Line data Source code
1 : /* $OpenBSD: ar9003.c,v 1.46 2017/05/19 11:42:48 stsp Exp $ */
2 :
3 : /*-
4 : * Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
5 : * Copyright (c) 2010 Atheros Communications Inc.
6 : *
7 : * Permission to use, copy, modify, and/or distribute this software for any
8 : * purpose with or without fee is hereby granted, provided that the above
9 : * copyright notice and this permission notice appear in all copies.
10 : *
11 : * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 : * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 : * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 : * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 : * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 : * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 : * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 : */
19 :
20 : /*
21 : * Driver for Atheros 802.11a/g/n chipsets.
22 : * Routines for AR9003 family.
23 : */
24 :
25 : #include "bpfilter.h"
26 :
27 : #include <sys/param.h>
28 : #include <sys/sockio.h>
29 : #include <sys/mbuf.h>
30 : #include <sys/kernel.h>
31 : #include <sys/socket.h>
32 : #include <sys/systm.h>
33 : #include <sys/malloc.h>
34 : #include <sys/queue.h>
35 : #include <sys/timeout.h>
36 : #include <sys/conf.h>
37 : #include <sys/device.h>
38 : #include <sys/stdint.h> /* uintptr_t */
39 : #include <sys/endian.h>
40 :
41 : #include <machine/bus.h>
42 :
43 : #if NBPFILTER > 0
44 : #include <net/bpf.h>
45 : #endif
46 : #include <net/if.h>
47 : #include <net/if_media.h>
48 :
49 : #include <netinet/in.h>
50 : #include <netinet/if_ether.h>
51 :
52 : #include <net80211/ieee80211_var.h>
53 : #include <net80211/ieee80211_amrr.h>
54 : #include <net80211/ieee80211_mira.h>
55 : #include <net80211/ieee80211_radiotap.h>
56 :
57 : #include <dev/ic/athnreg.h>
58 : #include <dev/ic/athnvar.h>
59 :
60 : #include <dev/ic/ar9003reg.h>
61 :
62 : int ar9003_attach(struct athn_softc *);
63 : int ar9003_read_eep_word(struct athn_softc *, uint32_t, uint16_t *);
64 : int ar9003_read_eep_data(struct athn_softc *, uint32_t, void *, int);
65 : int ar9003_read_otp_word(struct athn_softc *, uint32_t, uint32_t *);
66 : int ar9003_read_otp_data(struct athn_softc *, uint32_t, void *, int);
67 : int ar9003_find_rom(struct athn_softc *);
68 : int ar9003_restore_rom_block(struct athn_softc *, uint8_t, uint8_t,
69 : const uint8_t *, int);
70 : int ar9003_read_rom(struct athn_softc *);
71 : int ar9003_gpio_read(struct athn_softc *, int);
72 : void ar9003_gpio_write(struct athn_softc *, int, int);
73 : void ar9003_gpio_config_input(struct athn_softc *, int);
74 : void ar9003_gpio_config_output(struct athn_softc *, int, int);
75 : void ar9003_rfsilent_init(struct athn_softc *);
76 : int ar9003_dma_alloc(struct athn_softc *);
77 : void ar9003_dma_free(struct athn_softc *);
78 : int ar9003_tx_alloc(struct athn_softc *);
79 : void ar9003_tx_free(struct athn_softc *);
80 : int ar9003_rx_alloc(struct athn_softc *, int, int);
81 : void ar9003_rx_free(struct athn_softc *, int);
82 : void ar9003_reset_txsring(struct athn_softc *);
83 : void ar9003_rx_enable(struct athn_softc *);
84 : void ar9003_rx_radiotap(struct athn_softc *, struct mbuf *,
85 : struct ar_rx_status *);
86 : int ar9003_rx_process(struct athn_softc *, int);
87 : void ar9003_rx_intr(struct athn_softc *, int);
88 : int ar9003_tx_process(struct athn_softc *);
89 : void ar9003_tx_intr(struct athn_softc *);
90 : int ar9003_swba_intr(struct athn_softc *);
91 : int ar9003_intr(struct athn_softc *);
92 : int ar9003_tx(struct athn_softc *, struct mbuf *, struct ieee80211_node *,
93 : int);
94 : void ar9003_set_rf_mode(struct athn_softc *, struct ieee80211_channel *);
95 : int ar9003_rf_bus_request(struct athn_softc *);
96 : void ar9003_rf_bus_release(struct athn_softc *);
97 : void ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *,
98 : struct ieee80211_channel *);
99 : void ar9003_set_delta_slope(struct athn_softc *, struct ieee80211_channel *,
100 : struct ieee80211_channel *);
101 : void ar9003_enable_antenna_diversity(struct athn_softc *);
102 : void ar9003_init_baseband(struct athn_softc *);
103 : void ar9003_disable_phy(struct athn_softc *);
104 : void ar9003_init_chains(struct athn_softc *);
105 : void ar9003_set_rxchains(struct athn_softc *);
106 : void ar9003_read_noisefloor(struct athn_softc *, int16_t *, int16_t *);
107 : void ar9003_write_noisefloor(struct athn_softc *, int16_t *, int16_t *);
108 : void ar9003_get_noisefloor(struct athn_softc *, struct ieee80211_channel *);
109 : void ar9003_bb_load_noisefloor(struct athn_softc *);
110 : void ar9300_noisefloor_calib(struct athn_softc *);
111 : void ar9003_do_noisefloor_calib(struct athn_softc *);
112 : int ar9003_init_calib(struct athn_softc *);
113 : void ar9003_do_calib(struct athn_softc *);
114 : void ar9003_next_calib(struct athn_softc *);
115 : void ar9003_calib_iq(struct athn_softc *);
116 : int ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]);
117 : int ar9003_calib_tx_iq(struct athn_softc *);
118 : void ar9003_paprd_calib(struct athn_softc *, struct ieee80211_channel *);
119 : int ar9003_get_desired_txgain(struct athn_softc *, int, int);
120 : void ar9003_force_txgain(struct athn_softc *, uint32_t);
121 : void ar9003_set_training_gain(struct athn_softc *, int);
122 : int ar9003_paprd_tx_tone(struct athn_softc *);
123 : int ar9003_compute_predistortion(struct athn_softc *, const uint32_t *,
124 : const uint32_t *);
125 : void ar9003_enable_predistorter(struct athn_softc *, int);
126 : void ar9003_paprd_enable(struct athn_softc *);
127 : void ar9003_paprd_tx_tone_done(struct athn_softc *);
128 : void ar9003_write_txpower(struct athn_softc *, int16_t power[]);
129 : void ar9003_reset_rx_gain(struct athn_softc *, struct ieee80211_channel *);
130 : void ar9003_reset_tx_gain(struct athn_softc *, struct ieee80211_channel *);
131 : void ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *,
132 : struct ieee80211_channel *);
133 : void ar9003_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *,
134 : uint8_t, const uint8_t *, const struct ar_cal_target_power_leg *,
135 : int, uint8_t[]);
136 : void ar9003_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *,
137 : uint8_t, const uint8_t *, const struct ar_cal_target_power_ht *,
138 : int, uint8_t[]);
139 : void ar9003_set_noise_immunity_level(struct athn_softc *, int);
140 : void ar9003_enable_ofdm_weak_signal(struct athn_softc *);
141 : void ar9003_disable_ofdm_weak_signal(struct athn_softc *);
142 : void ar9003_set_cck_weak_signal(struct athn_softc *, int);
143 : void ar9003_set_firstep_level(struct athn_softc *, int);
144 : void ar9003_set_spur_immunity_level(struct athn_softc *, int);
145 :
146 : /* Extern functions. */
147 : void athn_stop(struct ifnet *, int);
148 : int athn_interpolate(int, int, int, int, int);
149 : int athn_txtime(struct athn_softc *, int, int, u_int);
150 : void athn_inc_tx_trigger_level(struct athn_softc *);
151 : int athn_tx_pending(struct athn_softc *, int);
152 : void athn_stop_tx_dma(struct athn_softc *, int);
153 : void athn_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
154 : void athn_config_pcie(struct athn_softc *);
155 : void athn_config_nonpcie(struct athn_softc *);
156 : uint8_t athn_chan2fbin(struct ieee80211_channel *);
157 :
158 :
159 : int
160 0 : ar9003_attach(struct athn_softc *sc)
161 : {
162 0 : struct athn_ops *ops = &sc->ops;
163 : int error;
164 :
165 : /* Set callbacks for AR9003 family. */
166 0 : ops->gpio_read = ar9003_gpio_read;
167 0 : ops->gpio_write = ar9003_gpio_write;
168 0 : ops->gpio_config_input = ar9003_gpio_config_input;
169 0 : ops->gpio_config_output = ar9003_gpio_config_output;
170 0 : ops->rfsilent_init = ar9003_rfsilent_init;
171 :
172 0 : ops->dma_alloc = ar9003_dma_alloc;
173 0 : ops->dma_free = ar9003_dma_free;
174 0 : ops->rx_enable = ar9003_rx_enable;
175 0 : ops->intr = ar9003_intr;
176 0 : ops->tx = ar9003_tx;
177 :
178 0 : ops->set_rf_mode = ar9003_set_rf_mode;
179 0 : ops->rf_bus_request = ar9003_rf_bus_request;
180 0 : ops->rf_bus_release = ar9003_rf_bus_release;
181 0 : ops->set_phy = ar9003_set_phy;
182 0 : ops->set_delta_slope = ar9003_set_delta_slope;
183 0 : ops->enable_antenna_diversity = ar9003_enable_antenna_diversity;
184 0 : ops->init_baseband = ar9003_init_baseband;
185 0 : ops->disable_phy = ar9003_disable_phy;
186 0 : ops->set_rxchains = ar9003_set_rxchains;
187 0 : ops->noisefloor_calib = ar9003_do_noisefloor_calib;
188 0 : ops->do_calib = ar9003_do_calib;
189 0 : ops->next_calib = ar9003_next_calib;
190 0 : ops->hw_init = ar9003_hw_init;
191 :
192 0 : ops->set_noise_immunity_level = ar9003_set_noise_immunity_level;
193 0 : ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal;
194 0 : ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal;
195 0 : ops->set_cck_weak_signal = ar9003_set_cck_weak_signal;
196 0 : ops->set_firstep_level = ar9003_set_firstep_level;
197 0 : ops->set_spur_immunity_level = ar9003_set_spur_immunity_level;
198 :
199 : /* Set MAC registers offsets. */
200 0 : sc->obs_off = AR_OBS;
201 0 : sc->gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
202 :
203 0 : if (!(sc->flags & ATHN_FLAG_PCIE))
204 0 : athn_config_nonpcie(sc);
205 : else
206 0 : athn_config_pcie(sc);
207 :
208 : /* Determine ROM type and location. */
209 0 : if ((error = ar9003_find_rom(sc)) != 0) {
210 0 : printf("%s: could not find ROM\n", sc->sc_dev.dv_xname);
211 0 : return (error);
212 : }
213 : /* Read entire ROM content in memory. */
214 0 : if ((error = ar9003_read_rom(sc)) != 0) {
215 0 : printf("%s: could not read ROM\n", sc->sc_dev.dv_xname);
216 0 : return (error);
217 : }
218 :
219 : /* Determine if it is a non-enterprise AR9003 card. */
220 0 : if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD)
221 0 : sc->flags |= ATHN_FLAG_NON_ENTERPRISE;
222 :
223 0 : ops->setup(sc);
224 0 : return (0);
225 0 : }
226 :
227 : /*
228 : * Read 16-bit word from EEPROM.
229 : */
230 : int
231 0 : ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
232 : {
233 : uint32_t reg;
234 : int ntries;
235 :
236 0 : reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
237 0 : for (ntries = 0; ntries < 1000; ntries++) {
238 0 : reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
239 0 : if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
240 : AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
241 0 : *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
242 0 : return (0);
243 : }
244 0 : DELAY(10);
245 : }
246 0 : *val = 0xffff;
247 0 : return (ETIMEDOUT);
248 0 : }
249 :
250 : /*
251 : * Read an arbitrary number of bytes at a specified address in EEPROM.
252 : * NB: The address may not be 16-bit aligned.
253 : */
254 : int
255 0 : ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
256 : {
257 : uint8_t *dst = buf;
258 0 : uint16_t val;
259 : int error;
260 :
261 0 : if (len > 0 && (addr & 1)) {
262 : /* Deal with non-aligned reads. */
263 0 : addr >>= 1;
264 0 : error = ar9003_read_eep_word(sc, addr, &val);
265 0 : if (error != 0)
266 0 : return (error);
267 0 : *dst++ = val & 0xff;
268 0 : addr--;
269 0 : len--;
270 0 : } else
271 0 : addr >>= 1;
272 0 : for (; len >= 2; addr--, len -= 2) {
273 0 : error = ar9003_read_eep_word(sc, addr, &val);
274 0 : if (error != 0)
275 0 : return (error);
276 0 : *dst++ = val >> 8;
277 0 : *dst++ = val & 0xff;
278 : }
279 0 : if (len > 0) {
280 0 : error = ar9003_read_eep_word(sc, addr, &val);
281 0 : if (error != 0)
282 0 : return (error);
283 0 : *dst++ = val >> 8;
284 0 : }
285 0 : return (0);
286 0 : }
287 :
288 : /*
289 : * Read 32-bit word from OTPROM.
290 : */
291 : int
292 0 : ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val)
293 : {
294 : uint32_t reg;
295 : int ntries;
296 :
297 0 : reg = AR_READ(sc, AR_OTP_BASE(addr));
298 0 : for (ntries = 0; ntries < 1000; ntries++) {
299 0 : reg = AR_READ(sc, AR_OTP_STATUS);
300 0 : if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) {
301 0 : *val = AR_READ(sc, AR_OTP_READ_DATA);
302 0 : return (0);
303 : }
304 0 : DELAY(10);
305 : }
306 0 : return (ETIMEDOUT);
307 0 : }
308 :
309 : /*
310 : * Read an arbitrary number of bytes at a specified address in OTPROM.
311 : * NB: The address may not be 32-bit aligned.
312 : */
313 : int
314 0 : ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
315 : {
316 : uint8_t *dst = buf;
317 0 : uint32_t val;
318 : int error;
319 :
320 : /* NB: not optimal for non-aligned reads, but correct. */
321 0 : for (; len > 0; addr--, len--) {
322 0 : error = ar9003_read_otp_word(sc, addr >> 2, &val);
323 0 : if (error != 0)
324 0 : return (error);
325 0 : *dst++ = (val >> ((addr & 3) * 8)) & 0xff;
326 : }
327 0 : return (0);
328 0 : }
329 :
330 : /*
331 : * Determine if the chip has an external EEPROM or an OTPROM and its size.
