Line data Source code
1 : /* $OpenBSD: ath.c,v 1.116 2018/01/31 11:27:03 stsp Exp $ */
2 : /* $NetBSD: ath.c,v 1.37 2004/08/18 21:59:39 dyoung Exp $ */
3 :
4 : /*-
5 : * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
6 : * All rights reserved.
7 : *
8 : * Redistribution and use in source and binary forms, with or without
9 : * modification, are permitted provided that the following conditions
10 : * are met:
11 : * 1. Redistributions of source code must retain the above copyright
12 : * notice, this list of conditions and the following disclaimer,
13 : * without modification.
14 : * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 : * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
16 : * redistribution must be conditioned upon including a substantially
17 : * similar Disclaimer requirement for further binary redistribution.
18 : * 3. Neither the names of the above-listed copyright holders nor the names
19 : * of any contributors may be used to endorse or promote products derived
20 : * from this software without specific prior written permission.
21 : *
22 : * NO WARRANTY
23 : * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 : * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 : * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
26 : * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
27 : * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
28 : * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 : * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 : * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
31 : * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 : * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 : * THE POSSIBILITY OF SUCH DAMAGES.
34 : */
35 :
36 : /*
37 : * Driver for the Atheros Wireless LAN controller.
38 : *
39 : * This software is derived from work of Atsushi Onoe; his contribution
40 : * is greatly appreciated. It has been modified for OpenBSD to use an
41 : * open source HAL instead of the original binary-only HAL.
42 : */
43 :
44 : #include "bpfilter.h"
45 :
46 : #include <sys/param.h>
47 : #include <sys/systm.h>
48 : #include <sys/mbuf.h>
49 : #include <sys/malloc.h>
50 : #include <sys/lock.h>
51 : #include <sys/kernel.h>
52 : #include <sys/socket.h>
53 : #include <sys/sockio.h>
54 : #include <sys/device.h>
55 : #include <sys/errno.h>
56 : #include <sys/timeout.h>
57 : #include <sys/gpio.h>
58 : #include <sys/endian.h>
59 :
60 : #include <machine/bus.h>
61 :
62 : #include <net/if.h>
63 : #include <net/if_dl.h>
64 : #include <net/if_media.h>
65 : #if NBPFILTER > 0
66 : #include <net/bpf.h>
67 : #endif
68 : #include <netinet/in.h>
69 : #include <netinet/if_ether.h>
70 :
71 : #include <net80211/ieee80211_var.h>
72 : #include <net80211/ieee80211_rssadapt.h>
73 :
74 : #include <dev/pci/pcidevs.h>
75 : #include <dev/gpio/gpiovar.h>
76 :
77 : #include <dev/ic/athvar.h>
78 :
79 : int ath_init(struct ifnet *);
80 : int ath_init1(struct ath_softc *);
81 : int ath_intr1(struct ath_softc *);
82 : void ath_stop(struct ifnet *);
83 : void ath_start(struct ifnet *);
84 : void ath_reset(struct ath_softc *, int);
85 : int ath_media_change(struct ifnet *);
86 : void ath_watchdog(struct ifnet *);
87 : int ath_ioctl(struct ifnet *, u_long, caddr_t);
88 : void ath_fatal_proc(void *, int);
89 : void ath_rxorn_proc(void *, int);
90 : void ath_bmiss_proc(void *, int);
91 : int ath_initkeytable(struct ath_softc *);
92 : void ath_mcastfilter_accum(caddr_t, u_int32_t (*)[2]);
93 : void ath_mcastfilter_compute(struct ath_softc *, u_int32_t (*)[2]);
94 : u_int32_t ath_calcrxfilter(struct ath_softc *);
95 : void ath_mode_init(struct ath_softc *);
96 : #ifndef IEEE80211_STA_ONLY
97 : int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
98 : void ath_beacon_proc(void *, int);
99 : void ath_beacon_free(struct ath_softc *);
100 : #endif
101 : void ath_beacon_config(struct ath_softc *);
102 : int ath_desc_alloc(struct ath_softc *);
103 : void ath_desc_free(struct ath_softc *);
104 : struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
105 : struct mbuf *ath_getmbuf(int, int, u_int);
106 : void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
107 : void ath_node_copy(struct ieee80211com *,
108 : struct ieee80211_node *, const struct ieee80211_node *);
109 : u_int8_t ath_node_getrssi(struct ieee80211com *,
110 : const struct ieee80211_node *);
111 : int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
112 : void ath_rx_proc(void *, int);
113 : int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
114 : struct ath_buf *, struct mbuf *);
115 : void ath_tx_proc(void *, int);
116 : int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
117 : void ath_draintxq(struct ath_softc *);
118 : void ath_stoprecv(struct ath_softc *);
119 : int ath_startrecv(struct ath_softc *);
120 : void ath_next_scan(void *);
121 : int ath_set_slot_time(struct ath_softc *);
122 : void ath_calibrate(void *);
123 : void ath_ledstate(struct ath_softc *, enum ieee80211_state);
124 : int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
125 : void ath_newassoc(struct ieee80211com *,
126 : struct ieee80211_node *, int);
127 : int ath_getchannels(struct ath_softc *, HAL_BOOL outdoor,
