | 
     | 
     | 
    
    
    819  | 
     | 
     | 
    /* Although UMAC is specified to use a ramped polynomial hash scheme, this  | 
    
    
    820  | 
     | 
     | 
     * implementation does not handle all ramp levels. Because we don't handle  | 
    
    
    821  | 
     | 
     | 
     * the ramp up to p128 modulus in this implementation, we are limited to  | 
    
    
    822  | 
     | 
     | 
     * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24  | 
    
    
    823  | 
     | 
     | 
     * bytes input to UMAC per tag, ie. 16MB).  | 
    
    
    824  | 
     | 
     | 
     */  | 
    
    
    825  | 
     | 
     | 
    static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])  | 
    
    
    826  | 
     | 
     | 
    { | 
    
    
    827  | 
     | 
     | 
        int i;  | 
    
    
    828  | 
     | 
     | 
        UINT64 *data=(UINT64*)data_in;  | 
    
    
    829  | 
     | 
     | 
     | 
    
    
    830  | 
     | 
     | 
        for (i = 0; i < STREAMS; i++) { | 
    
    
    831  | 
     | 
     | 
            if ((UINT32)(data[i] >> 32) == 0xfffffffful) { | 
    
    
    832  | 
     | 
     | 
                hc->poly_accum[i] = poly64(hc->poly_accum[i],  | 
    
    
    833  | 
     | 
     | 
                                           hc->poly_key_8[i], p64 - 1);  | 
    
    
    834  | 
     | 
     | 
                hc->poly_accum[i] = poly64(hc->poly_accum[i],  | 
    
    
    835  | 
     | 
     | 
                                           hc->poly_key_8[i], (data[i] - 59));  | 
    
    
    836  | 
     | 
     | 
            } else { | 
    
    
    837  | 
     | 
     | 
                hc->poly_accum[i] = poly64(hc->poly_accum[i],  | 
    
    
    838  | 
     | 
     | 
                                           hc->poly_key_8[i], data[i]);  | 
    
    
    839  | 
     | 
     | 
            }  | 
    
    
    840  | 
     | 
     | 
        }  | 
    
    
    841  | 
     | 
     | 
    }  | 
    
    
    842  | 
     | 
     | 
     | 
    
    
    843  | 
     | 
     | 
     | 
    
    
    844  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    845  | 
     | 
     | 
     | 
    
    
    846  | 
     | 
     | 
     | 
    
    
    847  | 
     | 
     | 
    /* The final step in UHASH is an inner-product hash. The poly hash  | 
    
    
    848  | 
     | 
     | 
     * produces a result not neccesarily WORD_LEN bytes long. The inner-  | 
    
    
    849  | 
     | 
     | 
     * product hash breaks the polyhash output into 16-bit chunks and  | 
    
    
    850  | 
     | 
     | 
     * multiplies each with a 36 bit key.  | 
    
    
    851  | 
     | 
     | 
     */  | 
    
    
    852  | 
     | 
     | 
     | 
    
    
    853  | 
     | 
     | 
    static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)  | 
    
    
    854  | 
     | 
     | 
    { | 
    
    
    855  | 
     | 
     | 
        t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);  | 
    
    
    856  | 
     | 
     | 
        t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);  | 
    
    
    857  | 
     | 
     | 
        t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);  | 
    
    
    858  | 
     | 
     | 
        t = t + ipkp[3] * (UINT64)(UINT16)(data);  | 
    
    
    859  | 
     | 
     | 
     | 
    
    
    860  | 
     | 
     | 
        return t;  | 
    
    
    861  | 
     | 
     | 
    }  | 
    
    
    862  | 
     | 
     | 
     | 
    
    
    863  | 
     | 
     | 
    static UINT32 ip_reduce_p36(UINT64 t)  | 
    
    
    864  | 
     | 
     | 
    { | 
    
    
    865  | 
     | 
     | 
    /* Divisionless modular reduction */  | 
    
    
    866  | 
     | 
     | 
        UINT64 ret;  | 
    
    
    867  | 
     | 
     | 
     | 
    
    
    868  | 
     | 
     | 
        ret = (t & m36) + 5 * (t >> 36);  | 
    
    
    869  | 
     | 
     | 
        if (ret >= p36)  | 
    
    
    870  | 
     | 
     | 
            ret -= p36;  | 
    
    
    871  | 
     | 
     | 
     | 
    
    
    872  | 
     | 
     | 
        /* return least significant 32 bits */  | 
    
    
    873  | 
     | 
     | 
        return (UINT32)(ret);  | 
    
    
    874  | 
     | 
     | 
    }  | 
    
    
    875  | 
     | 
     | 
     | 
    
    
    876  | 
     | 
     | 
     | 
    
    
    877  | 
     | 
     | 
    /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then  | 
    