332 : */
333 : int
334 0 : ar9003_find_rom(struct athn_softc *sc)
335 : {
336 0 : struct athn_ops *ops = &sc->ops;
337 0 : uint32_t hdr;
338 : int error;
339 :
340 : /* Try EEPROM. */
341 0 : ops->read_rom_data = ar9003_read_eep_data;
342 :
343 0 : sc->eep_size = AR_SREV_9485(sc) ? 4096 : 1024;
344 0 : sc->eep_base = sc->eep_size - 1;
345 0 : error = ops->read_rom_data(sc, sc->eep_base, &hdr, sizeof(hdr));
346 0 : if (error == 0 && hdr != 0 && hdr != 0xffffffff)
347 0 : return (0);
348 :
349 0 : sc->eep_size = 512;
350 0 : sc->eep_base = sc->eep_size - 1;
351 0 : error = ops->read_rom_data(sc, sc->eep_base, &hdr, sizeof(hdr));
352 0 : if (error == 0 && hdr != 0 && hdr != 0xffffffff)
353 0 : return (0);
354 :
355 : /* Try OTPROM. */
356 0 : ops->read_rom_data = ar9003_read_otp_data;
357 :
358 0 : sc->eep_size = 1024;
359 0 : sc->eep_base = sc->eep_size - 1;
360 0 : error = ops->read_rom_data(sc, sc->eep_base, &hdr, sizeof(hdr));
361 0 : if (error == 0 && hdr != 0 && hdr != 0xffffffff)
362 0 : return (0);
363 :
364 0 : sc->eep_size = 512;
365 0 : sc->eep_base = sc->eep_size - 1;
366 0 : error = ops->read_rom_data(sc, sc->eep_base, &hdr, sizeof(hdr));
367 0 : if (error == 0 && hdr != 0 && hdr != 0xffffffff)
368 0 : return (0);
369 :
370 0 : return (EIO); /* Not found. */
371 0 : }
372 :
373 : int
374 0 : ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref,
375 : const uint8_t *buf, int len)
376 : {
377 : const uint8_t *def, *ptr, *end;
378 0 : uint8_t *eep = sc->eep;
379 : int off, clen;
380 :
381 0 : if (alg == AR_EEP_COMPRESS_BLOCK) {
382 : /* Block contains chunks that shadow ROM template. */
383 0 : def = sc->ops.get_rom_template(sc, ref);
384 0 : if (def == NULL) {
385 : DPRINTF(("unknown template image %d\n", ref));
386 0 : return (EINVAL);
387 : }
388 : /* Start with template. */
389 0 : memcpy(eep, def, sc->eep_size);
390 : /* Shadow template with chunks. */
391 : off = 0; /* Offset in ROM image. */
392 : ptr = buf; /* Offset in block. */
393 0 : end = buf + len;
394 : /* Process chunks. */
395 0 : while (ptr + 2 <= end) {
396 0 : off += *ptr++; /* Gap with previous chunk. */
397 0 : clen = *ptr++; /* Chunk length. */
398 : /* Make sure block is large enough. */
399 0 : if (ptr + clen > end)
400 0 : return (EINVAL);
401 : /* Make sure chunk fits in ROM image. */
402 0 : if (off + clen > sc->eep_size)
403 0 : return (EINVAL);
404 : /* Restore chunk. */
405 : DPRINTFN(2, ("ROM chunk @%d/%d\n", off, clen));
406 0 : memcpy(&eep[off], ptr, clen);
407 : ptr += clen;
408 : off += clen;
409 : }
410 0 : } else if (alg == AR_EEP_COMPRESS_NONE) {
411 : /* Block contains full ROM image. */
412 0 : if (len != sc->eep_size) {
413 : DPRINTF(("block length mismatch %d\n", len));
414 0 : return (EINVAL);
415 : }
416 0 : memcpy(eep, buf, len);
417 0 : }
418 0 : return (0);
419 0 : }
420 :
421 : int
422 0 : ar9003_read_rom(struct athn_softc *sc)
423 : {
424 0 : struct athn_ops *ops = &sc->ops;
425 : uint8_t *buf, *ptr, alg, ref;
426 0 : uint16_t sum, rsum;
427 0 : uint32_t hdr;
428 : int error, addr, len, i, j;
429 :
430 : /* Allocate space to store ROM in host memory. */
431 0 : sc->eep = malloc(sc->eep_size, M_DEVBUF, M_NOWAIT);
432 0 : if (sc->eep == NULL)
433 0 : return (ENOMEM);
434 :
435 : /* Allocate temporary buffer to store ROM blocks. */
436 0 : buf = malloc(2048, M_DEVBUF, M_NOWAIT);
437 0 : if (buf == NULL)
438 0 : return (ENOMEM);
439 :
440 : /* Restore vendor-specified ROM blocks. */
441 0 : addr = sc->eep_base;
442 0 : for (i = 0; i < 100; i++) {
443 : /* Read block header. */
444 0 : error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr));
445 0 : if (error != 0)
446 : break;
447 0 : if (hdr == 0 || hdr == 0xffffffff)
448 : break;
449 0 : addr -= sizeof(hdr);
450 :
451 : /* Extract bits from header. */
452 : ptr = (uint8_t *)&hdr;
453 0 : alg = (ptr[0] & 0xe0) >> 5;
454 0 : ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f);
455 0 : len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4;
456 : DPRINTFN(2, ("ROM block %d: alg=%d ref=%d len=%d\n",
457 : i, alg, ref, len));
458 :
459 : /* Read block data (len <= 0x7ff). */
460 0 : error = ops->read_rom_data(sc, addr, buf, len);
461 0 : if (error != 0)
462 : break;
463 0 : addr -= len;
464 :
465 : /* Read block checksum. */
466 0 : error = ops->read_rom_data(sc, addr, &sum, sizeof(sum));
467 0 : if (error != 0)
468 : break;
469 0 : addr -= sizeof(sum);
470 :
471 : /* Compute block checksum. */
472 : rsum = 0;
473 0 : for (j = 0; j < len; j++)
474 0 : rsum += buf[j];
475 : /* Compare to that in ROM. */
476 0 : if (letoh16(sum) != rsum) {
477 : DPRINTF(("bad block checksum 0x%x/0x%x\n",
478 : letoh16(sum), rsum));
479 : continue; /* Skip bad block. */
480 : }
481 : /* Checksum is correct, restore block. */
482 0 : ar9003_restore_rom_block(sc, alg, ref, buf, len);
483 0 : }
484 : #if BYTE_ORDER == BIG_ENDIAN
485 : /* NB: ROM is always little endian. */
486 : if (error == 0)
487 : ops->swap_rom(sc);
488 : #endif
489 0 : free(buf, M_DEVBUF, 0);
490 0 : return (error);
491 0 : }
492 :
493 : /*
494 : * Access to General Purpose Input/Output ports.
495 : */
496 : int
497 0 : ar9003_gpio_read(struct athn_softc *sc, int pin)
498 : {
499 0 : KASSERT(pin < sc->ngpiopins);
500 0 : return (((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) &
501 0 : (1 << pin)) != 0);
502 : }
503 :
504 : void
505 0 : ar9003_gpio_write(struct athn_softc *sc, int pin, int set)
506 : {
507 : uint32_t reg;
508 :
509 0 : KASSERT(pin < sc->ngpiopins);
510 0 : reg = AR_READ(sc, AR_GPIO_IN_OUT);
511 0 : if (set)
512 0 : reg |= 1 << pin;
513 : else
514 0 : reg &= ~(1 << pin);
515 0 : AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
516 0 : AR_WRITE_BARRIER(sc);
517 0 : }
518 :
519 : void
520 0 : ar9003_gpio_config_input(struct athn_softc *sc, int pin)
521 : {
522 : uint32_t reg;
523 :
524 0 : reg = AR_READ(sc, AR_GPIO_OE_OUT);
525 0 : reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
526 : reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
527 0 : AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
528 0 : AR_WRITE_BARRIER(sc);
529 0 : }
530 :
531 : void
532 0 : ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type)
533 : {
534 : uint32_t reg;
535 : int mux, off;
536 :
537 0 : mux = pin / 6;
538 0 : off = pin % 6;
539 :
540 0 : reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
541 0 : reg &= ~(0x1f << (off * 5));
542 0 : reg |= (type & 0x1f) << (off * 5);
543 0 : AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
544 :
545 0 : reg = AR_READ(sc, AR_GPIO_OE_OUT);
546 0 : reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
547 0 : reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
548 0 : AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
549 0 : AR_WRITE_BARRIER(sc);
550 0 : }
551 :
552 : void
553 0 : ar9003_rfsilent_init(struct athn_softc *sc)
554 : {
555 : uint32_t reg;
556 :
557 : /* Configure hardware radio switch. */
558 0 : AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
559 0 : reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
560 0 : reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
561 0 : AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
562 0 : ar9003_gpio_config_input(sc, sc->rfsilent_pin);
563 0 : AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
564 0 : if (!(sc->flags & ATHN_FLAG_RFSILENT_REVERSED)) {
565 0 : AR_SETBITS(sc, AR_GPIO_INTR_POL,
566 : AR_GPIO_INTR_POL_PIN(sc->rfsilent_pin));
567 0 : }
568 0 : AR_WRITE_BARRIER(sc);
569 0 : }
570 :
571 : int
572 0 : ar9003_dma_alloc(struct athn_softc *sc)
573 : {
574 : int error;
575 :
576 0 : error = ar9003_tx_alloc(sc);
577 0 : if (error != 0)
578 0 : return (error);
579 :
580 0 : error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH);
581 0 : if (error != 0)
582 0 : return (error);
583 :
584 0 : error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH);
585 0 : if (error != 0)
586 0 : return (error);
587 :
588 0 : return (0);
589 0 : }
590 :
591 : void
592 0 : ar9003_dma_free(struct athn_softc *sc)
593 : {
594 0 : ar9003_tx_free(sc);
595 0 : ar9003_rx_free(sc, ATHN_QID_LP);
596 0 : ar9003_rx_free(sc, ATHN_QID_HP);
597 0 : }
598 :
599 : int
600 0 : ar9003_tx_alloc(struct athn_softc *sc)
601 : {
602 : struct athn_tx_buf *bf;
603 : bus_size_t size;
604 0 : int error, nsegs, i;
605 :
606 : /*
607 : * Allocate Tx status ring.
608 : */
609 : size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status);
610 :
611 0 : error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
612 : BUS_DMA_NOWAIT, &sc->txsmap);
613 0 : if (error != 0)
614 : goto fail;
615 :
616 0 : error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->txsseg, 1,
617 : &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
618 0 : if (error != 0)
619 : goto fail;
620 :
621 0 : error = bus_dmamem_map(sc->sc_dmat, &sc->txsseg, 1, size,
622 : (caddr_t *)&sc->txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
623 0 : if (error != 0)
624 : goto fail;
625 :
626 0 : error = bus_dmamap_load_raw(sc->sc_dmat, sc->txsmap, &sc->txsseg,
627 : 1, size, BUS_DMA_NOWAIT | BUS_DMA_READ);
628 0 : if (error != 0)
629 : goto fail;
630 :
631 : /*
632 : * Allocate a pool of Tx descriptors shared between all Tx queues.
633 : */
634 : size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc);
635 :
636 0 : error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
637 : BUS_DMA_NOWAIT, &sc->map);
638 0 : if (error != 0)
639 : goto fail;
640 :
641 0 : error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->seg, 1,
642 : &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
643 0 : if (error != 0)
644 : goto fail;
645 :
646 0 : error = bus_dmamem_map(sc->sc_dmat, &sc->seg, 1, size,
647 : (caddr_t *)&sc->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
648 0 : if (error != 0)
649 : goto fail;
650 :
651 0 : error = bus_dmamap_load_raw(sc->sc_dmat, sc->map, &sc->seg, 1, size,
652 : BUS_DMA_NOWAIT | BUS_DMA_WRITE);
653 0 : if (error != 0)
654 : goto fail;
655 :
656 0 : SIMPLEQ_INIT(&sc->txbufs);
657 0 : for (i = 0; i < ATHN_NTXBUFS; i++) {
658 0 : bf = &sc->txpool[i];
659 :
660 0 : error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
661 : AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
662 : &bf->bf_map);
663 0 : if (error != 0) {
664 0 : printf("%s: could not create Tx buf DMA map\n",
665 0 : sc->sc_dev.dv_xname);
666 0 : goto fail;
667 : }
668 :
669 0 : bf->bf_descs = &((struct ar_tx_desc *)sc->descs)[i];
670 0 : bf->bf_daddr = sc->map->dm_segs[0].ds_addr +
671 0 : i * sizeof(struct ar_tx_desc);
672 :
673 0 : SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list);
674 : }
675 0 : return (0);
676 : fail:
677 0 : ar9003_tx_free(sc);
678 0 : return (error);
679 0 : }
680 :
681 : void
682 0 : ar9003_tx_free(struct athn_softc *sc)
683 : {
684 : struct athn_tx_buf *bf;
685 : int i;
686 :
687 0 : for (i = 0; i < ATHN_NTXBUFS; i++) {
688 0 : bf = &sc->txpool[i];
689 :
690 0 : if (bf->bf_map != NULL)
691 0 : bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
692 : }
693 : /* Free Tx descriptors. */
694 0 : if (sc->map != NULL) {
695 0 : if (sc->descs != NULL) {
696 0 : bus_dmamap_unload(sc->sc_dmat, sc->map);
697 0 : bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->descs,
698 : ATHN_NTXBUFS * sizeof(struct ar_tx_desc));
699 0 : bus_dmamem_free(sc->sc_dmat, &sc->seg, 1);
700 0 : }
701 0 : bus_dmamap_destroy(sc->sc_dmat, sc->map);
702 0 : }
703 : /* Free Tx status ring. */
704 0 : if (sc->txsmap != NULL) {
705 0 : if (sc->txsring != NULL) {
706 0 : bus_dmamap_unload(sc->sc_dmat, sc->txsmap);
707 0 : bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->txsring,
708 : AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
709 0 : bus_dmamem_free(sc->sc_dmat, &sc->txsseg, 1);
710 0 : }
711 0 : bus_dmamap_destroy(sc->sc_dmat, sc->txsmap);
712 0 : }
713 0 : }
714 :
715 : int
716 0 : ar9003_rx_alloc(struct athn_softc *sc, int qid, int count)
717 : {
718 0 : struct athn_rxq *rxq = &sc->rxq[qid];
719 : struct athn_rx_buf *bf;
720 : struct ar_rx_status *ds;
721 : int error, i;
722 :
723 0 : rxq->bf = mallocarray(count, sizeof(*bf), M_DEVBUF,
724 : M_NOWAIT | M_ZERO);
725 0 : if (rxq->bf == NULL)
726 0 : return (ENOMEM);
727 :
728 0 : rxq->count = count;
729 :
730 0 : for (i = 0; i < rxq->count; i++) {
731 0 : bf = &rxq->bf[i];
732 :
733 0 : error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
734 : ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
735 : &bf->bf_map);
736 0 : if (error != 0) {
737 0 : printf("%s: could not create Rx buf DMA map\n",
738 0 : sc->sc_dev.dv_xname);
739 0 : goto fail;
740 : }
741 : /*
742 : * Assumes MCLGETI returns cache-line-size aligned buffers.