128 : HAL_BOOL xchanmode);
129 : int ath_rate_setup(struct ath_softc *sc, u_int mode);
130 : void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
131 : void ath_rssadapt_updatenode(void *, struct ieee80211_node *);
132 : void ath_rssadapt_updatestats(void *);
133 : #ifndef IEEE80211_STA_ONLY
134 : void ath_recv_mgmt(struct ieee80211com *, struct mbuf *,
135 : struct ieee80211_node *, struct ieee80211_rxinfo *, int);
136 : #endif
137 : void ath_disable(struct ath_softc *);
138 :
139 : int ath_gpio_attach(struct ath_softc *, u_int16_t);
140 : int ath_gpio_pin_read(void *, int);
141 : void ath_gpio_pin_write(void *, int, int);
142 : void ath_gpio_pin_ctl(void *, int, int);
143 :
144 : #ifdef AR_DEBUG
145 : void ath_printrxbuf(struct ath_buf *, int);
146 : void ath_printtxbuf(struct ath_buf *, int);
147 : int ath_debug = 0;
148 : #endif
149 :
150 : int ath_dwelltime = 200; /* 5 channels/second */
151 : int ath_calinterval = 30; /* calibrate every 30 secs */
152 : int ath_outdoor = AH_TRUE; /* outdoor operation */
153 : int ath_xchanmode = AH_TRUE; /* enable extended channels */
154 : int ath_softcrypto = 1; /* 1=enable software crypto */
155 :
156 : struct cfdriver ath_cd = {
157 : NULL, "ath", DV_IFNET
158 : };
159 :
160 : int
161 0 : ath_activate(struct device *self, int act)
162 : {
163 0 : struct ath_softc *sc = (struct ath_softc *)self;
164 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
165 :
166 0 : switch (act) {
167 : case DVACT_SUSPEND:
168 0 : if (ifp->if_flags & IFF_RUNNING) {
169 0 : ath_stop(ifp);
170 0 : if (sc->sc_power != NULL)
171 0 : (*sc->sc_power)(sc, act);
172 : }
173 : break;
174 : case DVACT_RESUME:
175 0 : if (ifp->if_flags & IFF_UP) {
176 0 : ath_init(ifp);
177 0 : if (ifp->if_flags & IFF_RUNNING)
178 0 : ath_start(ifp);
179 : }
180 : break;
181 : }
182 0 : return 0;
183 : }
184 :
185 : int
186 0 : ath_enable(struct ath_softc *sc)
187 : {
188 0 : if (ATH_IS_ENABLED(sc) == 0) {
189 0 : if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
190 0 : printf("%s: device enable failed\n",
191 0 : sc->sc_dev.dv_xname);
192 0 : return (EIO);
193 : }
194 0 : sc->sc_flags |= ATH_ENABLED;
195 0 : }
196 0 : return (0);
197 0 : }
198 :
199 : void
200 0 : ath_disable(struct ath_softc *sc)
201 : {
202 0 : if (!ATH_IS_ENABLED(sc))
203 : return;
204 0 : if (sc->sc_disable != NULL)
205 0 : (*sc->sc_disable)(sc);
206 0 : sc->sc_flags &= ~ATH_ENABLED;
207 0 : }
208 :
209 : int
210 0 : ath_attach(u_int16_t devid, struct ath_softc *sc)
211 : {
212 0 : struct ieee80211com *ic = &sc->sc_ic;
213 0 : struct ifnet *ifp = &ic->ic_if;
214 : struct ath_hal *ah;
215 0 : HAL_STATUS status;
216 0 : HAL_TXQ_INFO qinfo;
217 : int error = 0, i;
218 :
219 : DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
220 :
221 0 : bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
222 0 : sc->sc_flags &= ~ATH_ATTACHED; /* make sure that it's not attached */
223 :
224 0 : ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
225 0 : sc->sc_pcie, &status);
226 0 : if (ah == NULL) {
227 0 : printf("%s: unable to attach hardware; HAL status %d\n",
228 0 : ifp->if_xname, status);
229 : error = ENXIO;
230 0 : goto bad;
231 : }
232 0 : if (ah->ah_abi != HAL_ABI_VERSION) {
233 0 : printf("%s: HAL ABI mismatch detected (0x%x != 0x%x)\n",
234 : ifp->if_xname, ah->ah_abi, HAL_ABI_VERSION);
235 : error = ENXIO;
236 0 : goto bad;
237 : }
238 :
239 0 : if (ah->ah_single_chip == AH_TRUE) {
240 0 : printf("%s: AR%s %u.%u phy %u.%u rf %u.%u", ifp->if_xname,
241 0 : ar5k_printver(AR5K_VERSION_DEV, devid),
242 0 : ah->ah_mac_version, ah->ah_mac_revision,
243 0 : ah->ah_phy_revision >> 4, ah->ah_phy_revision & 0xf,
244 0 : ah->ah_radio_5ghz_revision >> 4,
245 0 : ah->ah_radio_5ghz_revision & 0xf);
246 0 : } else {
247 0 : printf("%s: AR%s %u.%u phy %u.%u", ifp->if_xname,
248 0 : ar5k_printver(AR5K_VERSION_VER, ah->ah_mac_srev),
249 0 : ah->ah_mac_version, ah->ah_mac_revision,
250 0 : ah->ah_phy_revision >> 4, ah->ah_phy_revision & 0xf);
251 0 : printf(" rf%s %u.%u",
252 0 : ar5k_printver(AR5K_VERSION_RAD, ah->ah_radio_5ghz_revision),
253 0 : ah->ah_radio_5ghz_revision >> 4,
254 0 : ah->ah_radio_5ghz_revision & 0xf);
255 0 : if (ah->ah_radio_2ghz_revision != 0) {
256 0 : printf(" rf%s %u.%u",
257 0 : ar5k_printver(AR5K_VERSION_RAD,
258 : ah->ah_radio_2ghz_revision),
259 0 : ah->ah_radio_2ghz_revision >> 4,
260 0 : ah->ah_radio_2ghz_revision & 0xf);
261 0 : }
262 : }
263 0 : if (ah->ah_ee_version == AR5K_EEPROM_VERSION_4_7)
264 0 : printf(" eeprom 4.7");
265 : else
266 0 : printf(" eeprom %1x.%1x", ah->ah_ee_version >> 12,
267 0 : ah->ah_ee_version & 0xff);
268 :
269 : #if 0
270 : if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_UNSUPP ||
271 : ah->ah_radio_2ghz_revision >= AR5K_SREV_RAD_UNSUPP) {
272 : printf(": RF radio not supported\n");
273 : error = EOPNOTSUPP;
274 : goto bad;
275 : }
276 : #endif
277 :
278 0 : sc->sc_ah = ah;
279 0 : sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
280 :
281 : /*
282 : * Get regulation domain either stored in the EEPROM or defined
283 : * as the default value. Some devices are known to have broken
284 : * regulation domain values in their EEPROM.