    
    878  | 
     | 
     | 
     * the polyhash stage is skipped and ip_short is applied directly to the  | 
    
    
    879  | 
     | 
     | 
     * NH output.  | 
    
    
    880  | 
     | 
     | 
     */  | 
    
    
    881  | 
     | 
     | 
    static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)  | 
    
    
    882  | 
     | 
     | 
    { | 
    
    
    883  | 
     | 
     | 
        UINT64 t;  | 
    
    
    884  | 
     | 
     | 
        UINT64 *nhp = (UINT64 *)nh_res;  | 
    
    
    885  | 
     | 
     | 
     | 
    
    
    886  | 
     | 
     | 
        t  = ip_aux(0,ahc->ip_keys, nhp[0]);  | 
    
    
    887  | 
     | 
     | 
        STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);  | 
    
    
    888  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN >= 8)  | 
    
    
    889  | 
     | 
     | 
        t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);  | 
    
    
    890  | 
     | 
     | 
        STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);  | 
    
    
    891  | 
     | 
     | 
    #endif  | 
    
    
    892  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN >= 12)  | 
    
    
    893  | 
     | 
     | 
        t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);  | 
    
    
    894  | 
     | 
     | 
        STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);  | 
    
    
    895  | 
     | 
     | 
    #endif  | 
    
    
    896  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN == 16)  | 
    
    
    897  | 
     | 
     | 
        t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);  | 
    
    
    898  | 
     | 
     | 
        STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);  | 
    
    
    899  | 
     | 
     | 
    #endif  | 
    
    
    900  | 
     | 
     | 
    }  | 
    
    
    901  | 
     | 
     | 
     | 
    
    
    902  | 
     | 
     | 
    /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then  | 
    
    
    903  | 
     | 
     | 
     * the polyhash stage is not skipped and ip_long is applied to the  | 
    
    
    904  | 
     | 
     | 
     * polyhash output.  | 
    
    
    905  | 
     | 
     | 
     */  | 
    
    
    906  | 
     | 
     | 
    static void ip_long(uhash_ctx_t ahc, u_char *res)  | 
    
    
    907  | 
     | 
     | 
    { | 
    
    
    908  | 
     | 
     | 
        int i;  | 
    
    
    909  | 
     | 
     | 
        UINT64 t;  | 
    
    
    910  | 
     | 
     | 
     | 
    
    
    911  | 
     | 
     | 
        for (i = 0; i < STREAMS; i++) { | 
    
    
    912  | 
     | 
     | 
            /* fix polyhash output not in Z_p64 */  | 
    
    
    913  | 
     | 
     | 
            if (ahc->poly_accum[i] >= p64)  | 
    
    
    914  | 
     | 
     | 
                ahc->poly_accum[i] -= p64;  | 
    
    
    915  | 
     | 
     | 
            t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);  | 
    
    
    916  | 
     | 
     | 
            STORE_UINT32_BIG((UINT32 *)res+i,  | 
    
    
    917  | 
     | 
     | 
                             ip_reduce_p36(t) ^ ahc->ip_trans[i]);  | 
    
    
    918  | 
     | 
     | 
        }  | 
    
    
    919  | 
     | 
     | 
    }  | 
    
    
    920  | 
     | 
     | 
     | 
    
    
    921  | 
     | 
     | 
     | 
    
    
    922  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    923  | 
     | 
     | 
     | 
    
    
    924  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    925  | 
     | 
     | 
     | 
    
    
    926  | 
     | 
     | 
    /* Reset uhash context for next hash session */  | 
    
    
    927  | 
     | 
     | 
    static int uhash_reset(uhash_ctx_t pc)  | 
    
    
    928  | 
     | 
     | 
    { | 
    
    
    929  | 
     | 
     | 
        nh_reset(&pc->hash);  | 
    
    
    930  | 
     | 
     | 
        pc->msg_len = 0;  | 
    
    
    931  | 
     | 
     | 
        pc->poly_accum[0] = 1;  | 
    
    
    932  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN >= 8)  | 
    
    
    933  | 
     | 
     | 
        pc->poly_accum[1] = 1;  | 
    
    
    934  | 
     | 
     | 
    #endif  | 
    
    
    935  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN >= 12)  | 
    
    
    936  | 
     | 
     | 
        pc->poly_accum[2] = 1;  | 
    
    
    937  | 
     | 
     | 
    #endif  | 
    
    
    938  | 
     | 
     | 
    #if (UMAC_OUTPUT_LEN == 16)  | 
    
    
    939  | 
     | 
     | 
        pc->poly_accum[3] = 1;  | 
    
    
    940  | 
     | 
     | 
    #endif  | 
    
    
    941  | 
     | 
     | 
        return 1;  | 
    
    
    942  | 
     | 
     | 
    }  | 
    
    
    943  | 
     | 
     | 
     | 
    
    
    944  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    945  | 
     | 
     | 
     | 
    