743 : */
744 0 : bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
745 0 : if (bf->bf_m == NULL) {
746 0 : printf("%s: could not allocate Rx mbuf\n",
747 0 : sc->sc_dev.dv_xname);
748 : error = ENOBUFS;
749 0 : goto fail;
750 : }
751 :
752 0 : error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
753 : mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
754 : BUS_DMA_NOWAIT);
755 0 : if (error != 0) {
756 0 : printf("%s: could not DMA map Rx buffer\n",
757 0 : sc->sc_dev.dv_xname);
758 0 : goto fail;
759 : }
760 :
761 0 : ds = mtod(bf->bf_m, struct ar_rx_status *);
762 0 : memset(ds, 0, sizeof(*ds));
763 0 : bf->bf_desc = ds;
764 0 : bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
765 :
766 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
767 : BUS_DMASYNC_PREREAD);
768 : }
769 0 : return (0);
770 : fail:
771 0 : ar9003_rx_free(sc, qid);
772 0 : return (error);
773 0 : }
774 :
775 : void
776 0 : ar9003_rx_free(struct athn_softc *sc, int qid)
777 : {
778 0 : struct athn_rxq *rxq = &sc->rxq[qid];
779 : struct athn_rx_buf *bf;
780 : int i;
781 :
782 0 : if (rxq->bf == NULL)
783 0 : return;
784 0 : for (i = 0; i < rxq->count; i++) {
785 0 : bf = &rxq->bf[i];
786 :
787 0 : if (bf->bf_map != NULL)
788 0 : bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
789 0 : m_freem(bf->bf_m);
790 : }
791 0 : free(rxq->bf, M_DEVBUF, 0);
792 0 : }
793 :
794 : void
795 0 : ar9003_reset_txsring(struct athn_softc *sc)
796 : {
797 0 : sc->txscur = 0;
798 0 : memset(sc->txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
799 0 : AR_WRITE(sc, AR_Q_STATUS_RING_START,
800 : sc->txsmap->dm_segs[0].ds_addr);
801 0 : AR_WRITE(sc, AR_Q_STATUS_RING_END,
802 : sc->txsmap->dm_segs[0].ds_addr + sc->txsmap->dm_segs[0].ds_len);
803 0 : AR_WRITE_BARRIER(sc);
804 0 : }
805 :
806 : void
807 0 : ar9003_rx_enable(struct athn_softc *sc)
808 : {
809 : struct athn_rxq *rxq;
810 : struct athn_rx_buf *bf;
811 : struct ar_rx_status *ds;
812 : uint32_t reg;
813 : int qid, i;
814 :
815 0 : reg = AR_READ(sc, AR_RXBP_THRESH);
816 0 : reg = RW(reg, AR_RXBP_THRESH_HP, 1);
817 0 : reg = RW(reg, AR_RXBP_THRESH_LP, 1);
818 0 : AR_WRITE(sc, AR_RXBP_THRESH, reg);
819 :
820 : /* Set Rx buffer size. */
821 0 : AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds));
822 :
823 0 : for (qid = 0; qid < 2; qid++) {
824 0 : rxq = &sc->rxq[qid];
825 :
826 : /* Setup Rx status descriptors. */
827 0 : SIMPLEQ_INIT(&rxq->head);
828 0 : for (i = 0; i < rxq->count; i++) {
829 0 : bf = &rxq->bf[i];
830 0 : ds = bf->bf_desc;
831 :
832 0 : memset(ds, 0, sizeof(*ds));
833 0 : if (qid == ATHN_QID_LP)
834 0 : AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
835 : else
836 0 : AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
837 0 : AR_WRITE_BARRIER(sc);
838 0 : SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
839 : }
840 : }
841 : /* Enable Rx. */
842 0 : AR_WRITE(sc, AR_CR, 0);
843 0 : AR_WRITE_BARRIER(sc);
844 0 : }
845 :
846 : #if NBPFILTER > 0
847 : void
848 0 : ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
849 : struct ar_rx_status *ds)
850 : {
851 : #define IEEE80211_RADIOTAP_F_SHORTGI 0x80 /* XXX from FBSD */
852 :
853 0 : struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
854 0 : struct ieee80211com *ic = &sc->sc_ic;
855 0 : struct mbuf mb;
856 : uint64_t tsf;
857 : uint32_t tstamp;
858 : uint8_t rate;
859 :
860 : /* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */
861 0 : tstamp = ds->ds_status3;
862 0 : tsf = AR_READ(sc, AR_TSF_U32);
863 0 : tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
864 0 : if ((tsf & 0x7fff) < tstamp)
865 0 : tsf -= 0x8000;
866 0 : tsf = (tsf & ~0x7fff) | tstamp;
867 :
868 0 : tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
869 0 : tap->wr_tsft = htole64(tsf);
870 0 : tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
871 0 : tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
872 0 : tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
873 : /* XXX noise. */
874 0 : tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA);
875 0 : tap->wr_rate = 0; /* In case it can't be found below. */
876 0 : rate = MS(ds->ds_status1, AR_RXS1_RATE);
877 0 : if (rate & 0x80) { /* HT. */
878 : /* Bit 7 set means HT MCS instead of rate. */
879 0 : tap->wr_rate = rate;
880 0 : if (!(ds->ds_status4 & AR_RXS4_GI))
881 0 : tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
882 :
883 0 : } else if (rate & 0x10) { /* CCK. */
884 0 : if (rate & 0x04)
885 0 : tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
886 0 : switch (rate & ~0x14) {
887 0 : case 0xb: tap->wr_rate = 2; break;
888 0 : case 0xa: tap->wr_rate = 4; break;
889 0 : case 0x9: tap->wr_rate = 11; break;
890 0 : case 0x8: tap->wr_rate = 22; break;
891 : }
892 : } else { /* OFDM. */
893 0 : switch (rate) {
894 0 : case 0xb: tap->wr_rate = 12; break;
895 0 : case 0xf: tap->wr_rate = 18; break;
896 0 : case 0xa: tap->wr_rate = 24; break;
897 0 : case 0xe: tap->wr_rate = 36; break;
898 0 : case 0x9: tap->wr_rate = 48; break;
899 0 : case 0xd: tap->wr_rate = 72; break;
900 0 : case 0x8: tap->wr_rate = 96; break;
901 0 : case 0xc: tap->wr_rate = 108; break;
902 : }
903 : }
904 0 : mb.m_data = (caddr_t)tap;
905 0 : mb.m_len = sc->sc_rxtap_len;
906 0 : mb.m_next = m;
907 0 : mb.m_nextpkt = NULL;
908 0 : mb.m_type = 0;
909 0 : mb.m_flags = 0;
910 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
911 0 : }
912 : #endif
913 :
914 : int
915 0 : ar9003_rx_process(struct athn_softc *sc, int qid)
916 : {
917 0 : struct ieee80211com *ic = &sc->sc_ic;
918 0 : struct ifnet *ifp = &ic->ic_if;
919 0 : struct athn_rxq *rxq = &sc->rxq[qid];
920 : struct athn_rx_buf *bf;
921 : struct ar_rx_status *ds;
922 : struct ieee80211_frame *wh;
923 0 : struct ieee80211_rxinfo rxi;
924 : struct ieee80211_node *ni;
925 : struct mbuf *m, *m1;
926 : int error, len;
927 :
928 0 : bf = SIMPLEQ_FIRST(&rxq->head);
929 0 : if (__predict_false(bf == NULL)) { /* Should not happen. */
930 0 : printf("%s: Rx queue is empty!\n", sc->sc_dev.dv_xname);
931 0 : return (ENOENT);
932 : }
933 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
934 : BUS_DMASYNC_POSTREAD);
935 :
936 0 : ds = mtod(bf->bf_m, struct ar_rx_status *);
937 0 : if (!(ds->ds_status11 & AR_RXS11_DONE))
938 0 : return (EBUSY);
939 :
940 : /* Check that it is a valid Rx status descriptor. */
941 0 : if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX |
942 0 : AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS))
943 : goto skip;
944 :
945 0 : if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) {
946 0 : if (ds->ds_status11 & AR_RXS11_CRC_ERR)
947 : DPRINTFN(6, ("CRC error\n"));
948 0 : else if (ds->ds_status11 & AR_RXS11_PHY_ERR)
949 : DPRINTFN(6, ("PHY error=0x%x\n",
950 : MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE)));
951 0 : else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR)
952 : DPRINTFN(6, ("Decryption CRC error\n"));
953 0 : else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) {
954 : DPRINTFN(2, ("Michael MIC failure\n"));
955 : /* Report Michael MIC failures to net80211. */
956 0 : ic->ic_stats.is_rx_locmicfail++;
957 0 : ieee80211_michael_mic_failure(ic, 0);
958 : /*
959 : * XXX Check that it is not a control frame
960 : * (invalid MIC failures on valid ctl frames).
961 : */
962 0 : }
963 0 : ifp->if_ierrors++;
964 0 : goto skip;
965 : }
966 :
967 0 : len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
968 0 : if (__predict_false(len < IEEE80211_MIN_LEN ||
969 : len > ATHN_RXBUFSZ - sizeof(*ds))) {
970 : DPRINTF(("corrupted descriptor length=%d\n", len));
971 0 : ifp->if_ierrors++;
972 0 : goto skip;
973 : }
974 :
975 : /* Allocate a new Rx buffer. */
976 0 : m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
977 0 : if (__predict_false(m1 == NULL)) {
978 0 : ic->ic_stats.is_rx_nombuf++;
979 0 : ifp->if_ierrors++;
980 0 : goto skip;
981 : }
982 :
983 : /* Unmap the old Rx buffer. */
984 0 : bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
985 :
986 : /* Map the new Rx buffer. */
987 0 : error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
988 : ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
989 0 : if (__predict_false(error != 0)) {
990 0 : m_freem(m1);
991 :
992 : /* Remap the old Rx buffer or panic. */
993 0 : error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
994 : mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
995 : BUS_DMA_NOWAIT | BUS_DMA_READ);
996 0 : KASSERT(error != 0);
997 0 : bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
998 0 : ifp->if_ierrors++;
999 0 : goto skip;
1000 : }
1001 0 : bf->bf_desc = mtod(m1, struct ar_rx_status *);
1002 0 : bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
1003 :
1004 0 : m = bf->bf_m;
1005 0 : bf->bf_m = m1;
1006 :
1007 : /* Finalize mbuf. */
1008 : /* Strip Rx status descriptor from head. */
1009 0 : m->m_data = (caddr_t)&ds[1];
1010 0 : m->m_pkthdr.len = m->m_len = len;
1011 :
1012 : /* Grab a reference to the source node. */
1013 0 : wh = mtod(m, struct ieee80211_frame *);
1014 0 : ni = ieee80211_find_rxnode(ic, wh);
1015 :
1016 : /* Remove any HW padding after the 802.11 header. */
1017 0 : if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
1018 0 : u_int hdrlen = ieee80211_get_hdrlen(wh);
1019 0 : if (hdrlen & 3) {
1020 0 : memmove((caddr_t)wh + 2, wh, hdrlen);
1021 0 : m_adj(m, 2);
1022 0 : }
1023 0 : }
1024 : #if NBPFILTER > 0
1025 0 : if (__predict_false(sc->sc_drvbpf != NULL))
1026 0 : ar9003_rx_radiotap(sc, m, ds);
1027 : #endif
1028 : /* Trim 802.11 FCS after radiotap. */
1029 0 : m_adj(m, -IEEE80211_CRC_LEN);
1030 :
1031 : /* Send the frame to the 802.11 layer. */
1032 0 : rxi.rxi_flags = 0; /* XXX */
1033 0 : rxi.rxi_rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
1034 0 : rxi.rxi_tstamp = ds->ds_status3;
1035 0 : ieee80211_input(ifp, m, ni, &rxi);
1036 :
1037 : /* Node is no longer needed. */
1038 0 : ieee80211_release_node(ic, ni);
1039 :
1040 : skip:
1041 : /* Unlink this descriptor from head. */
1042 0 : SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
1043 0 : memset(bf->bf_desc, 0, sizeof(*ds));
1044 :
1045 : /* Re-use this descriptor and link it to tail. */
1046 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
1047 : BUS_DMASYNC_PREREAD);
1048 :
1049 0 : if (qid == ATHN_QID_LP)
1050 0 : AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
1051 : else
1052 0 : AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
1053 0 : AR_WRITE_BARRIER(sc);
1054 0 : SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
1055 :
1056 : /* Re-enable Rx. */
1057 0 : AR_WRITE(sc, AR_CR, 0);
1058 0 : AR_WRITE_BARRIER(sc);
1059 0 : return (0);
1060 0 : }
1061 :
1062 : void
1063 0 : ar9003_rx_intr(struct athn_softc *sc, int qid)
1064 : {
1065 0 : while (ar9003_rx_process(sc, qid) == 0);
1066 0 : }
1067 :
1068 : int
1069 0 : ar9003_tx_process(struct athn_softc *sc)
1070 : {
1071 0 : struct ieee80211com *ic = &sc->sc_ic;
1072 0 : struct ifnet *ifp = &ic->ic_if;
1073 : struct athn_txq *txq;
1074 : struct athn_node *an;
1075 : struct athn_tx_buf *bf;
1076 : struct ar_tx_status *ds;
1077 : uint8_t qid, failcnt;
1078 :
1079 0 : ds = &((struct ar_tx_status *)sc->txsring)[sc->txscur];
1080 0 : if (!(ds->ds_status8 & AR_TXS8_DONE))
1081 0 : return (EBUSY);
1082 :
1083 0 : sc->txscur = (sc->txscur + 1) % AR9003_NTXSTATUS;
1084 :
1085 : /* Check that it is a valid Tx status descriptor. */
1086 0 : if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) !=
1087 : (SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) {
1088 0 : memset(ds, 0, sizeof(*ds));
1089 0 : return (0);
1090 : }
1091 : /* Retrieve the queue that was used to send this PDU. */
1092 0 : qid = MS(ds->ds_info, AR_TXI_QCU_NUM);
1093 0 : txq = &sc->txq[qid];
1094 :
1095 0 : bf = SIMPLEQ_FIRST(&txq->head);
1096 0 : if (bf == NULL || bf == txq->wait) {
1097 0 : memset(ds, 0, sizeof(*ds));
1098 0 : return (0);
1099 : }
1100 0 : SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1101 :
1102 0 : sc->sc_tx_timer = 0;
1103 :
1104 0 : if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES)
1105 0 : ifp->if_oerrors++;
1106 :
1107 0 : if (ds->ds_status3 & AR_TXS3_UNDERRUN)
1108 0 : athn_inc_tx_trigger_level(sc);
1109 :
1110 : /* Wakeup PA predistortion state machine. */
1111 0 : if (bf->bf_txflags & ATHN_TXFLAG_PAPRD)
1112 0 : ar9003_paprd_tx_tone_done(sc);
1113 :
1114 0 : an = (struct athn_node *)bf->bf_ni;
1115 : /*
1116 : * NB: the data fail count contains the number of un-acked tries
1117 : * for the final series used. We must add the number of tries for
1118 : * each series that was fully processed.
1119 : */
1120 0 : failcnt = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT);
1121 : /* NB: Assume two tries per series. */
1122 0 : failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2;
1123 :
1124 : /* Update rate control statistics. */
1125 0 : an->amn.amn_txcnt++;
1126 0 : if (failcnt > 0)
1127 0 : an->amn.amn_retrycnt++;
1128 :
1129 : DPRINTFN(5, ("Tx done qid=%d status3=%d fail count=%d\n",
1130 : qid, ds->ds_status3, failcnt));
1131 :
1132 : /* Reset Tx status descriptor. */
1133 0 : memset(ds, 0, sizeof(*ds));
1134 :
1135 : /* Unmap Tx buffer. */
1136 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1137 : BUS_DMASYNC_POSTWRITE);
1138 0 : bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1139 :
1140 0 : m_freem(bf->bf_m);
1141 0 : bf->bf_m = NULL;
1142 0 : ieee80211_release_node(ic, bf->bf_ni);
1143 0 : bf->bf_ni = NULL;
1144 :
1145 : /* Link Tx buffer back to global free list. */
1146 0 : SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list);
1147 :
1148 : /* Queue buffers that are waiting if there is new room. */
1149 0 : if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) {
1150 0 : AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr);
1151 0 : AR_WRITE_BARRIER(sc);
1152 0 : txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list);
1153 0 : }
1154 0 : return (0);
1155 0 : }
1156 :
1157 : void
1158 0 : ar9003_tx_intr(struct athn_softc *sc)
1159 : {
1160 0 : struct ieee80211com *ic = &sc->sc_ic;
1161 0 : struct ifnet *ifp = &ic->ic_if;
1162 :
1163 0 : while (ar9003_tx_process(sc) == 0);
1164 :
1165 0 : if (!SIMPLEQ_EMPTY(&sc->txbufs)) {
1166 0 : ifq_clr_oactive(&ifp->if_snd);
1167 0 : ifp->if_start(ifp);
1168 0 : }
1169 0 : }
1170 :
1171 : #ifndef IEEE80211_STA_ONLY
1172 : /*
1173 : * Process Software Beacon Alert interrupts.