285 : */
286 0 : ath_hal_get_regdomain(ah, &ah->ah_regdomain);
287 :
288 : /*
289 : * Construct channel list based on the current regulation domain.
290 : */
291 0 : error = ath_getchannels(sc, ath_outdoor, ath_xchanmode);
292 0 : if (error != 0)
293 : goto bad;
294 :
295 : /*
296 : * Setup rate tables for all potential media types.
297 : */
298 0 : ath_rate_setup(sc, IEEE80211_MODE_11A);
299 0 : ath_rate_setup(sc, IEEE80211_MODE_11B);
300 0 : ath_rate_setup(sc, IEEE80211_MODE_11G);
301 :
302 0 : error = ath_desc_alloc(sc);
303 0 : if (error != 0) {
304 0 : printf(": failed to allocate descriptors: %d\n", error);
305 0 : goto bad;
306 : }
307 0 : timeout_set(&sc->sc_scan_to, ath_next_scan, sc);
308 0 : timeout_set(&sc->sc_cal_to, ath_calibrate, sc);
309 0 : timeout_set(&sc->sc_rssadapt_to, ath_rssadapt_updatestats, sc);
310 :
311 : #ifdef __FreeBSD__
312 : ATH_TXBUF_LOCK_INIT(sc);
313 : ATH_TXQ_LOCK_INIT(sc);
314 : #endif
315 :
316 0 : ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
317 0 : ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
318 0 : ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
319 0 : ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
320 0 : ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
321 : #ifndef IEEE80211_STA_ONLY
322 0 : ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
323 : #endif
324 :
325 : /*
326 : * For now just pre-allocate one data queue and one
327 : * beacon queue. Note that the HAL handles resetting
328 : * them at the needed time. Eventually we'll want to
329 : * allocate more tx queues for splitting management
330 : * frames and for QOS support.
331 : */
332 0 : sc->sc_bhalq = ath_hal_setup_tx_queue(ah, HAL_TX_QUEUE_BEACON, NULL);
333 0 : if (sc->sc_bhalq == (u_int) -1) {
334 0 : printf(": unable to setup a beacon xmit queue!\n");
335 0 : goto bad2;
336 : }
337 :
338 0 : for (i = 0; i <= HAL_TX_QUEUE_ID_DATA_MAX; i++) {
339 0 : bzero(&qinfo, sizeof(qinfo));
340 0 : qinfo.tqi_type = HAL_TX_QUEUE_DATA;
341 0 : qinfo.tqi_subtype = i; /* should be mapped to WME types */
342 0 : sc->sc_txhalq[i] = ath_hal_setup_tx_queue(ah,
343 : HAL_TX_QUEUE_DATA, &qinfo);
344 0 : if (sc->sc_txhalq[i] == (u_int) -1) {
345 0 : printf(": unable to setup a data xmit queue %u!\n", i);
346 0 : goto bad2;
347 : }
348 : }
349 :
350 0 : ifp->if_softc = sc;
351 0 : ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
352 0 : ifp->if_start = ath_start;
353 0 : ifp->if_watchdog = ath_watchdog;
354 0 : ifp->if_ioctl = ath_ioctl;
355 : #ifndef __OpenBSD__
356 : ifp->if_stop = ath_stop; /* XXX */
357 : #endif
358 0 : IFQ_SET_MAXLEN(&ifp->if_snd, ATH_TXBUF * ATH_TXDESC);
359 :
360 0 : ic->ic_softc = sc;
361 0 : ic->ic_newassoc = ath_newassoc;
362 : /* XXX not right but it's not used anywhere important */
363 0 : ic->ic_phytype = IEEE80211_T_OFDM;
364 0 : ic->ic_opmode = IEEE80211_M_STA;
365 0 : ic->ic_caps = IEEE80211_C_WEP /* wep supported */
366 : | IEEE80211_C_PMGT /* power management */
367 : #ifndef IEEE80211_STA_ONLY
368 : | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
369 : | IEEE80211_C_HOSTAP /* hostap mode */
370 : #endif
371 : | IEEE80211_C_MONITOR /* monitor mode */
372 : | IEEE80211_C_SHSLOT /* short slot time supported */
373 : | IEEE80211_C_SHPREAMBLE; /* short preamble supported */
374 0 : if (ath_softcrypto)
375 0 : ic->ic_caps |= IEEE80211_C_RSN; /* wpa/rsn supported */
376 :
377 : /*
378 : * Not all chips have the VEOL support we want to use with
379 : * IBSS beacon; check here for it.