    
    946  | 
     | 
     | 
    /* Given a pointer to the internal key needed by kdf() and a uhash context,  | 
    
    
    947  | 
     | 
     | 
     * initialize the NH context and generate keys needed for poly and inner-  | 
    
    
    948  | 
     | 
     | 
     * product hashing. All keys are endian adjusted in memory so that native  | 
    
    
    949  | 
     | 
     | 
     * loads cause correct keys to be in registers during calculation.  | 
    
    
    950  | 
     | 
     | 
     */  | 
    
    
    951  | 
     | 
     | 
    static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)  | 
    
    
    952  | 
     | 
     | 
    { | 
    
    
    953  | 
     | 
     | 
        int i;  | 
    
    
    954  | 
     | 
     | 
        UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];  | 
    
    
    955  | 
     | 
     | 
     | 
    
    
    956  | 
     | 
     | 
        /* Zero the entire uhash context */  | 
    
    
    957  | 
     | 
     | 
        memset(ahc, 0, sizeof(uhash_ctx));  | 
    
    
    958  | 
     | 
     | 
     | 
    
    
    959  | 
     | 
     | 
        /* Initialize the L1 hash */  | 
    
    
    960  | 
     | 
     | 
        nh_init(&ahc->hash, prf_key);  | 
    
    
    961  | 
     | 
     | 
     | 
    
    
    962  | 
     | 
     | 
        /* Setup L2 hash variables */  | 
    
    
    963  | 
     | 
     | 
        kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */  | 
    
    
    964  | 
     | 
     | 
        for (i = 0; i < STREAMS; i++) { | 
    
    
    965  | 
     | 
     | 
            /* Fill keys from the buffer, skipping bytes in the buffer not  | 
    
    
    966  | 
     | 
     | 
             * used by this implementation. Endian reverse the keys if on a  | 
    
    
    967  | 
     | 
     | 
             * little-endian computer.  | 
    
    
    968  | 
     | 
     | 
             */  | 
    
    
    969  | 
     | 
     | 
            memcpy(ahc->poly_key_8+i, buf+24*i, 8);  | 
    
    
    970  | 
     | 
     | 
            endian_convert_if_le(ahc->poly_key_8+i, 8, 8);  | 
    
    
    971  | 
     | 
     | 
            /* Mask the 64-bit keys to their special domain */  | 
    
    
    972  | 
     | 
     | 
            ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;  | 
    
    
    973  | 
     | 
     | 
            ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */  | 
    
    
    974  | 
     | 
     | 
        }  | 
    
    
    975  | 
     | 
     | 
     | 
    
    
    976  | 
     | 
     | 
        /* Setup L3-1 hash variables */  | 
    
    
    977  | 
     | 
     | 
        kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */  | 
    
    
    978  | 
     | 
     | 
        for (i = 0; i < STREAMS; i++)  | 
    
    
    979  | 
     | 
     | 
              memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),  | 
    
    
    980  | 
     | 
     | 
                                                     4*sizeof(UINT64));  | 
    
    
    981  | 
     | 
     | 
        endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),  | 
    
    
    982  | 
     | 
     | 
                                                      sizeof(ahc->ip_keys));  | 
    
    
    983  | 
     | 
     | 
        for (i = 0; i < STREAMS*4; i++)  | 
    
    
    984  | 
     | 
     | 
            ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */  | 
    
    
    985  | 
     | 
     | 
     | 
    
    
    986  | 
     | 
     | 
        /* Setup L3-2 hash variables    */  | 
    
    
    987  | 
     | 
     | 
        /* Fill buffer with index 4 key */  | 
    
    
    988  | 
     | 
     | 
        kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));  | 
    
    
    989  | 
     | 
     | 
        endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),  | 
    
    
    990  | 
     | 
     | 
                             STREAMS * sizeof(UINT32));  | 
    