1174 : */
1175 : int
1176 0 : ar9003_swba_intr(struct athn_softc *sc)
1177 : {
1178 0 : struct ieee80211com *ic = &sc->sc_ic;
1179 0 : struct ifnet *ifp = &ic->ic_if;
1180 0 : struct ieee80211_node *ni = ic->ic_bss;
1181 0 : struct athn_tx_buf *bf = sc->bcnbuf;
1182 : struct ieee80211_frame *wh;
1183 : struct ar_tx_desc *ds;
1184 : struct mbuf *m;
1185 : uint32_t sum;
1186 : uint8_t ridx, hwrate;
1187 : int error, totlen;
1188 :
1189 0 : if (ic->ic_tim_mcast_pending &&
1190 0 : mq_empty(&ni->ni_savedq) &&
1191 0 : SIMPLEQ_EMPTY(&sc->txq[ATHN_QID_CAB].head))
1192 0 : ic->ic_tim_mcast_pending = 0;
1193 :
1194 0 : if (ic->ic_dtim_count == 0)
1195 0 : ic->ic_dtim_count = ic->ic_dtim_period - 1;
1196 : else
1197 0 : ic->ic_dtim_count--;
1198 :
1199 : /* Make sure previous beacon has been sent. */
1200 0 : if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
1201 : DPRINTF(("beacon stuck\n"));
1202 0 : return (EBUSY);
1203 : }
1204 : /* Get new beacon. */
1205 0 : m = ieee80211_beacon_alloc(ic, ic->ic_bss);
1206 0 : if (__predict_false(m == NULL))
1207 0 : return (ENOBUFS);
1208 : /* Assign sequence number. */
1209 0 : wh = mtod(m, struct ieee80211_frame *);
1210 0 : *(uint16_t *)&wh->i_seq[0] =
1211 0 : htole16(ic->ic_bss->ni_txseq << IEEE80211_SEQ_SEQ_SHIFT);
1212 0 : ic->ic_bss->ni_txseq++;
1213 :
1214 : /* Unmap and free old beacon if any. */
1215 0 : if (__predict_true(bf->bf_m != NULL)) {
1216 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1217 : bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1218 0 : bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1219 0 : m_freem(bf->bf_m);
1220 0 : bf->bf_m = NULL;
1221 0 : }
1222 : /* DMA map new beacon. */
1223 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1224 : BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1225 0 : if (__predict_false(error != 0)) {
1226 0 : m_freem(m);
1227 0 : return (error);
1228 : }
1229 0 : bf->bf_m = m;
1230 :
1231 : /* Setup Tx descriptor (simplified ar9003_tx()). */
1232 0 : ds = bf->bf_descs;
1233 0 : memset(ds, 0, sizeof(*ds));
1234 :
1235 0 : ds->ds_info =
1236 : SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
1237 : SM(AR_TXI_DESC_NDWORDS, 23) |
1238 : SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) |
1239 : AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
1240 :
1241 0 : totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1242 0 : ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen);
1243 0 : ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER);
1244 0 : ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
1245 0 : ds->ds_ctl12 |= AR_TXC12_NO_ACK;
1246 0 : ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
1247 :
1248 : /* Write number of tries. */
1249 0 : ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1);
1250 :
1251 : /* Write Tx rate. */
1252 0 : ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1253 : ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1254 0 : hwrate = athn_rates[ridx].hwrate;
1255 0 : ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate);
1256 :
1257 : /* Write Tx chains. */
1258 0 : ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->txchainmask);
1259 :
1260 0 : ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr;
1261 : /* Segment length must be a multiple of 4. */
1262 0 : ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN,
1263 : (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
1264 : /* Compute Tx descriptor checksum. */
1265 0 : sum = ds->ds_info;
1266 0 : sum += ds->ds_segs[0].ds_data;
1267 0 : sum += ds->ds_segs[0].ds_ctl;
1268 0 : sum = (sum >> 16) + (sum & 0xffff);
1269 0 : ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
1270 :
1271 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1272 : BUS_DMASYNC_PREWRITE);
1273 :
1274 : /* Stop Tx DMA before putting the new beacon on the queue. */
1275 0 : athn_stop_tx_dma(sc, ATHN_QID_BEACON);
1276 :
1277 0 : AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
1278 :
1279 0 : for(;;) {
1280 0 : if (SIMPLEQ_EMPTY(&sc->txbufs))
1281 : break;
1282 :
1283 0 : m = mq_dequeue(&ni->ni_savedq);
1284 0 : if (m == NULL)
1285 : break;
1286 0 : if (!mq_empty(&ni->ni_savedq)) {
1287 : /* more queued frames, set the more data bit */
1288 0 : wh = mtod(m, struct ieee80211_frame *);
1289 0 : wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1290 0 : }
1291 :
1292 0 : if (sc->ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
1293 0 : ieee80211_release_node(ic, ni);
1294 0 : ifp->if_oerrors++;
1295 0 : break;
1296 : }
1297 : }
1298 :
1299 : /* Kick Tx. */
1300 0 : AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
1301 0 : AR_WRITE_BARRIER(sc);
1302 0 : return (0);
1303 0 : }
1304 : #endif
1305 :
1306 : int
1307 0 : ar9003_intr(struct athn_softc *sc)
1308 : {
1309 : uint32_t intr, intr2, intr5, sync;
1310 :
1311 : /* Get pending interrupts. */
1312 0 : intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
1313 0 : if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
1314 0 : intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
1315 0 : if (intr == AR_INTR_SPURIOUS || (intr & sc->isync) == 0)
1316 0 : return (0); /* Not for us. */
1317 : }
1318 :
1319 0 : if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
1320 0 : (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
1321 0 : intr = AR_READ(sc, AR_ISR);
1322 : else
1323 : intr = 0;
1324 0 : sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->isync;
1325 0 : if (intr == 0 && sync == 0)
1326 0 : return (0); /* Not for us. */
1327 :
1328 0 : if (intr != 0) {
1329 0 : if (intr & AR_ISR_BCNMISC) {
1330 0 : intr2 = AR_READ(sc, AR_ISR_S2);
1331 0 : if (intr2 & AR_ISR_S2_TIM)
1332 : /* TBD */;
1333 0 : if (intr2 & AR_ISR_S2_TSFOOR)
1334 : /* TBD */;
1335 0 : if (intr2 & AR_ISR_S2_BB_WATCHDOG)
1336 : /* TBD */;
1337 0 : }
1338 0 : intr = AR_READ(sc, AR_ISR_RAC);
1339 0 : if (intr == AR_INTR_SPURIOUS)
1340 0 : return (1);
1341 :
1342 : #ifndef IEEE80211_STA_ONLY
1343 0 : if (intr & AR_ISR_SWBA)
1344 0 : ar9003_swba_intr(sc);
1345 : #endif
1346 0 : if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
1347 0 : ar9003_rx_intr(sc, ATHN_QID_LP);
1348 0 : if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR | AR_ISR_RXEOL))
1349 0 : ar9003_rx_intr(sc, ATHN_QID_LP);
1350 0 : if (intr & AR_ISR_HP_RXOK)
1351 0 : ar9003_rx_intr(sc, ATHN_QID_HP);
1352 :
1353 0 : if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
1354 0 : ar9003_tx_intr(sc);
1355 0 : if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL))
1356 0 : ar9003_tx_intr(sc);
1357 :
1358 0 : if (intr & AR_ISR_GENTMR) {
1359 0 : intr5 = AR_READ(sc, AR_ISR_S5_S);
1360 : DPRINTF(("GENTMR trigger=%d thresh=%d\n",
1361 : MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
1362 : MS(intr5, AR_ISR_S5_GENTIMER_THRESH)));
1363 0 : }
1364 : }
1365 0 : if (sync != 0) {
1366 0 : if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
1367 0 : AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
1368 0 : AR_WRITE(sc, AR_RC, 0);
1369 0 : }
1370 :
1371 0 : if ((sc->flags & ATHN_FLAG_RFSILENT) &&
1372 0 : (sync & AR_INTR_SYNC_GPIO_PIN(sc->rfsilent_pin))) {
1373 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
1374 :
1375 0 : printf("%s: radio switch turned off\n",
1376 0 : sc->sc_dev.dv_xname);
1377 : /* Turn the interface down. */
1378 0 : athn_stop(ifp, 1);
1379 : return (1);
1380 : }
1381 :
1382 0 : AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
1383 0 : (void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
1384 0 : }
1385 0 : return (1);
1386 0 : }
1387 :
1388 : int
1389 0 : ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
1390 : int txflags)
1391 : {
1392 0 : struct ieee80211com *ic = &sc->sc_ic;
1393 : struct ieee80211_key *k = NULL;
1394 : struct ieee80211_frame *wh;
1395 0 : struct athn_series series[4];
1396 : struct ar_tx_desc *ds;
1397 : struct athn_txq *txq;
1398 : struct athn_tx_buf *bf;
1399 0 : struct athn_node *an = (void *)ni;
1400 : struct mbuf *m1;
1401 : uintptr_t entry;
1402 : uint32_t sum;
1403 : uint16_t qos = 0;
1404 0 : uint8_t txpower, type, encrtype, tid, ridx[4];
1405 : int i, error, totlen, hasqos, qid;
1406 :
1407 : /* Grab a Tx buffer from our global free list. */
1408 0 : bf = SIMPLEQ_FIRST(&sc->txbufs);
1409 0 : KASSERT(bf != NULL);
1410 :
1411 : /* Map 802.11 frame type to hardware frame type. */
1412 0 : wh = mtod(m, struct ieee80211_frame *);
1413 0 : if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1414 : IEEE80211_FC0_TYPE_MGT) {
1415 : /* NB: Beacons do not use ar9003_tx(). */
1416 0 : if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1417 : IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1418 0 : type = AR_FRAME_TYPE_PROBE_RESP;
1419 0 : else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1420 : IEEE80211_FC0_SUBTYPE_ATIM)
1421 0 : type = AR_FRAME_TYPE_ATIM;
1422 : else
1423 : type = AR_FRAME_TYPE_NORMAL;
1424 0 : } else if ((wh->i_fc[0] &
1425 0 : (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1426 : (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
1427 : type = AR_FRAME_TYPE_PSPOLL;
1428 0 : } else
1429 : type = AR_FRAME_TYPE_NORMAL;
1430 :
1431 0 : if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1432 0 : k = ieee80211_get_txkey(ic, wh, ni);
1433 0 : if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1434 0 : return (ENOBUFS);
1435 0 : wh = mtod(m, struct ieee80211_frame *);
1436 0 : }
1437 :
1438 : /* XXX 2-byte padding for QoS and 4-addr headers. */
1439 :
1440 : /* Select the HW Tx queue to use for this frame. */
1441 0 : if ((hasqos = ieee80211_has_qos(wh))) {
1442 0 : qos = ieee80211_get_qos(wh);
1443 0 : tid = qos & IEEE80211_QOS_TID;
1444 0 : qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
1445 0 : } else if (type == AR_FRAME_TYPE_PSPOLL) {
1446 : qid = ATHN_QID_PSPOLL;
1447 0 : } else if (txflags & ATHN_TXFLAG_CAB) {
1448 : qid = ATHN_QID_CAB;
1449 0 : } else
1450 : qid = ATHN_QID_AC_BE;
1451 0 : txq = &sc->txq[qid];
1452 :
1453 : /* Select the transmit rates to use for this frame. */
1454 0 : if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1455 0 : (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1456 : IEEE80211_FC0_TYPE_DATA) {
1457 : /* Use lowest rate for all tries. */
1458 0 : ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1459 0 : (ic->ic_curmode == IEEE80211_MODE_11A) ?
1460 : ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1461 0 : } else if (ic->ic_fixed_rate != -1) {
1462 : /* Use same fixed rate for all tries. */
1463 0 : ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1464 0 : sc->fixed_ridx;
1465 0 : } else {
1466 0 : int txrate = ni->ni_txrate;
1467 : /* Use fallback table of the node. */
1468 0 : for (i = 0; i < 4; i++) {
1469 0 : ridx[i] = an->ridx[txrate];
1470 0 : txrate = an->fallback[txrate];
1471 : }
1472 : }
1473 :
1474 : #if NBPFILTER > 0
1475 0 : if (__predict_false(sc->sc_drvbpf != NULL)) {
1476 0 : struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
1477 0 : struct mbuf mb;
1478 :
1479 0 : tap->wt_flags = 0;
1480 : /* Use initial transmit rate. */
1481 0 : tap->wt_rate = athn_rates[ridx[0]].rate;
1482 0 : tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1483 0 : tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1484 0 : tap->wt_hwqueue = qid;
1485 0 : if (ridx[0] != ATHN_RIDX_CCK1 &&
1486 0 : (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1487 0 : tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1488 0 : mb.m_data = (caddr_t)tap;
1489 0 : mb.m_len = sc->sc_txtap_len;
1490 0 : mb.m_next = m;
1491 0 : mb.m_nextpkt = NULL;
1492 0 : mb.m_type = 0;
1493 0 : mb.m_flags = 0;
1494 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1495 0 : }
1496 : #endif
1497 :
1498 : /* DMA map mbuf. */
1499 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1500 : BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1501 0 : if (__predict_false(error != 0)) {
1502 0 : if (error != EFBIG) {
1503 0 : printf("%s: can't map mbuf (error %d)\n",
1504 0 : sc->sc_dev.dv_xname, error);
1505 0 : m_freem(m);
1506 0 : return (error);
1507 : }
1508 : /*
1509 : * DMA mapping requires too many DMA segments; linearize
1510 : * mbuf in kernel virtual address space and retry.
1511 : */
1512 0 : MGETHDR(m1, M_DONTWAIT, MT_DATA);
1513 0 : if (m1 == NULL) {
1514 0 : m_freem(m);
1515 0 : return (ENOBUFS);
1516 : }
1517 0 : if (m->m_pkthdr.len > MHLEN) {
1518 0 : MCLGET(m1, M_DONTWAIT);
1519 0 : if (!(m1->m_flags & M_EXT)) {
1520 0 : m_freem(m);
1521 0 : m_freem(m1);
1522 0 : return (ENOBUFS);
1523 : }
1524 : }
1525 0 : m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, caddr_t));
1526 0 : m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
1527 0 : m_freem(m);
1528 : m = m1;
1529 :
1530 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1531 : BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1532 0 : if (error != 0) {
1533 0 : printf("%s: can't map mbuf (error %d)\n",
1534 0 : sc->sc_dev.dv_xname, error);
1535 0 : m_freem(m);
1536 0 : return (error);
1537 : }
1538 : }
1539 0 : bf->bf_m = m;
1540 0 : bf->bf_ni = ni;
1541 0 : bf->bf_txflags = txflags;
1542 :
1543 0 : wh = mtod(m, struct ieee80211_frame *);
1544 :
1545 0 : totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1546 :
1547 : /* Setup Tx descriptor. */
1548 0 : ds = bf->bf_descs;
1549 0 : memset(ds, 0, sizeof(*ds));
1550 :
1551 0 : ds->ds_info =
1552 : SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
1553 0 : SM(AR_TXI_DESC_NDWORDS, 23) |
1554 0 : SM(AR_TXI_QCU_NUM, qid) |
1555 0 : AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
1556 :
1557 0 : ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK;
1558 : txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */
1559 0 : ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower);
1560 :
1561 0 : ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type);
1562 :
1563 0 : if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1564 0 : (hasqos && (qos & IEEE80211_QOS_ACK_POLICY_MASK) ==
1565 : IEEE80211_QOS_ACK_POLICY_NOACK))
1566 0 : ds->ds_ctl12 |= AR_TXC12_NO_ACK;
1567 :
1568 : if (0 && k != NULL) {
1569 : /*
1570 : * Map 802.11 cipher to hardware encryption type and
1571 : * compute MIC+ICV overhead.
1572 : */
1573 : switch (k->k_cipher) {
1574 : case IEEE80211_CIPHER_WEP40:
1575 : case IEEE80211_CIPHER_WEP104:
1576 : encrtype = AR_ENCR_TYPE_WEP;
1577 : totlen += 4;
1578 : break;
1579 : case IEEE80211_CIPHER_TKIP:
1580 : encrtype = AR_ENCR_TYPE_TKIP;
1581 : totlen += 12;
1582 : break;
1583 : case IEEE80211_CIPHER_CCMP:
1584 : encrtype = AR_ENCR_TYPE_AES;
1585 : totlen += 8;
1586 : break;
1587 : default:
1588 : panic("unsupported cipher");
1589 : }
1590 : /*
1591 : * NB: The key cache entry index is stored in the key
1592 : * private field when the key is installed.
1593 : */
1594 : entry = (uintptr_t)k->k_priv;
1595 : ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry);
1596 : ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID;
1597 : } else
1598 : encrtype = AR_ENCR_TYPE_CLEAR;
1599 0 : ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype);
1600 :
1601 : /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1602 0 : if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1603 0 : (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1604 : IEEE80211_FC0_TYPE_DATA) {
1605 : /* NB: Group frames are sent using CCK in 802.11b/g. */
1606 0 : if (totlen > ic->ic_rtsthreshold) {
1607 0 : ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
1608 0 : } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1609 0 : athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
1610 0 : if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1611 0 : ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
1612 0 : else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1613 0 : ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE;
1614 : }
1615 : }
1616 : /*
1617 : * Disable multi-rate retries when protection is used.
1618 : * The RTS/CTS frame's duration field is fixed and won't be
1619 : * updated by hardware when the data rate changes.
1620 : */
1621 0 : if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
1622 0 : ridx[1] = ridx[2] = ridx[3] = ridx[0];
1623 0 : }
1624 : /* Setup multi-rate retries. */
1625 0 : for (i = 0; i < 4; i++) {
1626 0 : series[i].hwrate = athn_rates[ridx[i]].hwrate;
1627 0 : if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
1628 0 : ridx[i] != ATHN_RIDX_CCK1 &&
1629 0 : (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1630 0 : series[i].hwrate |= 0x04;
1631 0 : series[i].dur = 0;
1632 : }
1633 0 : if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
1634 : /* Compute duration for each series. */
1635 0 : for (i = 0; i < 4; i++) {
1636 0 : series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
1637 0 : athn_rates[ridx[i]].rspridx, ic->ic_flags);
1638 : }
1639 : }
1640 : /* If this is a PA training frame, select the Tx chain to use. */
1641 0 : if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) {
1642 0 : ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK,
1643 : 1 << sc->paprd_curchain);
1644 0 : }
1645 :
1646 : /* Write number of tries for each series. */
1647 0 : ds->ds_ctl13 =
1648 : SM(AR_TXC13_XMIT_DATA_TRIES0, 2) |
1649 : SM(AR_TXC13_XMIT_DATA_TRIES1, 2) |
1650 : SM(AR_TXC13_XMIT_DATA_TRIES2, 2) |
1651 : SM(AR_TXC13_XMIT_DATA_TRIES3, 4);
1652 :
1653 : /* Tell HW to update duration field in 802.11 header. */
1654 0 : if (type != AR_FRAME_TYPE_PSPOLL)
1655 0 : ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA;
1656 :
1657 : /* Write Tx rate for each series. */
1658 0 : ds->ds_ctl14 =
1659 0 : SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) |
1660 0 : SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) |
1661 0 : SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) |
1662 0 : SM(AR_TXC14_XMIT_RATE3, series[3].hwrate);
1663 :
1664 : /* Write duration for each series. */
1665 0 : ds->ds_ctl15 =
1666 0 : SM(AR_TXC15_PACKET_DUR0, series[0].dur) |
1667 0 : SM(AR_TXC15_PACKET_DUR1, series[1].dur);
1668 0 : ds->ds_ctl16 =
1669 0 : SM(AR_TXC16_PACKET_DUR2, series[2].dur) |
1670 0 : SM(AR_TXC16_PACKET_DUR3, series[3].dur);
1671 :
1672 0 : if ((sc->flags & ATHN_FLAG_3TREDUCE_CHAIN) &&
1673 0 : ic->ic_curmode == IEEE80211_MODE_11A) {
1674 : /*
1675 : * In order to not exceed PCIe power requirements, we only
1676 : * use two Tx chains for MCS0~15 on 5GHz band on these chips.