380 : */
381 0 : sc->sc_veol = ath_hal_has_veol(ah);
382 :
383 : /* get mac address from hardware */
384 0 : ath_hal_get_lladdr(ah, ic->ic_myaddr);
385 :
386 0 : if_attach(ifp);
387 :
388 : /* call MI attach routine. */
389 0 : ieee80211_ifattach(ifp);
390 :
391 : /* override default methods */
392 0 : ic->ic_node_alloc = ath_node_alloc;
393 0 : sc->sc_node_free = ic->ic_node_free;
394 0 : ic->ic_node_free = ath_node_free;
395 0 : sc->sc_node_copy = ic->ic_node_copy;
396 0 : ic->ic_node_copy = ath_node_copy;
397 0 : ic->ic_node_getrssi = ath_node_getrssi;
398 0 : sc->sc_newstate = ic->ic_newstate;
399 0 : ic->ic_newstate = ath_newstate;
400 : #ifndef IEEE80211_STA_ONLY
401 0 : sc->sc_recv_mgmt = ic->ic_recv_mgmt;
402 0 : ic->ic_recv_mgmt = ath_recv_mgmt;
403 : #endif
404 0 : ic->ic_max_rssi = AR5K_MAX_RSSI;
405 0 : bcopy(etherbroadcastaddr, sc->sc_broadcast_addr, IEEE80211_ADDR_LEN);
406 :
407 : /* complete initialization */
408 0 : ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
409 :
410 : #if NBPFILTER > 0
411 0 : bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
412 : sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
413 :
414 0 : sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
415 0 : bzero(&sc->sc_rxtapu, sc->sc_rxtap_len);
416 0 : sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
417 0 : sc->sc_rxtap.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
418 :
419 0 : sc->sc_txtap_len = sizeof(sc->sc_txtapu);
420 0 : bzero(&sc->sc_txtapu, sc->sc_txtap_len);
421 0 : sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
422 0 : sc->sc_txtap.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
423 : #endif
424 :
425 0 : sc->sc_flags |= ATH_ATTACHED;
426 :
427 : /*
428 : * Print regulation domain and the mac address. The regulation domain
429 : * will be marked with a * if the EEPROM value has been overwritten.
430 : */
431 0 : printf(", %s%s, address %s\n",
432 0 : ieee80211_regdomain2name(ah->ah_regdomain),
433 0 : ah->ah_regdomain != ah->ah_regdomain_hw ? "*" : "",
434 0 : ether_sprintf(ic->ic_myaddr));
435 :
436 0 : if (ath_gpio_attach(sc, devid) == 0)
437 0 : sc->sc_flags |= ATH_GPIO;
438 :
439 0 : return 0;
440 : bad2:
441 0 : ath_desc_free(sc);
442 : bad:
443 0 : if (ah)
444 0 : ath_hal_detach(ah);
445 0 : sc->sc_invalid = 1;
446 0 : return error;
447 0 : }
448 :
449 : int
450 0 : ath_detach(struct ath_softc *sc, int flags)
451 : {
452 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
453 : int s;
454 :
455 0 : if ((sc->sc_flags & ATH_ATTACHED) == 0)
456 0 : return (0);
457 :
458 0 : config_detach_children(&sc->sc_dev, flags);
459 :
460 : DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
461 :
462 0 : timeout_del(&sc->sc_scan_to);
463 0 : timeout_del(&sc->sc_cal_to);
464 0 : timeout_del(&sc->sc_rssadapt_to);
465 :
466 0 : s = splnet();
467 0 : ath_stop(ifp);
468 0 : ath_desc_free(sc);
469 0 : ath_hal_detach(sc->sc_ah);
470 :
471 0 : ieee80211_ifdetach(ifp);
472 0 : if_detach(ifp);
473 :
474 0 : splx(s);
475 : #ifdef __FreeBSD__
476 : ATH_TXBUF_LOCK_DESTROY(sc);
477 : ATH_TXQ_LOCK_DESTROY(sc);
478 : #endif
479 :
480 0 : return 0;
481 0 : }
482 :
483 : int
484 0 : ath_intr(void *arg)
485 : {
486 0 : return ath_intr1((struct ath_softc *)arg);
487 : }
488 :
489 : int
490 0 : ath_intr1(struct ath_softc *sc)
491 : {
492 0 : struct ieee80211com *ic = &sc->sc_ic;
493 0 : struct ifnet *ifp = &ic->ic_if;
494 0 : struct ath_hal *ah = sc->sc_ah;
495 0 : HAL_INT status;
496 :
497 0 : if (sc->sc_invalid) {
498 : /*
499 : * The hardware is not ready/present, don't touch anything.
500 : * Note this can happen early on if the IRQ is shared.