    
    991  | 
     | 
     | 
        explicit_bzero(buf, sizeof(buf));  | 
    
    
    992  | 
     | 
     | 
    }  | 
    
    
    993  | 
     | 
     | 
     | 
    
    
    994  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    995  | 
     | 
     | 
     | 
    
    
    996  | 
     | 
     | 
    #if 0  | 
    
    
    997  | 
     | 
     | 
    static uhash_ctx_t uhash_alloc(u_char key[])  | 
    
    
    998  | 
     | 
     | 
    { | 
    
    
    999  | 
     | 
     | 
    /* Allocate memory and force to a 16-byte boundary. */  | 
    
    
    1000  | 
     | 
     | 
        uhash_ctx_t ctx;  | 
    
    
    1001  | 
     | 
     | 
        u_char bytes_to_add;  | 
    
    
    1002  | 
     | 
     | 
        aes_int_key prf_key;  | 
    
    
    1003  | 
     | 
     | 
     | 
    
    
    1004  | 
     | 
     | 
        ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);  | 
    
    
    1005  | 
     | 
     | 
        if (ctx) { | 
    
    
    1006  | 
     | 
     | 
            if (ALLOC_BOUNDARY) { | 
    
    
    1007  | 
     | 
     | 
                bytes_to_add = ALLOC_BOUNDARY -  | 
    
    
    1008  | 
     | 
     | 
                                  ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));  | 
    
    
    1009  | 
     | 
     | 
                ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);  | 
    
    
    1010  | 
     | 
     | 
                *((u_char *)ctx - 1) = bytes_to_add;  | 
    
    
    1011  | 
     | 
     | 
            }  | 
    
    
    1012  | 
     | 
     | 
            aes_key_setup(key,prf_key);  | 
    
    
    1013  | 
     | 
     | 
            uhash_init(ctx, prf_key);  | 
    
    
    1014  | 
     | 
     | 
        }  | 
    
    
    1015  | 
     | 
     | 
        return (ctx);  | 
    
    
    1016  | 
     | 
     | 
    }  | 
    
    
    1017  | 
     | 
     | 
    #endif  | 
    
    
    1018  | 
     | 
     | 
     | 
    
    
    1019  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1020  | 
     | 
     | 
     | 
    
    
    1021  | 
     | 
     | 
    #if 0  | 
    
    
    1022  | 
     | 
     | 
    static int uhash_free(uhash_ctx_t ctx)  | 
    
    
    1023  | 
     | 
     | 
    { | 
    
    
    1024  | 
     | 
     | 
    /* Free memory allocated by uhash_alloc */  | 
    
    
    1025  | 
     | 
     | 
        u_char bytes_to_sub;  | 
    
    
    1026  | 
     | 
     | 
     | 
    
    
    1027  | 
     | 
     | 
        if (ctx) { | 
    
    
    1028  | 
     | 
     | 
            if (ALLOC_BOUNDARY) { | 
    
    
    1029  | 
     | 
     | 
                bytes_to_sub = *((u_char *)ctx - 1);  | 
    
    
    1030  | 
     | 
     | 
                ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);  | 
    
    
    1031  | 
     | 
     | 
            }  | 
    
    
    1032  | 
     | 
     | 
            free(ctx);  | 
    
    
    1033  | 
     | 
     | 
        }  | 
    
    
    1034  | 
     | 
     | 
        return (1);  | 
    
    
    1035  | 
     | 
     | 
    }  | 
    
    
    1036  | 
     | 
     | 
    #endif  | 
    
    
    1037  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1038  | 
     | 
     | 
     | 
    
    
    1039  | 
     | 
     | 
    static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)  | 
    
    
    1040  | 
     | 
     | 
    /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and  | 
    
    
    1041  | 
     | 
     | 
     * hash each one with NH, calling the polyhash on each NH output.  | 
    
    
    1042  | 
     | 
     | 
     */  | 
    
    
    1043  | 
     | 
     | 
    { | 
    
    
    1044  | 
     | 
     | 
        UWORD bytes_hashed, bytes_remaining;  | 
    
    
    1045  | 
     | 
     | 
        UINT64 result_buf[STREAMS];  | 
    
    
    1046  | 
     | 
     | 
        UINT8 *nh_result = (UINT8 *)&result_buf;  | 
    
    
    1047  | 
     | 
     | 
     | 
    
    
    1048  | 
     | 
     | 
        if (ctx->msg_len + len <= L1_KEY_LEN) { | 
    
    
    1049  | 
     | 
     | 
            nh_update(&ctx->hash, (const UINT8 *)input, len);  | 
    