1677 : */
1678 0 : ds->ds_ctl18 =
1679 0 : SM(AR_TXC18_CHAIN_SEL0,
1680 0 : (ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->txchainmask) |
1681 0 : SM(AR_TXC18_CHAIN_SEL1,
1682 0 : (ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->txchainmask) |
1683 0 : SM(AR_TXC18_CHAIN_SEL2,
1684 0 : (ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->txchainmask) |
1685 0 : SM(AR_TXC18_CHAIN_SEL3,
1686 : (ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->txchainmask);
1687 0 : } else {
1688 : /* Use the same Tx chains for all tries. */
1689 0 : ds->ds_ctl18 =
1690 0 : SM(AR_TXC18_CHAIN_SEL0, sc->txchainmask) |
1691 0 : SM(AR_TXC18_CHAIN_SEL1, sc->txchainmask) |
1692 0 : SM(AR_TXC18_CHAIN_SEL2, sc->txchainmask) |
1693 0 : SM(AR_TXC18_CHAIN_SEL3, sc->txchainmask);
1694 : }
1695 : #ifdef notyet
1696 : /* Use the same short GI setting for all tries. */
1697 : if (ic->ic_flags & IEEE80211_F_SHGI)
1698 : ds->ds_ctl18 |= AR_TXC18_GI0123;
1699 : /* Use the same channel width for all tries. */
1700 : if (ic->ic_flags & IEEE80211_F_CBW40)
1701 : ds->ds_ctl18 |= AR_TXC18_2040_0123;
1702 : #endif
1703 :
1704 0 : if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
1705 : uint8_t protridx, hwrate;
1706 : uint16_t dur = 0;
1707 :
1708 : /* Use the same protection mode for all tries. */
1709 0 : if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
1710 0 : ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01;
1711 0 : ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23;
1712 0 : }
1713 : /* Select protection rate (suboptimal but ok). */
1714 0 : protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1715 : ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
1716 0 : if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
1717 : /* Account for CTS duration. */
1718 0 : dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1719 0 : athn_rates[protridx].rspridx, ic->ic_flags);
1720 0 : }
1721 0 : dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
1722 0 : if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
1723 : /* Account for ACK duration. */
1724 0 : dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1725 0 : athn_rates[ridx[0]].rspridx, ic->ic_flags);
1726 0 : }
1727 : /* Write protection frame duration and rate. */
1728 0 : ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur);
1729 0 : hwrate = athn_rates[protridx].hwrate;
1730 0 : if (protridx == ATHN_RIDX_CCK2 &&
1731 0 : (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1732 0 : hwrate |= 0x04;
1733 0 : ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate);
1734 0 : }
1735 :
1736 0 : ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen);
1737 0 : ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING;
1738 :
1739 0 : for (i = 0; i < bf->bf_map->dm_nsegs; i++) {
1740 0 : ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr;
1741 0 : ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN,
1742 : bf->bf_map->dm_segs[i].ds_len);
1743 : }
1744 : /* Compute Tx descriptor checksum. */
1745 0 : sum = ds->ds_info + ds->ds_link;
1746 0 : for (i = 0; i < 4; i++) {
1747 0 : sum += ds->ds_segs[i].ds_data;
1748 0 : sum += ds->ds_segs[i].ds_ctl;
1749 : }
1750 0 : sum = (sum >> 16) + (sum & 0xffff);
1751 0 : ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
1752 :
1753 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1754 : BUS_DMASYNC_PREWRITE);
1755 :
1756 : DPRINTFN(6, ("Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n",
1757 : qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12,
1758 : ds->ds_ctl14));
1759 :
1760 0 : SIMPLEQ_REMOVE_HEAD(&sc->txbufs, bf_list);
1761 0 : SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
1762 :
1763 : /* Queue buffer unless hardware FIFO is already full. */
1764 0 : if (++txq->queued <= AR9003_TX_QDEPTH) {
1765 0 : AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
1766 0 : AR_WRITE_BARRIER(sc);
1767 0 : } else if (txq->wait == NULL)
1768 0 : txq->wait = bf;
1769 0 : return (0);
1770 0 : }
1771 :
1772 : void
1773 0 : ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
1774 : {
1775 : uint32_t reg;
1776 :
1777 0 : reg = IEEE80211_IS_CHAN_2GHZ(c) ?
1778 : AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1779 0 : if (IEEE80211_IS_CHAN_5GHZ(c) &&
1780 0 : (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
1781 : reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
1782 0 : }
1783 0 : AR_WRITE(sc, AR_PHY_MODE, reg);
1784 0 : AR_WRITE_BARRIER(sc);
1785 0 : }
1786 :
1787 : static __inline uint32_t
1788 0 : ar9003_synth_delay(struct athn_softc *sc)
1789 : {
1790 : uint32_t delay;
1791 :
1792 0 : delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
1793 0 : if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
1794 0 : delay = (delay * 4) / 22;
1795 : else
1796 0 : delay = delay / 10; /* in 100ns steps */
1797 0 : return (delay);
1798 : }
1799 :
1800 : int
1801 0 : ar9003_rf_bus_request(struct athn_softc *sc)
1802 : {
1803 : int ntries;
1804 :
1805 : /* Request RF Bus grant. */
1806 0 : AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1807 0 : for (ntries = 0; ntries < 10000; ntries++) {
1808 0 : if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
1809 0 : return (0);
1810 0 : DELAY(10);
1811 : }
1812 : DPRINTF(("could not kill baseband Rx"));
1813 0 : return (ETIMEDOUT);
1814 0 : }
1815 :
1816 : void
1817 0 : ar9003_rf_bus_release(struct athn_softc *sc)
1818 : {
1819 : /* Wait for the synthesizer to settle. */
1820 0 : DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc));
1821 :
1822 : /* Release the RF Bus grant. */
1823 0 : AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
1824 0 : AR_WRITE_BARRIER(sc);
1825 0 : }
1826 :
1827 : void
1828 0 : ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
1829 : struct ieee80211_channel *extc)
1830 : {
1831 : uint32_t phy;
1832 :
1833 0 : phy = AR_READ(sc, AR_PHY_GEN_CTRL);
1834 0 : phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 |
1835 : AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH;
1836 0 : if (extc != NULL) {
1837 0 : phy |= AR_PHY_GC_DYN2040_EN;
1838 0 : if (extc > c) /* XXX */
1839 0 : phy |= AR_PHY_GC_DYN2040_PRI_CH;
1840 : }
1841 : /* Turn off Green Field detection for now. */
1842 0 : phy &= ~AR_PHY_GC_GF_DETECT_EN;
1843 0 : AR_WRITE(sc, AR_PHY_GEN_CTRL, phy);
1844 :
1845 0 : AR_WRITE(sc, AR_2040_MODE,
1846 : (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
1847 :
1848 : /* Set global transmit timeout. */
1849 0 : AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
1850 : /* Set carrier sense timeout. */
1851 0 : AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
1852 0 : AR_WRITE_BARRIER(sc);
1853 0 : }
1854 :
1855 : void
1856 0 : ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
1857 : struct ieee80211_channel *extc)
1858 : {
1859 0 : uint32_t coeff, exp, man, reg;
1860 :
1861 : /* Set Delta Slope (exponent and mantissa). */
1862 0 : coeff = (100 << 24) / c->ic_freq;
1863 0 : athn_get_delta_slope(coeff, &exp, &man);
1864 : DPRINTFN(5, ("delta slope coeff exp=%u man=%u\n", exp, man));
1865 :
1866 0 : reg = AR_READ(sc, AR_PHY_TIMING3);
1867 0 : reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
1868 0 : reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
1869 0 : AR_WRITE(sc, AR_PHY_TIMING3, reg);
1870 :
1871 : /* For Short GI, coeff is 9/10 that of normal coeff. */
1872 0 : coeff = (9 * coeff) / 10;
1873 0 : athn_get_delta_slope(coeff, &exp, &man);
1874 : DPRINTFN(5, ("delta slope coeff exp=%u man=%u\n", exp, man));
1875 :
1876 0 : reg = AR_READ(sc, AR_PHY_SGI_DELTA);
1877 0 : reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp);
1878 0 : reg = RW(reg, AR_PHY_SGI_DSC_MAN, man);
1879 0 : AR_WRITE(sc, AR_PHY_SGI_DELTA, reg);
1880 0 : AR_WRITE_BARRIER(sc);
1881 0 : }
1882 :
1883 : void
1884 0 : ar9003_enable_antenna_diversity(struct athn_softc *sc)
1885 : {
1886 0 : AR_SETBITS(sc, AR_PHY_CCK_DETECT,
1887 : AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1888 0 : AR_WRITE_BARRIER(sc);
1889 0 : }
1890 :
1891 : void
1892 0 : ar9003_init_baseband(struct athn_softc *sc)
1893 : {
1894 : uint32_t synth_delay;
1895 :
1896 0 : synth_delay = ar9003_synth_delay(sc);
1897 : /* Activate the PHY (includes baseband activate and synthesizer on). */
1898 0 : AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1899 0 : AR_WRITE_BARRIER(sc);
1900 0 : DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
1901 0 : }
1902 :
1903 : void
1904 0 : ar9003_disable_phy(struct athn_softc *sc)
1905 : {
1906 0 : AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1907 0 : AR_WRITE_BARRIER(sc);
1908 0 : }
1909 :
1910 : void
1911 0 : ar9003_init_chains(struct athn_softc *sc)
1912 : {
1913 0 : if (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5)
1914 0 : AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1915 :
1916 : /* Setup chain masks. */
1917 0 : AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->rxchainmask);
1918 0 : AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->rxchainmask);
1919 :
1920 0 : if (sc->flags & ATHN_FLAG_3TREDUCE_CHAIN) {
1921 : /*
1922 : * All self-generated frames are sent using two Tx chains
1923 : * on these chips to not exceed PCIe power requirements.
1924 : */
1925 0 : AR_WRITE(sc, AR_SELFGEN_MASK, 0x3);
1926 0 : } else
1927 0 : AR_WRITE(sc, AR_SELFGEN_MASK, sc->txchainmask);
1928 0 : AR_WRITE_BARRIER(sc);
1929 0 : }
1930 :
1931 : void
1932 0 : ar9003_set_rxchains(struct athn_softc *sc)
1933 : {
1934 0 : if (sc->rxchainmask == 0x3 || sc->rxchainmask == 0x5) {
1935 0 : AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->rxchainmask);
1936 0 : AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->rxchainmask);
1937 0 : AR_WRITE_BARRIER(sc);
1938 0 : }
1939 0 : }
1940 :
1941 : void
1942 0 : ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
1943 : {
1944 : /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
1945 : #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100)
1946 : uint32_t reg;
1947 : int i;
1948 :
1949 0 : for (i = 0; i < sc->nrxchains; i++) {
1950 0 : reg = AR_READ(sc, AR_PHY_CCA(i));
1951 0 : nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
1952 0 : nf[i] = SIGN_EXT(nf[i]);
1953 :
1954 0 : reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
1955 0 : nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
1956 0 : nf_ext[i] = SIGN_EXT(nf_ext[i]);
1957 : }
1958 : #undef SIGN_EXT
1959 0 : }
1960 :
1961 : void
1962 0 : ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
1963 : {
1964 : uint32_t reg;
1965 : int i;
1966 :
1967 0 : for (i = 0; i < sc->nrxchains; i++) {
1968 0 : reg = AR_READ(sc, AR_PHY_CCA(i));
1969 0 : reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
1970 0 : AR_WRITE(sc, AR_PHY_CCA(i), reg);
1971 :
1972 0 : reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
1973 0 : reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
1974 0 : AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
1975 : }
1976 0 : AR_WRITE_BARRIER(sc);
1977 0 : }
1978 :
1979 : void
1980 0 : ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
1981 : {
1982 0 : int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
1983 : int16_t min, max;
1984 : int i;
1985 :
1986 0 : if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1987 : /* Noisefloor calibration not finished. */
1988 0 : return;
1989 : }
1990 : /* Noisefloor calibration is finished. */
1991 0 : ar9003_read_noisefloor(sc, nf, nf_ext);
1992 :
1993 0 : if (IEEE80211_IS_CHAN_2GHZ(c)) {
1994 0 : min = sc->cca_min_2g;
1995 0 : max = sc->cca_max_2g;
1996 0 : } else {
1997 0 : min = sc->cca_min_5g;
1998 0 : max = sc->cca_max_5g;
1999 : }
2000 : /* Update noisefloor history. */
2001 0 : for (i = 0; i < sc->nrxchains; i++) {
2002 0 : if (nf[i] < min)
2003 0 : nf[i] = min;
2004 0 : else if (nf[i] > max)
2005 0 : nf[i] = max;
2006 0 : if (nf_ext[i] < min)
2007 0 : nf_ext[i] = min;
2008 0 : else if (nf_ext[i] > max)
2009 0 : nf_ext[i] = max;
2010 :
2011 0 : sc->nf_hist[sc->nf_hist_cur].nf[i] = nf[i];
2012 0 : sc->nf_hist[sc->nf_hist_cur].nf_ext[i] = nf_ext[i];
2013 : }
2014 0 : if (++sc->nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
2015 0 : sc->nf_hist_cur = 0;
2016 0 : }
2017 :
2018 : void
2019 0 : ar9003_bb_load_noisefloor(struct athn_softc *sc)
2020 : {
2021 0 : int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
2022 : int i, ntries;
2023 :
2024 : /* Write filtered noisefloor values. */
2025 0 : for (i = 0; i < sc->nrxchains; i++) {
2026 0 : nf[i] = sc->nf_priv[i] * 2;
2027 0 : nf_ext[i] = sc->nf_ext_priv[i] * 2;
2028 : }
2029 0 : ar9003_write_noisefloor(sc, nf, nf_ext);
2030 :
2031 : /* Load filtered noisefloor values into baseband. */
2032 0 : AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2033 0 : AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2034 0 : AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2035 : /* Wait for load to complete. */
2036 0 : for (ntries = 0; ntries < 1000; ntries++) {
2037 0 : if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
2038 : break;
2039 0 : DELAY(10);
2040 : }
2041 0 : if (ntries == 1000) {
2042 : DPRINTF(("failed to load noisefloor values\n"));
2043 0 : return;
2044 : }
2045 :
2046 : /* Restore noisefloor values to initial (max) values. */
2047 0 : for (i = 0; i < AR_MAX_CHAINS; i++)
2048 0 : nf[i] = nf_ext[i] = -50 * 2;
2049 0 : ar9003_write_noisefloor(sc, nf, nf_ext);
2050 0 : }
2051 :
2052 : void
2053 0 : ar9300_noisefloor_calib(struct athn_softc *sc)
2054 : {
2055 0 : AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2056 0 : AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2057 0 : AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2058 0 : }
2059 :
2060 : void
2061 0 : ar9003_do_noisefloor_calib(struct athn_softc *sc)
2062 : {
2063 0 : AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2064 0 : }
2065 :
2066 : int
2067 0 : ar9003_init_calib(struct athn_softc *sc)
2068 : {
2069 : uint8_t txchainmask, rxchainmask;
2070 : uint32_t reg;
2071 : int ntries;
2072 :
2073 : /* Save chains masks. */
2074 0 : txchainmask = sc->txchainmask;
2075 0 : rxchainmask = sc->rxchainmask;
2076 : /* Configure hardware before calibration. */
2077 0 : if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE)
2078 0 : txchainmask = rxchainmask = 0x3;
2079 : else
2080 : txchainmask = rxchainmask = 0x7;
2081 0 : ar9003_init_chains(sc);
2082 :
2083 : /* Perform Tx IQ calibration. */
2084 0 : ar9003_calib_tx_iq(sc);
2085 : /* Disable and re-enable the PHY chips. */
2086 0 : AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2087 0 : AR_WRITE_BARRIER(sc);
2088 0 : DELAY(5);
2089 0 : AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
2090 :
2091 : /* Calibrate the AGC. */
2092 0 : AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
2093 : /* Poll for offset calibration completion. */
2094 0 : for (ntries = 0; ntries < 10000; ntries++) {
2095 0 : reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
2096 0 : if (!(reg & AR_PHY_AGC_CONTROL_CAL))
2097 : break;
2098 0 : DELAY(10);
2099 : }
2100 0 : if (ntries == 10000)
2101 0 : return (ETIMEDOUT);
2102 :
2103 : /* Restore chains masks. */
2104 0 : sc->txchainmask = txchainmask;
2105 0 : sc->rxchainmask = rxchainmask;
2106 0 : ar9003_init_chains(sc);
2107 :
2108 0 : return (0);
2109 0 : }
2110 :
2111 : void
2112 0 : ar9003_do_calib(struct athn_softc *sc)
2113 : {
2114 : uint32_t reg;
2115 :
2116 0 : if (sc->cur_calib_mask & ATHN_CAL_IQ) {
2117 0 : reg = AR_READ(sc, AR_PHY_TIMING4);