501 : */
502 : DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
503 0 : return 0;
504 : }
505 0 : if (!ath_hal_is_intr_pending(ah)) /* shared irq, not for us */
506 0 : return 0;
507 0 : if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
508 : DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
509 : __func__, ifp->if_flags));
510 : ath_hal_get_isr(ah, &status); /* clear ISR */
511 0 : ath_hal_set_intr(ah, 0); /* disable further intr's */
512 0 : return 1; /* XXX */
513 : }
514 : ath_hal_get_isr(ah, &status); /* NB: clears ISR too */
515 : DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
516 0 : status &= sc->sc_imask; /* discard unasked for bits */
517 0 : if (status & HAL_INT_FATAL) {
518 0 : sc->sc_stats.ast_hardware++;
519 0 : ath_hal_set_intr(ah, 0); /* disable intr's until reset */
520 0 : ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
521 0 : } else if (status & HAL_INT_RXORN) {
522 0 : sc->sc_stats.ast_rxorn++;
523 0 : ath_hal_set_intr(ah, 0); /* disable intr's until reset */
524 0 : ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
525 0 : } else if (status & HAL_INT_MIB) {
526 : DPRINTF(ATH_DEBUG_INTR,
527 : ("%s: resetting MIB counters\n", __func__));
528 0 : sc->sc_stats.ast_mib++;
529 0 : ath_hal_update_mib_counters(ah, &sc->sc_mib_stats);
530 0 : } else {
531 0 : if (status & HAL_INT_RXEOL) {
532 : /*
533 : * NB: the hardware should re-read the link when
534 : * RXE bit is written, but it doesn't work at
535 : * least on older hardware revs.
536 : */
537 0 : sc->sc_stats.ast_rxeol++;
538 0 : sc->sc_rxlink = NULL;
539 0 : }
540 0 : if (status & HAL_INT_TXURN) {
541 0 : sc->sc_stats.ast_txurn++;
542 : /* bump tx trigger level */
543 0 : ath_hal_update_tx_triglevel(ah, AH_TRUE);
544 0 : }
545 0 : if (status & HAL_INT_RX)
546 0 : ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
547 0 : if (status & HAL_INT_TX)
548 0 : ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
549 0 : if (status & HAL_INT_SWBA)
550 0 : ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
551 0 : if (status & HAL_INT_BMISS) {
552 0 : sc->sc_stats.ast_bmiss++;
553 0 : ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
554 0 : }
555 : }
556 0 : return 1;
557 0 : }
558 :
559 : void
560 0 : ath_fatal_proc(void *arg, int pending)
561 : {
562 0 : struct ath_softc *sc = arg;
563 0 : struct ieee80211com *ic = &sc->sc_ic;
564 0 : struct ifnet *ifp = &ic->ic_if;
565 :
566 0 : if (ifp->if_flags & IFF_DEBUG)
567 0 : printf("%s: hardware error; resetting\n", ifp->if_xname);
568 0 : ath_reset(sc, 1);
569 0 : }
570 :
571 : void
572 0 : ath_rxorn_proc(void *arg, int pending)
573 : {
574 0 : struct ath_softc *sc = arg;
575 0 : struct ieee80211com *ic = &sc->sc_ic;
576 0 : struct ifnet *ifp = &ic->ic_if;
577 :
578 0 : if (ifp->if_flags & IFF_DEBUG)
579 0 : printf("%s: rx FIFO overrun; resetting\n", ifp->if_xname);
580 0 : ath_reset(sc, 1);
581 0 : }
582 :
583 : void
584 0 : ath_bmiss_proc(void *arg, int pending)
585 : {
586 0 : struct ath_softc *sc = arg;
587 0 : struct ieee80211com *ic = &sc->sc_ic;
588 :
589 : DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
590 0 : if (ic->ic_opmode != IEEE80211_M_STA)
591 0 : return;
592 0 : if (ic->ic_state == IEEE80211_S_RUN) {
593 : /*
594 : * Rather than go directly to scan state, try to
595 : * reassociate first. If that fails then the state
596 : * machine will drop us into scanning after timing
597 : * out waiting for a probe response.
598 : */
599 0 : ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
600 0 : }
601 0 : }
602 :
603 : int
604 0 : ath_init(struct ifnet *ifp)
605 : {
606 0 : return ath_init1((struct ath_softc *)ifp->if_softc);
607 : }
608 :
609 : int
610 0 : ath_init1(struct ath_softc *sc)
611 : {
612 0 : struct ieee80211com *ic = &sc->sc_ic;
613 0 : struct ifnet *ifp = &ic->ic_if;
614 : struct ieee80211_node *ni;
615 : enum ieee80211_phymode mode;
616 0 : struct ath_hal *ah = sc->sc_ah;
617 0 : HAL_STATUS status;
618 0 : HAL_CHANNEL hchan;
619 : int error = 0, s;
620 :
621 : DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
622 : __func__, ifp->if_flags));
623 :
624 0 : if ((error = ath_enable(sc)) != 0)
625 0 : return error;
626 :
627 0 : s = splnet();
628 : /*
629 : * Stop anything previously setup. This is safe
630 : * whether this is the first time through or not.
631 : */
632 0 : ath_stop(ifp);
633 :
634 : /*
635 : * Reset the link layer address to the latest value.
636 : */
637 0 : IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
638 0 : ath_hal_set_lladdr(ah, ic->ic_myaddr);
639 :
640 : /*
641 : * The basic interface to setting the hardware in a good
642 : * state is ``reset''. On return the hardware is known to
643 : * be powered up and with interrupts disabled. This must
644 : * be followed by initialization of the appropriate bits
645 : * and then setup of the interrupt mask.
646 : */
647 0 : hchan.channel = ic->ic_ibss_chan->ic_freq;
648 0 : hchan.channelFlags = ic->ic_ibss_chan->ic_flags;
649 0 : if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
650 0 : printf("%s: unable to reset hardware; hal status %u\n",
651 0 : ifp->if_xname, status);
652 : error = EIO;
653 0 : goto done;
654 : }
655 0 : ath_set_slot_time(sc);
656 :
657 0 : if ((error = ath_initkeytable(sc)) != 0) {
658 0 : printf("%s: unable to reset the key cache\n",
659 0 : ifp->if_xname);
660 0 : goto done;
661 : }
662 :
663 0 : if ((error = ath_startrecv(sc)) != 0) {
664 0 : printf("%s: unable to start recv logic\n", ifp->if_xname);
665 0 : goto done;
666 : }
667 :
668 : /*
669 : * Enable interrupts.