    
    1050  | 
     | 
     | 
            ctx->msg_len += len;  | 
    
    
    1051  | 
     | 
     | 
        } else { | 
    
    
    1052  | 
     | 
     | 
     | 
    
    
    1053  | 
     | 
     | 
             bytes_hashed = ctx->msg_len % L1_KEY_LEN;  | 
    
    
    1054  | 
     | 
     | 
             if (ctx->msg_len == L1_KEY_LEN)  | 
    
    
    1055  | 
     | 
     | 
                 bytes_hashed = L1_KEY_LEN;  | 
    
    
    1056  | 
     | 
     | 
     | 
    
    
    1057  | 
     | 
     | 
             if (bytes_hashed + len >= L1_KEY_LEN) { | 
    
    
    1058  | 
     | 
     | 
     | 
    
    
    1059  | 
     | 
     | 
                 /* If some bytes have been passed to the hash function      */  | 
    
    
    1060  | 
     | 
     | 
                 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */  | 
    
    
    1061  | 
     | 
     | 
                 /* bytes to complete the current nh_block.                  */  | 
    
    
    1062  | 
     | 
     | 
                 if (bytes_hashed) { | 
    
    
    1063  | 
     | 
     | 
                     bytes_remaining = (L1_KEY_LEN - bytes_hashed);  | 
    
    
    1064  | 
     | 
     | 
                     nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);  | 
    
    
    1065  | 
     | 
     | 
                     nh_final(&ctx->hash, nh_result);  | 
    
    
    1066  | 
     | 
     | 
                     ctx->msg_len += bytes_remaining;  | 
    
    
    1067  | 
     | 
     | 
                     poly_hash(ctx,(UINT32 *)nh_result);  | 
    
    
    1068  | 
     | 
     | 
                     len -= bytes_remaining;  | 
    
    
    1069  | 
     | 
     | 
                     input += bytes_remaining;  | 
    
    
    1070  | 
     | 
     | 
                 }  | 
    
    
    1071  | 
     | 
     | 
     | 
    
    
    1072  | 
     | 
     | 
                 /* Hash directly from input stream if enough bytes */  | 
    
    
    1073  | 
     | 
     | 
                 while (len >= L1_KEY_LEN) { | 
    
    
    1074  | 
     | 
     | 
                     nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,  | 
    
    
    1075  | 
     | 
     | 
                                       L1_KEY_LEN, nh_result);  | 
    
    
    1076  | 
     | 
     | 
                     ctx->msg_len += L1_KEY_LEN;  | 
    
    
    1077  | 
     | 
     | 
                     len -= L1_KEY_LEN;  | 
    
    
    1078  | 
     | 
     | 
                     input += L1_KEY_LEN;  | 
    
    
    1079  | 
     | 
     | 
                     poly_hash(ctx,(UINT32 *)nh_result);  | 
    
    
    1080  | 
     | 
     | 
                 }  | 
    
    
    1081  | 
     | 
     | 
             }  | 
    
    
    1082  | 
     | 
     | 
     | 
    
    
    1083  | 
     | 
     | 
             /* pass remaining < L1_KEY_LEN bytes of input data to NH */  | 
    
    
    1084  | 
     | 
     | 
             if (len) { | 
    
    
    1085  | 
     | 
     | 
                 nh_update(&ctx->hash, (const UINT8 *)input, len);  | 
    
    
    1086  | 
     | 
     | 
                 ctx->msg_len += len;  | 
    
    
    1087  | 
     | 
     | 
             }  | 
    
    
    1088  | 
     | 
     | 
         }  | 
    
    
    1089  | 
     | 
     | 
     | 
    
    
    1090  | 
     | 
     | 
        return (1);  | 
    
    
    1091  | 
     | 
     | 
    }  | 
    
    
    1092  | 
     | 
     | 
     | 
    
    
    1093  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1094  | 
     | 
     | 
     | 
    
    
    1095  | 
     | 
     | 
    static int uhash_final(uhash_ctx_t ctx, u_char *res)  | 
    
    
    1096  | 
     | 
     | 
    /* Incorporate any pending data, pad, and generate tag */  | 
    