2118 0 : reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10);
2119 0 : AR_WRITE(sc, AR_PHY_TIMING4, reg);
2120 0 : AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
2121 0 : AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
2122 0 : AR_WRITE_BARRIER(sc);
2123 0 : } else if (sc->cur_calib_mask & ATHN_CAL_TEMP) {
2124 0 : AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
2125 : AR_PHY_65NM_CH0_THERM_LOCAL);
2126 0 : AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
2127 : AR_PHY_65NM_CH0_THERM_START);
2128 0 : AR_WRITE_BARRIER(sc);
2129 0 : }
2130 0 : }
2131 :
2132 : void
2133 0 : ar9003_next_calib(struct athn_softc *sc)
2134 : {
2135 : /* Check if we have any calibration in progress. */
2136 0 : if (sc->cur_calib_mask != 0) {
2137 0 : if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
2138 : /* Calibration completed for current sample. */
2139 0 : ar9003_calib_iq(sc);
2140 0 : }
2141 : }
2142 0 : }
2143 :
2144 : void
2145 0 : ar9003_calib_iq(struct athn_softc *sc)
2146 : {
2147 : struct athn_iq_cal *cal;
2148 : uint32_t reg, i_coff_denom, q_coff_denom;
2149 : int32_t i_coff, q_coff;
2150 : int i, iq_corr_neg;
2151 :
2152 0 : for (i = 0; i < AR_MAX_CHAINS; i++) {
2153 0 : cal = &sc->calib.iq[i];
2154 :
2155 : /* Read IQ calibration measures (clear on read). */
2156 0 : cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i));
2157 0 : cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i));
2158 0 : cal->iq_corr_meas =
2159 0 : (int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i));
2160 : }
2161 :
2162 0 : for (i = 0; i < sc->nrxchains; i++) {
2163 0 : cal = &sc->calib.iq[i];
2164 :
2165 0 : if (cal->pwr_meas_q == 0)
2166 : continue;
2167 :
2168 0 : if ((iq_corr_neg = cal->iq_corr_meas < 0))
2169 0 : cal->iq_corr_meas = -cal->iq_corr_meas;
2170 :
2171 : i_coff_denom =
2172 0 : (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256;
2173 0 : q_coff_denom = cal->pwr_meas_q / 64;
2174 :
2175 0 : if (i_coff_denom == 0 || q_coff_denom == 0)
2176 : continue; /* Prevents division by zero. */
2177 :
2178 0 : i_coff = cal->iq_corr_meas / i_coff_denom;
2179 0 : q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
2180 :
2181 0 : if (i_coff > 63)
2182 0 : i_coff = 63;
2183 0 : else if (i_coff < -63)
2184 0 : i_coff = -63;
2185 : /* Negate i_coff if iq_corr_meas is positive. */
2186 0 : if (!iq_corr_neg)
2187 0 : i_coff = -i_coff;
2188 0 : if (q_coff > 63)
2189 0 : q_coff = 63;
2190 0 : else if (q_coff < -63)
2191 0 : q_coff = -63;
2192 :
2193 : DPRINTFN(2, ("IQ calibration for chain %d\n", i));
2194 0 : reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
2195 0 : reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
2196 0 : reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
2197 0 : AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
2198 0 : }
2199 :
2200 : /* Apply new settings. */
2201 0 : AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
2202 : AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
2203 0 : AR_WRITE_BARRIER(sc);
2204 :
2205 : /* IQ calibration done. */
2206 0 : sc->cur_calib_mask &= ~ATHN_CAL_IQ;
2207 0 : memset(&sc->calib, 0, sizeof(sc->calib));
2208 0 : }
2209 :
2210 : #define DELPT 32
2211 : int
2212 0 : ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2])
2213 : {
2214 : /* Sign-extends 12-bit value (assumes upper bits are zeroes). */
2215 : #define SIGN_EXT(v) (((v) ^ 0x800) - 0x800)
2216 : #define SCALE (1 << 15)
2217 : #define SHIFT (1 << 8)
2218 0 : struct {
2219 : int32_t m, p, c;
2220 : } val[2][2];
2221 0 : int32_t mag[2][2], phs[2][2], cos[2], sin[2];
2222 : int32_t min, max, div, f1, f2, f3, m, p, c;
2223 : int32_t txmag, txphs, rxmag, rxphs;
2224 : int32_t q_coff, i_coff;
2225 : int i, j;
2226 :
2227 : /* Extract our twelve signed 12-bit values from res[] array. */
2228 0 : val[0][0].m = res[0] & 0xfff;
2229 0 : val[0][0].p = (res[0] >> 12) & 0xfff;
2230 0 : val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8;
2231 :
2232 0 : val[0][1].m = (res[1] >> 4) & 0xfff;
2233 0 : val[0][1].p = res[2] & 0xfff;
2234 0 : val[0][1].c = (res[2] >> 12) & 0xfff;
2235 :
2236 0 : val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8;
2237 0 : val[1][0].p = (res[3] >> 4) & 0xfff;
2238 0 : val[1][0].c = res[4] & 0xfff;
2239 :
2240 0 : val[1][1].m = (res[4] >> 12) & 0xfff;
2241 0 : val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8;
2242 0 : val[1][1].c = (res[5] >> 4) & 0xfff;
2243 :
2244 0 : for (i = 0; i < 2; i++) {
2245 0 : for (j = 0; j < 2; j++) {
2246 0 : m = SIGN_EXT(val[i][j].m);
2247 0 : p = SIGN_EXT(val[i][j].p);
2248 0 : c = SIGN_EXT(val[i][j].c);
2249 :
2250 0 : if (p == 0)
2251 0 : return (1); /* Prevent division by 0. */
2252 :
2253 0 : mag[i][j] = (m * SCALE) / p;
2254 0 : phs[i][j] = (c * SCALE) / p;
2255 : }
2256 0 : sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT;
2257 0 : cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT;
2258 : /* Find magnitude by approximation. */
2259 0 : min = MIN(abs(sin[i]), abs(cos[i]));
2260 0 : max = MAX(abs(sin[i]), abs(cos[i]));
2261 0 : div = max - (max / 32) + (min / 8) + (min / 4);
2262 0 : if (div == 0)
2263 0 : return (1); /* Prevent division by 0. */
2264 : /* Normalize sin and cos by magnitude. */
2265 0 : sin[i] = (sin[i] * SCALE) / div;
2266 0 : cos[i] = (cos[i] * SCALE) / div;
2267 : }
2268 :
2269 : /* Compute IQ mismatch (solve 4x4 linear equation). */
2270 0 : f1 = cos[0] - cos[1];
2271 0 : f3 = sin[0] - sin[1];
2272 0 : f2 = (f1 * f1 + f3 * f3) / SCALE;
2273 0 : if (f2 == 0)
2274 0 : return (1); /* Prevent division by 0. */
2275 :
2276 : /* Compute Tx magnitude mismatch. */
2277 0 : txmag = (f1 * ( mag[0][0] - mag[1][0]) +
2278 0 : f3 * ( phs[0][0] - phs[1][0])) / f2;
2279 : /* Compute Tx phase mismatch. */
2280 0 : txphs = (f3 * (-mag[0][0] + mag[1][0]) +
2281 0 : f1 * ( phs[0][0] - phs[1][0])) / f2;
2282 :
2283 0 : if (txmag == SCALE)
2284 0 : return (1); /* Prevent division by 0. */
2285 :
2286 : /* Compute Rx magnitude mismatch. */
2287 0 : rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE;
2288 : /* Compute Rx phase mismatch. */
2289 0 : rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE;
2290 :
2291 0 : if (-rxmag == SCALE)
2292 0 : return (1); /* Prevent division by 0. */
2293 :
2294 0 : txmag = (txmag * SCALE) / (SCALE - txmag);
2295 0 : txphs = -txphs;
2296 :
2297 0 : q_coff = (txmag * 128) / SCALE;
2298 0 : if (q_coff < -63)
2299 0 : q_coff = -63;
2300 0 : else if (q_coff > 63)
2301 0 : q_coff = 63;
2302 0 : i_coff = (txphs * 256) / SCALE;
2303 0 : if (i_coff < -63)
2304 0 : i_coff = -63;
2305 0 : else if (i_coff > 63)
2306 0 : i_coff = 63;
2307 0 : coeff[0] = q_coff * 128 + i_coff;
2308 :
2309 0 : rxmag = (-rxmag * SCALE) / (SCALE + rxmag);
2310 0 : rxphs = -rxphs;
2311 :
2312 0 : q_coff = (rxmag * 128) / SCALE;
2313 0 : if (q_coff < -63)
2314 0 : q_coff = -63;
2315 0 : else if (q_coff > 63)
2316 0 : q_coff = 63;
2317 0 : i_coff = (rxphs * 256) / SCALE;
2318 0 : if (i_coff < -63)
2319 0 : i_coff = -63;
2320 0 : else if (i_coff > 63)
2321 0 : i_coff = 63;
2322 0 : coeff[1] = q_coff * 128 + i_coff;
2323 :
2324 0 : return (0);
2325 : #undef SHIFT
2326 : #undef SCALE
2327 : #undef SIGN_EXT
2328 0 : }
2329 :
2330 : int
2331 0 : ar9003_calib_tx_iq(struct athn_softc *sc)
2332 : {
2333 : uint32_t reg;
2334 0 : int32_t res[6], coeff[2];
2335 : int i, j, ntries;
2336 :
2337 0 : reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1);
2338 0 : reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
2339 0 : AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg);
2340 :
2341 : /* Start Tx IQ calibration. */
2342 0 : AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL);
2343 : /* Wait for completion. */
2344 0 : for (ntries = 0; ntries < 10000; ntries++) {
2345 0 : reg = AR_READ(sc, AR_PHY_TX_IQCAL_START);
2346 0 : if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL))
2347 : break;
2348 0 : DELAY(10);
2349 : }
2350 0 : if (ntries == 10000)
2351 0 : return (ETIMEDOUT);
2352 :
2353 0 : for (i = 0; i < sc->ntxchains; i++) {
2354 : /* Read Tx IQ calibration status for this chain. */
2355 0 : reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i));
2356 0 : if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED)
2357 0 : return (EIO);
2358 : /*
2359 : * Read Tx IQ calibration results for this chain.
2360 : * This consists in twelve signed 12-bit values.
2361 : */
2362 0 : for (j = 0; j < 3; j++) {
2363 0 : AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
2364 : AR_PHY_CHAN_INFO_TAB_S2_READ);
2365 0 : reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
2366 0 : res[j * 2 + 0] = reg;
2367 :
2368 0 : AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
2369 : AR_PHY_CHAN_INFO_TAB_S2_READ);
2370 0 : reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
2371 0 : res[j * 2 + 1] = reg & 0xffff;
2372 : }
2373 :
2374 : /* Compute Tx IQ correction. */
2375 0 : if (ar9003_get_iq_corr(sc, res, coeff) != 0)
2376 0 : return (EIO);
2377 :
2378 : /* Write Tx IQ correction coefficients. */
2379 0 : reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i));
2380 0 : reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
2381 : coeff[0]);
2382 0 : AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg);
2383 :
2384 0 : reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
2385 0 : reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF,
2386 : coeff[1] >> 7);
2387 0 : reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF,
2388 : coeff[1]);
2389 0 : AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
2390 0 : AR_WRITE_BARRIER(sc);
2391 : }
2392 :
2393 : /* Enable Tx IQ correction. */
2394 0 : AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3,
2395 : AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN);
2396 0 : AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
2397 : AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN);
2398 0 : AR_WRITE_BARRIER(sc);
2399 0 : return (0);
2400 0 : }
2401 : #undef DELPT
2402 :
2403 : /*-
2404 : * The power amplifier predistortion state machine works as follows:
2405 : * 1) Disable digital predistorters for all Tx chains
2406 : * 2) Repeat steps 3~7 for all Tx chains
2407 : * 3) Force Tx gain to that of training signal
2408 : * 4) Send training signal (asynchronous)
2409 : * 5) Wait for training signal to complete (asynchronous)
2410 : * 6) Read PA measurements (input power, output power, output phase)
2411 : * 7) Compute the predistortion function that linearizes PA output
2412 : * 8) Write predistortion functions to hardware tables for all Tx chains
2413 : * 9) Enable digital predistorters for all Tx chains
2414 : */
2415 : void
2416 0 : ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c)
2417 : {
2418 : static const int scaling[] = {
2419 : 261376, 248079, 233759, 220464,
2420 : 208194, 196949, 185706, 175487
2421 : };
2422 0 : struct athn_ops *ops = &sc->ops;
2423 0 : uint32_t reg, ht20mask, ht40mask;
2424 : int i;
2425 :
2426 : /* Read PA predistortion masks from ROM. */
2427 0 : ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask);
2428 :
2429 : /* AM-to-AM: amplifier's amplitude characteristic. */
2430 0 : reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM);
2431 0 : reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask);
2432 0 : AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg);
2433 :
2434 : /* AM-to-PM: amplifier's phase transfer characteristic. */
2435 0 : reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM);
2436 0 : reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask);
2437 0 : AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg);
2438 :
2439 0 : reg = AR_READ(sc, AR_PHY_PAPRD_HT40);
2440 0 : reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask);
2441 0 : AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg);
2442 :
2443 0 : for (i = 0; i < AR9003_MAX_CHAINS; i++) {
2444 0 : AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
2445 : AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE);
2446 :
2447 0 : reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i));
2448 0 : reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181);
2449 0 : reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361);
2450 0 : reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA;
2451 0 : reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA;
2452 0 : reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA;
2453 0 : AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg);
2454 :
2455 0 : reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i));
2456 0 : reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
2457 0 : AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg);
2458 : }
2459 :
2460 : /* Disable all digital predistorters during calibration. */
2461 0 : for (i = 0; i < AR9003_MAX_CHAINS; i++) {
2462 0 : AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
2463 : AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
2464 : }
2465 0 : AR_WRITE_BARRIER(sc);
2466 :
2467 : /*
2468 : * Configure training signal.
2469 : */
2470 0 : reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1);
2471 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28);
2472 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30);
2473 0 : reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE;
2474 0 : reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE;
2475 0 : reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE;
2476 0 : reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE;
2477 0 : reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE;
2478 0 : AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg);
2479 :
2480 0 : AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147);
2481 :
2482 0 : reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3);
2483 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4);
2484 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4);
2485 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7);
2486 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1);
2487 0 : if (AR_SREV_9485(sc))
2488 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3);
2489 : else
2490 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6);
2491 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15);
2492 0 : reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE;
2493 0 : AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg);
2494 :
2495 0 : reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4);
2496 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0);
2497 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400);
2498 0 : reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100);
2499 0 : AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg);
2500 :
2501 0 : for (i = 0; i < nitems(scaling); i++) {
2502 0 : reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i));
2503 0 : reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]);
2504 0 : AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg);
2505 : }
2506 :
2507 : /* Save Tx gain table. */
2508 0 : for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++)
2509 0 : sc->txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i));
2510 :
2511 : /* Set Tx power of training signal (use setting for MCS0). */
2512 0 : sc->trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5),
2513 0 : AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4;
2514 :
2515 : /*
2516 : * Start PA predistortion calibration state machine.