670 : */
671 0 : sc->sc_imask = HAL_INT_RX | HAL_INT_TX
672 : | HAL_INT_RXEOL | HAL_INT_RXORN
673 : | HAL_INT_FATAL | HAL_INT_GLOBAL;
674 : #ifndef IEEE80211_STA_ONLY
675 0 : if (ic->ic_opmode == IEEE80211_M_HOSTAP)
676 0 : sc->sc_imask |= HAL_INT_MIB;
677 : #endif
678 0 : ath_hal_set_intr(ah, sc->sc_imask);
679 :
680 0 : ifp->if_flags |= IFF_RUNNING;
681 0 : ic->ic_state = IEEE80211_S_INIT;
682 :
683 : /*
684 : * The hardware should be ready to go now so it's safe
685 : * to kick the 802.11 state machine as it's likely to
686 : * immediately call back to us to send mgmt frames.
687 : */
688 0 : ni = ic->ic_bss;
689 0 : ni->ni_chan = ic->ic_ibss_chan;
690 0 : mode = ieee80211_chan2mode(ic, ni->ni_chan);
691 0 : if (mode != sc->sc_curmode)
692 0 : ath_setcurmode(sc, mode);
693 0 : if (ic->ic_opmode != IEEE80211_M_MONITOR) {
694 0 : ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
695 0 : } else {
696 0 : ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
697 : }
698 : done:
699 0 : splx(s);
700 0 : return error;
701 0 : }
702 :
703 : void
704 0 : ath_stop(struct ifnet *ifp)
705 : {
706 0 : struct ieee80211com *ic = (struct ieee80211com *) ifp;
707 0 : struct ath_softc *sc = ifp->if_softc;
708 0 : struct ath_hal *ah = sc->sc_ah;
709 : int s;
710 :
711 : DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
712 : __func__, sc->sc_invalid, ifp->if_flags));
713 :
714 0 : s = splnet();
715 0 : if (ifp->if_flags & IFF_RUNNING) {
716 : /*
717 : * Shutdown the hardware and driver:
718 : * disable interrupts
719 : * turn off timers
720 : * clear transmit machinery
721 : * clear receive machinery
722 : * drain and release tx queues
723 : * reclaim beacon resources
724 : * reset 802.11 state machine
725 : * power down hardware
726 : *
727 : * Note that some of this work is not possible if the
728 : * hardware is gone (invalid).
729 : */
730 0 : ifp->if_flags &= ~IFF_RUNNING;
731 0 : ifp->if_timer = 0;
732 0 : if (!sc->sc_invalid)
733 0 : ath_hal_set_intr(ah, 0);
734 0 : ath_draintxq(sc);
735 0 : if (!sc->sc_invalid) {
736 0 : ath_stoprecv(sc);
737 0 : } else {
738 0 : sc->sc_rxlink = NULL;
739 : }
740 0 : IFQ_PURGE(&ifp->if_snd);
741 : #ifndef IEEE80211_STA_ONLY
742 0 : ath_beacon_free(sc);
743 : #endif
744 0 : ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
745 0 : if (!sc->sc_invalid) {
746 0 : ath_hal_set_power(ah, HAL_PM_FULL_SLEEP, 0);
747 0 : }
748 0 : ath_disable(sc);
749 0 : }
750 0 : splx(s);
751 0 : }
752 :
753 : /*
754 : * Reset the hardware w/o losing operational state. This is
755 : * basically a more efficient way of doing ath_stop, ath_init,
756 : * followed by state transitions to the current 802.11
757 : * operational state. Used to recover from errors rx overrun
758 : * and to reset the hardware when rf gain settings must be reset.
759 : */
760 : void
761 0 : ath_reset(struct ath_softc *sc, int full)
762 : {
763 0 : struct ieee80211com *ic = &sc->sc_ic;
764 0 : struct ifnet *ifp = &ic->ic_if;
765 0 : struct ath_hal *ah = sc->sc_ah;
766 : struct ieee80211_channel *c;
767 0 : HAL_STATUS status;
768 0 : HAL_CHANNEL hchan;
769 :
770 : /*
771 : * Convert to a HAL channel description.
772 : */
773 0 : c = ic->ic_ibss_chan;
774 0 : hchan.channel = c->ic_freq;
775 0 : hchan.channelFlags = c->ic_flags;
776 :
777 0 : ath_hal_set_intr(ah, 0); /* disable interrupts */
778 0 : ath_draintxq(sc); /* stop xmit side */
779 0 : ath_stoprecv(sc); /* stop recv side */
780 : /* NB: indicate channel change so we do a full reset */
781 0 : if (!ath_hal_reset(ah, ic->ic_opmode, &hchan,
782 : full ? AH_TRUE : AH_FALSE, &status)) {
783 0 : printf("%s: %s: unable to reset hardware; hal status %u\n",
784 0 : ifp->if_xname, __func__, status);
785 0 : }
786 0 : ath_set_slot_time(sc);
787 : /* In case channel changed, save as a node channel */
788 0 : ic->ic_bss->ni_chan = ic->ic_ibss_chan;
789 0 : ath_hal_set_intr(ah, sc->sc_imask);
790 0 : if (ath_startrecv(sc) != 0) /* restart recv */
791 0 : printf("%s: %s: unable to start recv logic\n", ifp->if_xname,
792 : __func__);
793 0 : ath_start(ifp); /* restart xmit */
794 0 : if (ic->ic_state == IEEE80211_S_RUN)
795 0 : ath_beacon_config(sc); /* restart beacons */
796 0 : }
797 :
798 : void
799 0 : ath_start(struct ifnet *ifp)
800 : {
801 0 : struct ath_softc *sc = ifp->if_softc;
802 0 : struct ath_hal *ah = sc->sc_ah;
803 0 : struct ieee80211com *ic = &sc->sc_ic;
804 0 : struct ieee80211_node *ni;
805 : struct ath_buf *bf;
806 : struct mbuf *m;
807 : struct ieee80211_frame *wh;
808 : int s;
809 :
810 0 : if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd) ||
811 0 : sc->sc_invalid)
812 0 : return;
813 0 : for (;;) {
814 : /*
815 : * Grab a TX buffer and associated resources.