    
    1097  | 
     | 
     | 
    { | 
    
    
    1098  | 
     | 
     | 
        UINT64 result_buf[STREAMS];  | 
    
    
    1099  | 
     | 
     | 
        UINT8 *nh_result = (UINT8 *)&result_buf;  | 
    
    
    1100  | 
     | 
     | 
     | 
    
    
    1101  | 
     | 
     | 
        if (ctx->msg_len > L1_KEY_LEN) { | 
    
    
    1102  | 
     | 
     | 
            if (ctx->msg_len % L1_KEY_LEN) { | 
    
    
    1103  | 
     | 
     | 
                nh_final(&ctx->hash, nh_result);  | 
    
    
    1104  | 
     | 
     | 
                poly_hash(ctx,(UINT32 *)nh_result);  | 
    
    
    1105  | 
     | 
     | 
            }  | 
    
    
    1106  | 
     | 
     | 
            ip_long(ctx, res);  | 
    
    
    1107  | 
     | 
     | 
        } else { | 
    
    
    1108  | 
     | 
     | 
            nh_final(&ctx->hash, nh_result);  | 
    
    
    1109  | 
     | 
     | 
            ip_short(ctx,nh_result, res);  | 
    
    
    1110  | 
     | 
     | 
        }  | 
    
    
    1111  | 
     | 
     | 
        uhash_reset(ctx);  | 
    
    
    1112  | 
     | 
     | 
        return (1);  | 
    
    
    1113  | 
     | 
     | 
    }  | 
    
    
    1114  | 
     | 
     | 
     | 
    
    
    1115  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1116  | 
     | 
     | 
     | 
    
    
    1117  | 
     | 
     | 
    #if 0  | 
    
    
    1118  | 
     | 
     | 
    static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)  | 
    
    
    1119  | 
     | 
     | 
    /* assumes that msg is in a writable buffer of length divisible by */  | 
    
    
    1120  | 
     | 
     | 
    /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */  | 
    
    
    1121  | 
     | 
     | 
    { | 
    
    
    1122  | 
     | 
     | 
        UINT8 nh_result[STREAMS*sizeof(UINT64)];  | 
    
    
    1123  | 
     | 
     | 
        UINT32 nh_len;  | 
    
    
    1124  | 
     | 
     | 
        int extra_zeroes_needed;  | 
    
    
    1125  | 
     | 
     | 
     | 
    
    
    1126  | 
     | 
     | 
        /* If the message to be hashed is no longer than L1_HASH_LEN, we skip  | 
    
    
    1127  | 
     | 
     | 
         * the polyhash.  | 
    
    
    1128  | 
     | 
     | 
         */  | 
    
    
    1129  | 
     | 
     | 
        if (len <= L1_KEY_LEN) { | 
    
    
    1130  | 
     | 
     | 
        	if (len == 0)                  /* If zero length messages will not */  | 
    
    
    1131  | 
     | 
     | 
        		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */  | 
    
    
    1132  | 
     | 
     | 
        	else  | 
    
    
    1133  | 
     | 
     | 
            	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));  | 
    
    
    1134  | 
     | 
     | 
            extra_zeroes_needed = nh_len - len;  | 
    
    
    1135  | 
     | 
     | 
            zero_pad((UINT8 *)msg + len, extra_zeroes_needed);  | 
    
    
    1136  | 
     | 
     | 
            nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);  | 
    
    
    1137  | 
     | 
     | 
            ip_short(ahc,nh_result, res);  | 
    
    
    1138  | 
     | 
     | 
        } else { | 
    
    
    1139  | 
     | 
     | 
            /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH  | 
    
    
    1140  | 
     | 
     | 
             * output to poly_hash().  | 
    
    
    1141  | 
     | 
     | 
             */  | 
    
    
    1142  | 
     | 
     | 
            do { | 
    
    
    1143  | 
     | 
     | 
                nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);  | 
    
    
    1144  | 
     | 
     | 
                poly_hash(ahc,(UINT32 *)nh_result);  | 
    
    
    1145  | 
     | 
     | 
                len -= L1_KEY_LEN;  | 
    
    
    1146  | 
     | 
     | 
                msg += L1_KEY_LEN;  | 
    
    
    1147  | 
     | 
     | 
            } while (len >= L1_KEY_LEN);  | 
    
    
    1148  | 
     | 
     | 
            if (len) { | 
    
    
    1149  | 
     | 
     | 
                nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));  | 
    
    
    1150  | 
     | 
     | 
                extra_zeroes_needed = nh_len - len;  | 
    
    
    1151  | 
     | 
     | 
                zero_pad((UINT8 *)msg + len, extra_zeroes_needed);  | 
    
    
    1152  | 
     | 
     | 
                nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);  | 
    