2517 : */
2518 : /* Find first available Tx chain. */
2519 0 : sc->paprd_curchain = 0;
2520 0 : while (!(sc->txchainmask & (1 << sc->paprd_curchain)))
2521 0 : sc->paprd_curchain++;
2522 :
2523 : /* Make sure training done bit is clear. */
2524 0 : AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
2525 : AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
2526 0 : AR_WRITE_BARRIER(sc);
2527 :
2528 : /* Transmit training signal. */
2529 0 : ar9003_paprd_tx_tone(sc);
2530 0 : }
2531 :
2532 : int
2533 0 : ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow)
2534 : {
2535 : int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt;
2536 : int32_t tempcorr, voltcorr;
2537 : uint32_t reg;
2538 : int8_t delta;
2539 :
2540 0 : scale = MS(AR_READ(sc, AR_PHY_TPC_12),
2541 : AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
2542 :
2543 0 : reg = AR_READ(sc, AR_PHY_TPC_19);
2544 0 : atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM);
2545 0 : avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT);
2546 :
2547 0 : reg = AR_READ(sc, AR_PHY_TPC_18);
2548 0 : tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL);
2549 0 : voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL);
2550 :
2551 0 : reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4);
2552 0 : temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM);
2553 0 : volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT);
2554 :
2555 0 : delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)),
2556 : AR_PHY_TPC_11_OLPC_GAIN_DELTA);
2557 :
2558 : /* Compute temperature and voltage correction. */
2559 0 : tempcorr = (atemp * (temp - tempcal) + 128) / 256;
2560 0 : voltcorr = (avolt * (volt - voltcal) + 64) / 128;
2561 :
2562 : /* Compute desired Tx gain. */
2563 0 : return (pow - delta - tempcorr - voltcorr + scale);
2564 : }
2565 :
2566 : void
2567 0 : ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain)
2568 : {
2569 : uint32_t reg;
2570 :
2571 0 : reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN);
2572 0 : reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN,
2573 : MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN));
2574 0 : reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN,
2575 : MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN));
2576 0 : reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN,
2577 : MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN));
2578 0 : reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA,
2579 : MS(txgain, AR_PHY_TXGAIN_PADRVGNA));
2580 0 : reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB,
2581 : MS(txgain, AR_PHY_TXGAIN_PADRVGNB));
2582 0 : reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC,
2583 : MS(txgain, AR_PHY_TXGAIN_PADRVGNC));
2584 0 : reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND,
2585 : MS(txgain, AR_PHY_TXGAIN_PADRVGND));
2586 0 : reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL;
2587 0 : reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN;
2588 0 : AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg);
2589 :
2590 0 : reg = AR_READ(sc, AR_PHY_TPC_1);
2591 0 : reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
2592 0 : reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN;
2593 0 : AR_WRITE(sc, AR_PHY_TPC_1, reg);
2594 0 : AR_WRITE_BARRIER(sc);
2595 0 : }
2596 :
2597 : void
2598 0 : ar9003_set_training_gain(struct athn_softc *sc, int chain)
2599 : {
2600 : int i, gain;
2601 :
2602 : /*
2603 : * Get desired gain for training signal power (take into account
2604 : * current temperature/voltage).
2605 : */
2606 0 : gain = ar9003_get_desired_txgain(sc, chain, sc->trainpow);
2607 : /* Find entry in table. */
2608 0 : for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++)
2609 0 : if (MS(sc->txgain[i], AR_PHY_TXGAIN_INDEX) >= gain)
2610 : break;
2611 0 : ar9003_force_txgain(sc, sc->txgain[i]);
2612 0 : }
2613 :
2614 : int
2615 0 : ar9003_paprd_tx_tone(struct athn_softc *sc)
2616 : {
2617 : #define TONE_LEN 1800
2618 0 : struct ieee80211com *ic = &sc->sc_ic;
2619 : struct ieee80211_frame *wh;
2620 : struct ieee80211_node *ni;
2621 : struct mbuf *m;
2622 : int error;
2623 :
2624 : /* Build a Null (no data) frame of TONE_LEN bytes. */
2625 0 : m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN);
2626 0 : if (m == NULL)
2627 0 : return (ENOBUFS);
2628 0 : memset(mtod(m, caddr_t), 0, TONE_LEN);
2629 0 : wh = mtod(m, struct ieee80211_frame *);
2630 0 : wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA;
2631 0 : wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2632 0 : *(uint16_t *)wh->i_dur = htole16(10); /* XXX */
2633 0 : IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr);
2634 0 : IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2635 0 : IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
2636 0 : m->m_pkthdr.len = m->m_len = TONE_LEN;
2637 :
2638 : /* Set gain of training signal. */
2639 0 : ar9003_set_training_gain(sc, sc->paprd_curchain);
2640 :
2641 : /* Transmit training signal. */
2642 0 : ni = ieee80211_ref_node(ic->ic_bss);
2643 0 : if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0)
2644 0 : ieee80211_release_node(ic, ni);
2645 0 : return (error);
2646 : #undef TONE_LEN
2647 0 : }
2648 :
2649 : static __inline int
2650 0 : get_scale(int val)
2651 : {
2652 : int log = 0;
2653 :
2654 : /* Find the log base 2 (position of highest bit set). */
2655 0 : while (val >>= 1)
2656 0 : log++;
2657 :
2658 0 : return ((log > 10) ? log - 10 : 0);
2659 : }
2660 :
2661 : /*
2662 : * Compute predistortion function to linearize power amplifier output based
2663 : * on feedback from training signal.
2664 : */
2665 : int
2666 0 : ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo,
2667 : const uint32_t *hi)
2668 : {
2669 : #define NBINS 23
2670 0 : int chain = sc->paprd_curchain;
2671 0 : int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1];
2672 0 : int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1];
2673 : int nsamples, txsum, rxsum, rosum, maxidx;
2674 : int order, order5x, order5xrem, order3x, order3xrem, y5, y3;
2675 : int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4;
2676 : int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2;
2677 : int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in;
2678 : int tmp, i;
2679 :
2680 : /* Set values at origin. */
2681 0 : x[0] = y[0] = t[0] = 0;
2682 :
2683 : #define SCALE 32
2684 : maxidx = 0;
2685 0 : for (i = 0; i < NBINS; i++) {
2686 0 : nsamples = lo[i] & 0xffff;
2687 : /* Skip bins that contain 16 or less samples. */
2688 0 : if (nsamples <= 16) {
2689 0 : x[i + 1] = y[i + 1] = t[i + 1] = 0;
2690 0 : continue;
2691 : }
2692 0 : txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16;
2693 0 : rxsum = (lo[i + NBINS] & 0xffff) << 5 |
2694 0 : ((hi[i] >> 11) & 0x1f);
2695 0 : rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16;
2696 : /* Sign-extend 27-bit value. */
2697 0 : rosum = (rosum ^ 0x4000000) - 0x4000000;
2698 :
2699 0 : txsum *= SCALE;
2700 0 : rxsum *= SCALE;
2701 0 : rosum *= SCALE;
2702 :
2703 0 : x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE;
2704 0 : y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE +
2705 0 : SCALE * maxidx + SCALE / 2;
2706 0 : t[i + 1] = (rosum + nsamples) / nsamples;
2707 0 : maxidx++;
2708 0 : }
2709 : #undef SCALE
2710 :
2711 : #define SCALE_LOG 8
2712 : #define SCALE (1 << SCALE_LOG)
2713 0 : if (x[6] == x[3])
2714 0 : return (1); /* Prevent division by 0. */
2715 0 : G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]);
2716 0 : if (G == 0)
2717 0 : return (1); /* Prevent division by 0. */
2718 :
2719 0 : sc->gain1[chain] = G; /* Save low signal gain. */
2720 :
2721 : /* Find interception point. */
2722 0 : icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3];
2723 0 : for (i = 0; i <= 3; i++) {
2724 0 : y[i] = i * 32;
2725 0 : x[i] = (y[i] * SCALE + G) / G;
2726 : }
2727 0 : for (i = 4; i <= maxidx; i++)
2728 0 : y[i] -= icept;
2729 :
2730 0 : xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G;
2731 0 : order = (xnonlin + y[maxidx]) / y[maxidx];
2732 0 : if (order == 0)
2733 0 : M = 10;
2734 0 : else if (order == 1)
2735 0 : M = 9;
2736 : else
2737 : M = 8;
2738 :
2739 0 : I = (maxidx >= 16) ? 7 : maxidx / 2;
2740 0 : L = maxidx - I;
2741 :
2742 : sumy2 = sumy4 = y2 = y4 = 0;
2743 0 : for (i = 0; i <= L; i++) {
2744 0 : if (y[i + I] == 0)
2745 0 : return (1); /* Prevent division by 0. */
2746 :
2747 0 : xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G;
2748 0 : xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I];
2749 0 : xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
2750 0 : xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
2751 :
2752 0 : y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE);
2753 :
2754 0 : sumy2 += y2;
2755 0 : sumy4 += y2 * y2;
2756 :
2757 0 : b1[i] = y2 * (L + 1);
2758 0 : b2[i] = y2;
2759 : }
2760 0 : for (i = 0; i <= L; i++) {
2761 0 : b1[i] -= sumy2;
2762 0 : b2[i] = sumy4 - sumy2 * b2[i];
2763 : }
2764 :
2765 : maxxtildeabs = maxb1abs = maxb2abs = 0;
2766 0 : for (i = 0; i <= L; i++) {
2767 0 : tmp = abs(xtilde[i]);
2768 0 : if (tmp > maxxtildeabs)
2769 0 : maxxtildeabs = tmp;
2770 :
2771 0 : tmp = abs(b1[i]);
2772 0 : if (tmp > maxb1abs)
2773 0 : maxb1abs = tmp;
2774 :
2775 0 : tmp = abs(b2[i]);
2776 0 : if (tmp > maxb2abs)
2777 0 : maxb2abs = tmp;
2778 : }
2779 0 : Qx = get_scale(maxxtildeabs);
2780 0 : Qb1 = get_scale(maxb1abs);
2781 0 : Qb2 = get_scale(maxb2abs);
2782 0 : for (i = 0; i <= L; i++) {
2783 0 : xtilde[i] /= 1 << Qx;
2784 0 : b1[i] /= 1 << Qb1;
2785 0 : b2[i] /= 1 << Qb2;
2786 : }
2787 :
2788 : alpha = beta = 0;
2789 0 : for (i = 0; i <= L; i++) {
2790 0 : alpha += b1[i] * xtilde[i];
2791 0 : beta += b2[i] * xtilde[i];
2792 : }
2793 :
2794 0 : scale = ((y4 / SCALE_LOG) * (L + 1) -
2795 0 : (y2 / SCALE_LOG) * sumy2) * SCALE_LOG;
2796 :
2797 0 : Qscale = get_scale(abs(scale));
2798 0 : scale /= 1 << Qscale;
2799 0 : Qalpha = get_scale(abs(alpha));
2800 0 : alpha /= 1 << Qalpha;
2801 0 : Qbeta = get_scale(abs(beta));
2802 0 : beta /= 1 << Qbeta;
2803 :
2804 0 : order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale;
2805 0 : order5x = 1 << (order / 5);
2806 0 : order5xrem = 1 << (order % 5);
2807 :
2808 0 : order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale;
2809 0 : order3x = 1 << (order / 3);
2810 0 : order3xrem = 1 << (order % 3);
2811 :
2812 0 : for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2813 0 : tmp = i * 32;
2814 :
2815 : /* Fifth order. */
2816 0 : y5 = ((beta * tmp) / 64) / order5x;
2817 0 : y5 = (y5 * tmp) / order5x;
2818 0 : y5 = (y5 * tmp) / order5x;
2819 0 : y5 = (y5 * tmp) / order5x;
2820 0 : y5 = (y5 * tmp) / order5x;
2821 0 : y5 = y5 / order5xrem;
2822 :
2823 : /* Third oder. */
2824 0 : y3 = (alpha * tmp) / order3x;
2825 0 : y3 = (y3 * tmp) / order3x;
2826 0 : y3 = (y3 * tmp) / order3x;
2827 0 : y3 = y3 / order3xrem;
2828 :
2829 0 : in = y5 + y3 + (SCALE * tmp) / G;
2830 0 : if (i >= 2 && in < sc->pa_in[chain][i - 1]) {
2831 0 : in = sc->pa_in[chain][i - 1] +
2832 0 : (sc->pa_in[chain][i - 1] -
2833 0 : sc->pa_in[chain][i - 2]);
2834 0 : }
2835 0 : if (in > 1400)
2836 0 : in = 1400;
2837 0 : sc->pa_in[chain][i] = in;
2838 : }
2839 :
2840 : /* Compute average theta of first 5 bins (linear region). */
2841 : tavg = 0;
2842 0 : for (i = 1; i <= 5; i++)
2843 0 : tavg += t[i];
2844 0 : tavg /= 5;
2845 0 : for (i = 1; i <= 5; i++)
2846 0 : t[i] = 0;
2847 0 : for (i = 6; i <= maxidx; i++)
2848 0 : t[i] -= tavg;
2849 :
2850 : alpha = beta = 0;
2851 0 : for (i = 0; i <= L; i++) {
2852 0 : ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I];
2853 0 : ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
2854 0 : ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
2855 :
2856 0 : alpha += b2[i] * ttilde;
2857 0 : beta += b1[i] * ttilde;
2858 : }
2859 :
2860 0 : Qalpha = get_scale(abs(alpha));
2861 0 : alpha /= 1 << Qalpha;
2862 0 : Qbeta = get_scale(abs(beta));
2863 0 : beta /= 1 << Qbeta;
2864 :
2865 0 : order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5;
2866 0 : order5x = 1 << (order / 5);
2867 0 : order5xrem = 1 << (order % 5);
2868 :
2869 0 : order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5;
2870 0 : order3x = 1 << (order / 3);
2871 0 : order3xrem = 1 << (order % 3);
2872 :
2873 0 : for (i = 0; i <= 4; i++)
2874 0 : sc->angle[chain][i] = 0; /* Linear at that range. */
2875 0 : for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2876 0 : tmp = i * 32;
2877 :
2878 : /* Fifth order. */
2879 0 : if (beta > 0)
2880 0 : y5 = (((beta * tmp - 64) / 64) - order5x) / order5x;
2881 : else
2882 0 : y5 = (((beta * tmp - 64) / 64) + order5x) / order5x;
2883 0 : y5 = (y5 * tmp) / order5x;
2884 0 : y5 = (y5 * tmp) / order5x;
2885 0 : y5 = (y5 * tmp) / order5x;
2886 0 : y5 = (y5 * tmp) / order5x;
2887 0 : y5 = y5 / order5xrem;
2888 :
2889 : /* Third oder. */
2890 0 : if (beta > 0) /* XXX alpha? */
2891 0 : y3 = (alpha * tmp - order3x) / order3x;
2892 : else
2893 0 : y3 = (alpha * tmp + order3x) / order3x;
2894 0 : y3 = (y3 * tmp) / order3x;
2895 0 : y3 = (y3 * tmp) / order3x;
2896 0 : y3 = y3 / order3xrem;
2897 :
2898 0 : angle = y5 + y3;
2899 0 : if (angle < -150)
2900 0 : angle = -150;
2901 0 : else if (angle > 150)
2902 0 : angle = 150;
2903 0 : sc->angle[chain][i] = angle;
2904 : }
2905 : /* Angle for entry 4 is derived from angle for entry 5. */
2906 0 : sc->angle[chain][4] = (sc->angle[chain][5] + 2) / 2;
2907 :
2908 0 : return (0);
2909 : #undef SCALE
2910 : #undef SCALE_LOG
2911 : #undef NBINS
2912 0 : }
2913 :
2914 : void
2915 0 : ar9003_enable_predistorter(struct athn_softc *sc, int chain)
2916 : {
2917 : uint32_t reg;
2918 : int i;
2919 :
2920 : /* Write digital predistorter lookup table. */
2921 0 : for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2922 0 : AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i),
2923 : SM(AR_PHY_PAPRD_PA_IN, sc->pa_in[chain][i]) |
2924 : SM(AR_PHY_PAPRD_ANGLE, sc->angle[chain][i]));
2925 : }
2926 :
2927 0 : reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain));
2928 0 : reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->gain1[chain]);
2929 0 : AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg);
2930 :
2931 : /* Indicate Tx power used for calibration (training signal). */
2932 0 : reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain));
2933 0 : reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->trainpow);
2934 0 : AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg);
2935 :
2936 : /* Enable digital predistorter for this chain. */
2937 0 : AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain),
2938 : AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
2939 0 : AR_WRITE_BARRIER(sc);
2940 0 : }
2941 :
2942 : void
2943 0 : ar9003_paprd_enable(struct athn_softc *sc)
2944 : {
2945 : int i;
2946 :
2947 : /* Enable digital predistorters for all Tx chains. */
2948 0 : for (i = 0; i < AR9003_MAX_CHAINS; i++)
2949 0 : if (sc->txchainmask & (1 << i))
2950 0 : ar9003_enable_predistorter(sc, i);
2951 0 : }
2952 :
2953 : /*
2954 : * This function is called when our training signal has been sent.