816 : */
817 0 : s = splnet();
818 0 : bf = TAILQ_FIRST(&sc->sc_txbuf);
819 0 : if (bf != NULL)
820 0 : TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
821 0 : splx(s);
822 0 : if (bf == NULL) {
823 : DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
824 : __func__));
825 0 : sc->sc_stats.ast_tx_qstop++;
826 0 : ifq_set_oactive(&ifp->if_snd);
827 0 : break;
828 : }
829 : /*
830 : * Poll the management queue for frames; they
831 : * have priority over normal data frames.
832 : */
833 0 : m = mq_dequeue(&ic->ic_mgtq);
834 0 : if (m == NULL) {
835 : /*
836 : * No data frames go out unless we're associated.
837 : */
838 0 : if (ic->ic_state != IEEE80211_S_RUN) {
839 : DPRINTF(ATH_DEBUG_ANY,
840 : ("%s: ignore data packet, state %u\n",
841 : __func__, ic->ic_state));
842 0 : sc->sc_stats.ast_tx_discard++;
843 0 : s = splnet();
844 0 : TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
845 0 : splx(s);
846 0 : break;
847 : }
848 0 : IFQ_DEQUEUE(&ifp->if_snd, m);
849 0 : if (m == NULL) {
850 0 : s = splnet();
851 0 : TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
852 0 : splx(s);
853 0 : break;
854 : }
855 :
856 : #if NBPFILTER > 0
857 0 : if (ifp->if_bpf)
858 0 : bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
859 : #endif
860 :
861 : /*
862 : * Encapsulate the packet in prep for transmission.
863 : */
864 0 : m = ieee80211_encap(ifp, m, &ni);
865 0 : if (m == NULL) {
866 : DPRINTF(ATH_DEBUG_ANY,
867 : ("%s: encapsulation failure\n",
868 : __func__));
869 0 : sc->sc_stats.ast_tx_encap++;
870 0 : goto bad;
871 : }
872 0 : wh = mtod(m, struct ieee80211_frame *);
873 0 : } else {
874 0 : ni = m->m_pkthdr.ph_cookie;
875 :
876 0 : wh = mtod(m, struct ieee80211_frame *);
877 0 : if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
878 : IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
879 : /* fill time stamp */
880 : u_int64_t tsf;
881 : u_int32_t *tstamp;
882 :
883 0 : tsf = ath_hal_get_tsf64(ah);
884 : /* XXX: adjust 100us delay to xmit */
885 0 : tsf += 100;
886 0 : tstamp = (u_int32_t *)&wh[1];
887 0 : tstamp[0] = htole32(tsf & 0xffffffff);
888 0 : tstamp[1] = htole32(tsf >> 32);
889 0 : }
890 0 : sc->sc_stats.ast_tx_mgmt++;
891 : }
892 :
893 0 : if (ath_tx_start(sc, ni, bf, m)) {
894 : bad:
895 0 : s = splnet();
896 0 : TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
897 0 : splx(s);
898 0 : ifp->if_oerrors++;
899 0 : if (ni != NULL)
900 0 : ieee80211_release_node(ic, ni);
901 0 : continue;
902 : }
903 :
904 0 : sc->sc_tx_timer = 5;
905 0 : ifp->if_timer = 1;
906 : }
907 0 : }
908 :
909 : int
910 0 : ath_media_change(struct ifnet *ifp)
911 : {
912 : int error;
913 :
914 0 : error = ieee80211_media_change(ifp);
915 0 : if (error == ENETRESET) {
916 0 : if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
917 : (IFF_RUNNING|IFF_UP))
918 0 : ath_init(ifp); /* XXX lose error */
919 : error = 0;
920 0 : }
921 0 : return error;
922 : }
923 :
924 : void
925 0 : ath_watchdog(struct ifnet *ifp)
926 : {
927 0 : struct ath_softc *sc = ifp->if_softc;
928 :
929 0 : ifp->if_timer = 0;
930 0 : if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
931 0 : return;
932 0 : if (sc->sc_tx_timer) {
933 0 : if (--sc->sc_tx_timer == 0) {
934 0 : printf("%s: device timeout\n", ifp->if_xname);
935 0 : ath_reset(sc, 1);
936 0 : ifp->if_oerrors++;
937 0 : sc->sc_stats.ast_watchdog++;
938 0 : return;
939 : }
940 0 : ifp->if_timer = 1;
941 0 : }
942 :
943 0 : ieee80211_watchdog(ifp);
944 0 : }
945 :
946 : int
947 0 : ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
948 : {
949 0 : struct ath_softc *sc = ifp->if_softc;
950 0 : struct ieee80211com *ic = &sc->sc_ic;
951 0 : struct ifreq *ifr = (struct ifreq *)data;
952 : int error = 0, s;
953 :
954 0 : s = splnet();
955 0 : switch (cmd) {
956 : case SIOCSIFADDR:
957 0 : ifp->if_flags |= IFF_UP;
958 : /* FALLTHROUGH */
959 : case SIOCSIFFLAGS:
960 0 : if (ifp->if_flags & IFF_UP) {
961 0 : if (ifp->if_flags & IFF_RUNNING) {
962 : /*
963 : * To avoid rescanning another access point,
964 : * do not call ath_init() here. Instead,
965 : * only reflect promisc mode settings.