    
    1153  | 
     | 
     | 
                poly_hash(ahc,(UINT32 *)nh_result);  | 
    
    
    1154  | 
     | 
     | 
            }  | 
    
    
    1155  | 
     | 
     | 
     | 
    
    
    1156  | 
     | 
     | 
            ip_long(ahc, res);  | 
    
    
    1157  | 
     | 
     | 
        }  | 
    
    
    1158  | 
     | 
     | 
     | 
    
    
    1159  | 
     | 
     | 
        uhash_reset(ahc);  | 
    
    
    1160  | 
     | 
     | 
        return 1;  | 
    
    
    1161  | 
     | 
     | 
    }  | 
    
    
    1162  | 
     | 
     | 
    #endif  | 
    
    
    1163  | 
     | 
     | 
     | 
    
    
    1164  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1165  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1166  | 
     | 
     | 
    /* ----- Begin UMAC Section --------------------------------------------- */  | 
    
    
    1167  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1168  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1169  | 
     | 
     | 
     | 
    
    
    1170  | 
     | 
     | 
    /* The UMAC interface has two interfaces, an all-at-once interface where  | 
    
    
    1171  | 
     | 
     | 
     * the entire message to be authenticated is passed to UMAC in one buffer,  | 
    
    
    1172  | 
     | 
     | 
     * and a sequential interface where the message is presented a little at a  | 
    
    
    1173  | 
     | 
     | 
     * time. The all-at-once is more optimaized than the sequential version and  | 
    
    
    1174  | 
     | 
     | 
     * should be preferred when the sequential interface is not required.  | 
    
    
    1175  | 
     | 
     | 
     */  | 
    
    
    1176  | 
     | 
     | 
    struct umac_ctx { | 
    
    
    1177  | 
     | 
     | 
        uhash_ctx hash;          /* Hash function for message compression    */  | 
    
    
    1178  | 
     | 
     | 
        pdf_ctx pdf;             /* PDF for hashed output                    */  | 
    
    
    1179  | 
     | 
     | 
        void *free_ptr;          /* Address to free this struct via          */  | 
    
    
    1180  | 
     | 
     | 
    } umac_ctx;  | 
    
    
    1181  | 
     | 
     | 
     | 
    
    
    1182  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1183  | 
     | 
     | 
     | 
    
    
    1184  | 
     | 
     | 
    #if 0  | 
    
    
    1185  | 
     | 
     | 
    int umac_reset(struct umac_ctx *ctx)  | 
    
    
    1186  | 
     | 
     | 
    /* Reset the hash function to begin a new authentication.        */  | 
    
    
    1187  | 
     | 
     | 
    { | 
    
    
    1188  | 
     | 
     | 
        uhash_reset(&ctx->hash);  | 
    
    
    1189  | 
     | 
     | 
        return (1);  | 
    
    
    1190  | 
     | 
     | 
    }  | 
    
    
    1191  | 
     | 
     | 
    #endif  | 
    
    
    1192  | 
     | 
     | 
     | 
    
    
    1193  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1194  | 
     | 
     | 
     | 
    
    
    1195  | 
     | 
     | 
    int umac_delete(struct umac_ctx *ctx)  | 
    
    
    1196  | 
     | 
     | 
    /* Deallocate the ctx structure */  | 
    
    
    1197  | 
     | 
     | 
    { | 
    
    
    1198  | 
     | 
     | 
        if (ctx) { | 
    
    
    1199  | 
     | 
     | 
            if (ALLOC_BOUNDARY)  | 
    
    
    1200  | 
     | 
     | 
                ctx = (struct umac_ctx *)ctx->free_ptr;  | 
    
    
    1201  | 
     | 
     | 
            explicit_bzero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);  | 
    
    
    1202  | 
     | 
     | 
            free(ctx);  | 
    
    
    1203  | 
     | 
     | 
        }  | 
    
    
    1204  | 
     | 
     | 
        return (1);  | 
    
    
    1205  | 
     | 
     | 
    }  | 
    
    
    1206  | 
     | 
     | 
     | 
    
    
    1207  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1208  | 
     | 
     | 
     | 
    
    
    1209  | 
     | 
     | 
    struct umac_ctx *umac_new(const u_char key[])  | 
    
    
    1210  | 
     | 
     | 
    /* Dynamically allocate a umac_ctx struct, initialize variables,  | 
    
    
    1211  | 
     | 
     | 
     * generate subkeys from key. Align to 16-byte boundary.  | 
    
    
    1212  | 
     | 
     | 
     */  | 
    
    
    1213  | 
     | 
     | 
    { | 
    
    
    1214  | 
     | 
     | 
        struct umac_ctx *ctx, *octx;  | 
    
    
    1215  | 
     | 
     | 
        size_t bytes_to_add;  | 
    
    
    1216  | 
     | 
     | 
        aes_int_key prf_key;  | 
    
    
    1217  | 
     | 
     | 
     | 
    
    
    1218  | 
     | 
     | 
        octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);  | 
    