2955 : */
2956 : void
2957 0 : ar9003_paprd_tx_tone_done(struct athn_softc *sc)
2958 : {
2959 0 : uint32_t lo[48], hi[48];
2960 : int i;
2961 :
2962 : /* Make sure training is complete. */
2963 0 : if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) &
2964 : AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE))
2965 0 : return;
2966 :
2967 : /* Read feedback from training signal. */
2968 0 : AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
2969 0 : for (i = 0; i < nitems(lo); i++)
2970 0 : lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
2971 0 : AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
2972 0 : for (i = 0; i < nitems(hi); i++)
2973 0 : hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
2974 :
2975 0 : AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
2976 : AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
2977 :
2978 : /* Compute predistortion function based on this feedback. */
2979 0 : if (ar9003_compute_predistortion(sc, lo, hi) != 0)
2980 0 : return;
2981 :
2982 : /* Get next available Tx chain. */
2983 0 : while (++sc->paprd_curchain < AR9003_MAX_CHAINS)
2984 0 : if (sc->txchainmask & (1 << sc->paprd_curchain))
2985 : break;
2986 0 : if (sc->paprd_curchain == AR9003_MAX_CHAINS) {
2987 : /* All Tx chains measured; enable digital predistortion. */
2988 0 : ar9003_paprd_enable(sc);
2989 0 : } else /* Measure next Tx chain. */
2990 0 : ar9003_paprd_tx_tone(sc);
2991 0 : }
2992 :
2993 : void
2994 0 : ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
2995 : {
2996 : /* Make sure forced gain is disabled. */
2997 0 : AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0);
2998 :
2999 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE1,
3000 : (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 |
3001 : (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 |
3002 : (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 |
3003 : (power[ATHN_POWER_OFDM6 ] & 0x3f));
3004 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE2,
3005 : (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 |
3006 : (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 |
3007 : (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 |
3008 : (power[ATHN_POWER_OFDM24 ] & 0x3f));
3009 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE3,
3010 : (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
3011 : (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
3012 : /* NB: No eXtended Range for AR9003. */
3013 : (power[ATHN_POWER_CCK1_LP ] & 0x3f));
3014 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE4,
3015 : (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
3016 : (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
3017 : (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 |
3018 : (power[ATHN_POWER_CCK55_LP] & 0x3f));
3019 : /*
3020 : * NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled
3021 : * because it is read by PA predistortion functions.
3022 : */
3023 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE5,
3024 : (power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 |
3025 : (power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 |
3026 : (power[ATHN_POWER_HT20( 1)] & 0x3f) << 8 |
3027 : (power[ATHN_POWER_HT20( 0)] & 0x3f));
3028 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE6,
3029 : (power[ATHN_POWER_HT20(13)] & 0x3f) << 24 |
3030 : (power[ATHN_POWER_HT20(12)] & 0x3f) << 16 |
3031 : (power[ATHN_POWER_HT20( 7)] & 0x3f) << 8 |
3032 : (power[ATHN_POWER_HT20( 6)] & 0x3f));
3033 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE7,
3034 : (power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 |
3035 : (power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 |
3036 : (power[ATHN_POWER_HT40( 1)] & 0x3f) << 8 |
3037 : (power[ATHN_POWER_HT40( 0)] & 0x3f));
3038 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE8,
3039 : (power[ATHN_POWER_HT40(13)] & 0x3f) << 24 |
3040 : (power[ATHN_POWER_HT40(12)] & 0x3f) << 16 |
3041 : (power[ATHN_POWER_HT40( 7)] & 0x3f) << 8 |
3042 : (power[ATHN_POWER_HT40( 6)] & 0x3f));
3043 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE10,
3044 : (power[ATHN_POWER_HT20(21)] & 0x3f) << 24 |
3045 : (power[ATHN_POWER_HT20(20)] & 0x3f) << 16 |
3046 : (power[ATHN_POWER_HT20(15)] & 0x3f) << 8 |
3047 : (power[ATHN_POWER_HT20(14)] & 0x3f));
3048 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE11,
3049 : (power[ATHN_POWER_HT40(23)] & 0x3f) << 24 |
3050 : (power[ATHN_POWER_HT40(22)] & 0x3f) << 16 |
3051 : (power[ATHN_POWER_HT20(23)] & 0x3f) << 8 |
3052 : (power[ATHN_POWER_HT20(22)] & 0x3f));
3053 0 : AR_WRITE(sc, AR_PHY_PWRTX_RATE12,
3054 : (power[ATHN_POWER_HT40(21)] & 0x3f) << 24 |
3055 : (power[ATHN_POWER_HT40(20)] & 0x3f) << 16 |
3056 : (power[ATHN_POWER_HT40(15)] & 0x3f) << 8 |
3057 : (power[ATHN_POWER_HT40(14)] & 0x3f));
3058 0 : AR_WRITE_BARRIER(sc);
3059 0 : }
3060 :
3061 : void
3062 0 : ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
3063 : {
3064 : #define X(x) ((uint32_t)(x) << 2)
3065 0 : const struct athn_gain *prog = sc->rx_gain;
3066 : const uint32_t *pvals;
3067 : int i;
3068 :
3069 0 : if (IEEE80211_IS_CHAN_2GHZ(c))
3070 0 : pvals = prog->vals_2g;
3071 : else
3072 0 : pvals = prog->vals_5g;
3073 0 : for (i = 0; i < prog->nregs; i++)
3074 0 : AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
3075 0 : AR_WRITE_BARRIER(sc);
3076 : #undef X
3077 0 : }
3078 :
3079 : void
3080 0 : ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
3081 : {
3082 : #define X(x) ((uint32_t)(x) << 2)
3083 0 : const struct athn_gain *prog = sc->tx_gain;
3084 : const uint32_t *pvals;
3085 : int i;
3086 :
3087 0 : if (IEEE80211_IS_CHAN_2GHZ(c))
3088 0 : pvals = prog->vals_2g;
3089 : else
3090 0 : pvals = prog->vals_5g;
3091 0 : for (i = 0; i < prog->nregs; i++)
3092 0 : AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
3093 0 : AR_WRITE_BARRIER(sc);
3094 : #undef X
3095 0 : }
3096 :
3097 : void
3098 0 : ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
3099 : struct ieee80211_channel *extc)
3100 : {
3101 : #define X(x) ((uint32_t)(x) << 2)
3102 0 : struct athn_ops *ops = &sc->ops;
3103 0 : const struct athn_ini *ini = sc->ini;
3104 : const uint32_t *pvals;
3105 : uint32_t reg;
3106 : int i;
3107 :
3108 : /*
3109 : * The common init values include the pre and core phases for the
3110 : * SoC, MAC, BB and Radio subsystems.
3111 : */
3112 : DPRINTFN(4, ("writing pre and core init vals\n"));
3113 0 : for (i = 0; i < ini->ncmregs; i++) {
3114 0 : AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]);
3115 0 : if (AR_IS_ANALOG_REG(X(ini->cmregs[i])))
3116 0 : DELAY(100);
3117 0 : if ((i & 0x1f) == 0)
3118 0 : DELAY(1);
3119 : }
3120 :
3121 : /*
3122 : * The modal init values include the post phase for the SoC, MAC,
3123 : * BB and Radio subsystems.
3124 : */
3125 0 : if (extc != NULL) {
3126 0 : if (IEEE80211_IS_CHAN_2GHZ(c))
3127 0 : pvals = ini->vals_2g40;
3128 : else
3129 0 : pvals = ini->vals_5g40;
3130 : } else {
3131 0 : if (IEEE80211_IS_CHAN_2GHZ(c))
3132 0 : pvals = ini->vals_2g20;
3133 : else
3134 0 : pvals = ini->vals_5g20;
3135 : }
3136 : DPRINTFN(4, ("writing post init vals\n"));
3137 0 : for (i = 0; i < ini->nregs; i++) {
3138 0 : AR_WRITE(sc, X(ini->regs[i]), pvals[i]);
3139 0 : if (AR_IS_ANALOG_REG(X(ini->regs[i])))
3140 0 : DELAY(100);
3141 0 : if ((i & 0x1f) == 0)
3142 0 : DELAY(1);
3143 : }
3144 :
3145 0 : if (sc->rx_gain != NULL)
3146 0 : ar9003_reset_rx_gain(sc, c);
3147 0 : if (sc->tx_gain != NULL)
3148 0 : ar9003_reset_tx_gain(sc, c);
3149 :
3150 0 : if (IEEE80211_IS_CHAN_5GHZ(c) &&
3151 0 : (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
3152 : /* Update modal values for fast PLL clock. */
3153 0 : if (extc != NULL)
3154 0 : pvals = ini->fastvals_5g40;
3155 : else
3156 0 : pvals = ini->fastvals_5g20;
3157 : DPRINTFN(4, ("writing fast pll clock init vals\n"));
3158 0 : for (i = 0; i < ini->nfastregs; i++) {
3159 0 : AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]);
3160 0 : if (AR_IS_ANALOG_REG(X(ini->fastregs[i])))
3161 0 : DELAY(100);
3162 0 : if ((i & 0x1f) == 0)
3163 0 : DELAY(1);
3164 : }
3165 : }
3166 :
3167 : /*
3168 : * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
3169 : * descriptor status.
3170 : */
3171 0 : AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
3172 :
3173 0 : reg = AR_READ(sc, AR_PCU_MISC_MODE2);
3174 0 : reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE;
3175 0 : reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX;
3176 0 : reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP;
3177 0 : AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
3178 0 : AR_WRITE_BARRIER(sc);
3179 :
3180 0 : ar9003_set_phy(sc, c, extc);
3181 0 : ar9003_init_chains(sc);
3182 :
3183 0 : ops->set_txpower(sc, c, extc);
3184 : #undef X
3185 0 : }
3186 :
3187 : void
3188 0 : ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
3189 : uint8_t ctl, const uint8_t *fbins,
3190 : const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4])
3191 : {
3192 : uint8_t fbin;
3193 : int i, delta, lo, hi;
3194 :
3195 : lo = hi = -1;
3196 0 : fbin = athn_chan2fbin(c);
3197 0 : for (i = 0; i < nchans; i++) {
3198 0 : delta = fbin - fbins[i];
3199 : /* Find the largest sample that is <= our frequency. */
3200 0 : if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
3201 0 : lo = i;
3202 : /* Find the smallest sample that is >= our frequency. */
3203 0 : if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
3204 0 : hi = i;
3205 : }
3206 0 : if (lo == -1)
3207 0 : lo = hi;
3208 0 : else if (hi == -1)
3209 0 : hi = lo;
3210 : /* Interpolate values. */
3211 0 : for (i = 0; i < 4; i++) {
3212 0 : tpow[i] = athn_interpolate(fbin,
3213 0 : fbins[lo], tgt[lo].tPow2x[i],
3214 0 : fbins[hi], tgt[hi].tPow2x[i]);
3215 : }
3216 : /* XXX Apply conformance test limit. */
3217 0 : }
3218 :
3219 : void
3220 0 : ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
3221 : uint8_t ctl, const uint8_t *fbins,
3222 : const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14])
3223 : {
3224 : uint8_t fbin;
3225 : int i, delta, lo, hi;
3226 :
3227 : lo = hi = -1;
3228 0 : fbin = athn_chan2fbin(c);
3229 0 : for (i = 0; i < nchans; i++) {
3230 0 : delta = fbin - fbins[i];
3231 : /* Find the largest sample that is <= our frequency. */
3232 0 : if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
3233 0 : lo = i;
3234 : /* Find the smallest sample that is >= our frequency. */
3235 0 : if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
3236 0 : hi = i;
3237 : }
3238 0 : if (lo == -1)
3239 0 : lo = hi;
3240 0 : else if (hi == -1)
3241 0 : hi = lo;
3242 : /* Interpolate values. */
3243 0 : for (i = 0; i < 14; i++) {
3244 0 : tpow[i] = athn_interpolate(fbin,
3245 0 : fbins[lo], tgt[lo].tPow2x[i],
3246 0 : fbins[hi], tgt[hi].tPow2x[i]);
3247 : }
3248 : /* XXX Apply conformance test limit. */
3249 0 : }
3250 :
3251 : /*
3252 : * Adaptive noise immunity.
3253 : */
3254 : void
3255 0 : ar9003_set_noise_immunity_level(struct athn_softc *sc, int level)
3256 : {
3257 0 : int high = level == 4;
3258 : uint32_t reg;
3259 :
3260 0 : reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
3261 0 : reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
3262 0 : AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
3263 :
3264 0 : reg = AR_READ(sc, AR_PHY_AGC);
3265 0 : reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64);
3266 0 : reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14);
3267 0 : AR_WRITE(sc, AR_PHY_AGC, reg);
3268 :
3269 0 : reg = AR_READ(sc, AR_PHY_FIND_SIG);
3270 0 : reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
3271 0 : AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
3272 0 : AR_WRITE_BARRIER(sc);
3273 0 : }
3274 :
3275 : void
3276 0 : ar9003_enable_ofdm_weak_signal(struct athn_softc *sc)
3277 : {
3278 : uint32_t reg;
3279 :
3280 0 : reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
3281 0 : reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
3282 0 : reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
3283 0 : reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
3284 0 : AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
3285 :
3286 0 : reg = AR_READ(sc, AR_PHY_SFCORR);
3287 0 : reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
3288 0 : reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
3289 0 : reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
3290 0 : AR_WRITE(sc, AR_PHY_SFCORR, reg);
3291 :
3292 0 : reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
3293 0 : reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
3294 0 : reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
3295 0 : reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
3296 0 : reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
3297 0 : AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
3298 :
3299 0 : AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
3300 : AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
3301 0 : AR_WRITE_BARRIER(sc);
3302 0 : }
3303 :
3304 : void
3305 0 : ar9003_disable_ofdm_weak_signal(struct athn_softc *sc)
3306 : {
3307 : uint32_t reg;
3308 :
3309 0 : reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
3310 0 : reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
3311 0 : reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
3312 0 : reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
3313 0 : AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
3314 :
3315 0 : reg = AR_READ(sc, AR_PHY_SFCORR);
3316 0 : reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
3317 0 : reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
3318 0 : reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
3319 0 : AR_WRITE(sc, AR_PHY_SFCORR, reg);
3320 :
3321 0 : reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
3322 0 : reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
3323 0 : reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
3324 0 : reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
3325 0 : reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
3326 0 : AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
3327 :
3328 0 : AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
3329 : AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
3330 0 : AR_WRITE_BARRIER(sc);
3331 0 : }
3332 :
3333 : void
3334 0 : ar9003_set_cck_weak_signal(struct athn_softc *sc, int high)
3335 : {
3336 : uint32_t reg;
3337 :
3338 0 : reg = AR_READ(sc, AR_PHY_CCK_DETECT);
3339 0 : reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
3340 0 : AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
3341 0 : AR_WRITE_BARRIER(sc);
3342 0 : }
3343 :
3344 : void
3345 0 : ar9003_set_firstep_level(struct athn_softc *sc, int level)
3346 : {
3347 : uint32_t reg;
3348 :
3349 0 : reg = AR_READ(sc, AR_PHY_FIND_SIG);
3350 0 : reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
3351 0 : AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
3352 0 : AR_WRITE_BARRIER(sc);
3353 0 : }
3354 :
3355 : void
3356 0 : ar9003_set_spur_immunity_level(struct athn_softc *sc, int level)
3357 : {
3358 : uint32_t reg;
3359 :
3360 0 : reg = AR_READ(sc, AR_PHY_TIMING5);
3361 0 : reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
3362 0 : AR_WRITE(sc, AR_PHY_TIMING5, reg);
3363 0 : AR_WRITE_BARRIER(sc);
3364 0 : }
|