    
    1219  | 
     | 
     | 
        if (ctx) { | 
    
    
    1220  | 
     | 
     | 
            if (ALLOC_BOUNDARY) { | 
    
    
    1221  | 
     | 
     | 
                bytes_to_add = ALLOC_BOUNDARY -  | 
    
    
    1222  | 
     | 
     | 
                                  ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));  | 
    
    
    1223  | 
     | 
     | 
                ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);  | 
    
    
    1224  | 
     | 
     | 
            }  | 
    
    
    1225  | 
     | 
     | 
            ctx->free_ptr = octx;  | 
    
    
    1226  | 
     | 
     | 
            aes_key_setup(key, prf_key);  | 
    
    
    1227  | 
     | 
     | 
            pdf_init(&ctx->pdf, prf_key);  | 
    
    
    1228  | 
     | 
     | 
            uhash_init(&ctx->hash, prf_key);  | 
    
    
    1229  | 
     | 
     | 
            explicit_bzero(prf_key, sizeof(prf_key));  | 
    
    
    1230  | 
     | 
     | 
        }  | 
    
    
    1231  | 
     | 
     | 
     | 
    
    
    1232  | 
     | 
     | 
        return (ctx);  | 
    
    
    1233  | 
     | 
     | 
    }  | 
    
    
    1234  | 
     | 
     | 
     | 
    
    
    1235  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1236  | 
     | 
     | 
     | 
    
    
    1237  | 
     | 
     | 
    int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])  | 
    
    
    1238  | 
     | 
     | 
    /* Incorporate any pending data, pad, and generate tag */  | 
    
    
    1239  | 
     | 
     | 
    { | 
    
    
    1240  | 
     | 
     | 
        uhash_final(&ctx->hash, (u_char *)tag);  | 
    
    
    1241  | 
     | 
     | 
        pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);  | 
    
    
    1242  | 
     | 
     | 
     | 
    
    
    1243  | 
     | 
     | 
        return (1);  | 
    
    
    1244  | 
     | 
     | 
    }  | 
    
    
    1245  | 
     | 
     | 
     | 
    
    
    1246  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1247  | 
     | 
     | 
     | 
    
    
    1248  | 
     | 
     | 
    int umac_update(struct umac_ctx *ctx, const u_char *input, long len)  | 
    
    
    1249  | 
     | 
     | 
    /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */  | 
    
    
    1250  | 
     | 
     | 
    /* hash each one, calling the PDF on the hashed output whenever the hash- */  | 
    
    
    1251  | 
     | 
     | 
    /* output buffer is full.                                                 */  | 
    
    
    1252  | 
     | 
     | 
    { | 
    
    
    1253  | 
     | 
     | 
        uhash_update(&ctx->hash, input, len);  | 
    
    
    1254  | 
     | 
     | 
        return (1);  | 
    
    
    1255  | 
     | 
     | 
    }  | 
    
    
    1256  | 
     | 
     | 
     | 
    
    
    1257  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1258  | 
     | 
     | 
     | 
    
    
    1259  | 
     | 
     | 
    #if 0  | 
    
    
    1260  | 
     | 
     | 
    int umac(struct umac_ctx *ctx, u_char *input,  | 
    
    
    1261  | 
     | 
     | 
             long len, u_char tag[],  | 
    
    
    1262  | 
     | 
     | 
             u_char nonce[8])  | 
    
    
    1263  | 
     | 
     | 
    /* All-in-one version simply calls umac_update() and umac_final().        */  | 
    
    
    1264  | 
     | 
     | 
    { | 
    
    
    1265  | 
     | 
     | 
        uhash(&ctx->hash, input, len, (u_char *)tag);  | 
    
    
    1266  | 
     | 
     | 
        pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);  | 
    
    
    1267  | 
     | 
     | 
     | 
    
    
    1268  | 
     | 
     | 
        return (1);  | 
    
    
    1269  | 
     | 
     | 
    }  | 
    
    
    1270  | 
     | 
     | 
    #endif  | 
    
    
    1271  | 
     | 
     | 
     | 
    
    
    1272  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1273  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1274  | 
     | 
     | 
    /* ----- End UMAC Section ----------------------------------------------- */  | 
    
    
    1275  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  | 
    
    
    1276  | 
     | 
     | 
    /* ---------------------------------------------------------------------- */  |