966 : */
967 0 : ath_mode_init(sc);
968 0 : } else {
969 : /*
970 : * Beware of being called during detach to
971 : * reset promiscuous mode. In that case we
972 : * will still be marked UP but not RUNNING.
973 : * However trying to re-init the interface
974 : * is the wrong thing to do as we've already
975 : * torn down much of our state. There's
976 : * probably a better way to deal with this.
977 : */
978 0 : if (!sc->sc_invalid)
979 0 : ath_init(ifp); /* XXX lose error */
980 : }
981 : } else
982 0 : ath_stop(ifp);
983 : break;
984 : case SIOCADDMULTI:
985 : case SIOCDELMULTI:
986 : #ifdef __FreeBSD__
987 : /*
988 : * The upper layer has already installed/removed
989 : * the multicast address(es), just recalculate the
990 : * multicast filter for the card.
991 : */
992 : if (ifp->if_flags & IFF_RUNNING)
993 : ath_mode_init(sc);
994 : #endif
995 0 : error = (cmd == SIOCADDMULTI) ?
996 0 : ether_addmulti(ifr, &sc->sc_ic.ic_ac) :
997 0 : ether_delmulti(ifr, &sc->sc_ic.ic_ac);
998 0 : if (error == ENETRESET) {
999 0 : if (ifp->if_flags & IFF_RUNNING)
1000 0 : ath_mode_init(sc);
1001 : error = 0;
1002 0 : }
1003 : break;
1004 : case SIOCGATHSTATS:
1005 0 : error = copyout(&sc->sc_stats,
1006 0 : ifr->ifr_data, sizeof (sc->sc_stats));
1007 0 : break;
1008 : default:
1009 0 : error = ieee80211_ioctl(ifp, cmd, data);
1010 0 : if (error == ENETRESET) {
1011 0 : if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1012 : (IFF_RUNNING|IFF_UP)) {
1013 0 : if (ic->ic_opmode != IEEE80211_M_MONITOR)
1014 0 : ath_init(ifp); /* XXX lose error */
1015 : else
1016 0 : ath_reset(sc, 1);
1017 : }
1018 : error = 0;
1019 0 : }
1020 : break;
1021 : }
1022 0 : splx(s);
1023 0 : return error;
1024 : }
1025 :
1026 : /*
1027 : * Fill the hardware key cache with key entries.
1028 : */
1029 : int
1030 0 : ath_initkeytable(struct ath_softc *sc)
1031 : {
1032 0 : struct ieee80211com *ic = &sc->sc_ic;
1033 0 : struct ath_hal *ah = sc->sc_ah;
1034 : int i;
1035 :
1036 0 : if (ath_softcrypto) {
1037 : /*
1038 : * Disable the hardware crypto engine and reset the key cache
1039 : * to allow software crypto operation for WEP/RSN/WPA2
1040 : */
1041 0 : if (ic->ic_flags & (IEEE80211_F_WEPON|IEEE80211_F_RSNON))
1042 0 : (void)ath_hal_softcrypto(ah, AH_TRUE);
1043 : else
1044 0 : (void)ath_hal_softcrypto(ah, AH_FALSE);
1045 0 : return (0);
1046 : }
1047 :
1048 : /* WEP is disabled, we only support WEP in hardware yet */
1049 0 : if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
1050 0 : return (0);
1051 :
1052 : /*
1053 : * Setup the hardware after reset: the key cache is filled as
1054 : * needed and the receive engine is set going. Frame transmit
1055 : * is handled entirely in the frame output path; there's nothing
1056 : * to do here except setup the interrupt mask.
1057 : */
1058 :
1059 : /* XXX maybe should reset all keys when !WEPON */
1060 0 : for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1061 0 : struct ieee80211_key *k = &ic->ic_nw_keys[i];
1062 0 : if (k->k_len == 0)
1063 0 : ath_hal_reset_key(ah, i);
1064 : else {
1065 0 : HAL_KEYVAL hk;
1066 :
1067 0 : bzero(&hk, sizeof(hk));
1068 : /*
1069 : * Pad the key to a supported key length. It
1070 : * is always a good idea to use full-length
1071 : * keys without padded zeros but this seems
1072 : * to be the default behaviour used by many
1073 : * implementations.
1074 : */
1075 0 : if (k->k_cipher == IEEE80211_CIPHER_WEP40)
1076 0 : hk.wk_len = AR5K_KEYVAL_LENGTH_40;
1077 0 : else if (k->k_cipher == IEEE80211_CIPHER_WEP104)
1078 0 : hk.wk_len = AR5K_KEYVAL_LENGTH_104;
1079 : else
1080 0 : return (EINVAL);
1081 0 : bcopy(k->k_key, hk.wk_key, hk.wk_len);
1082 :
1083 0 : if (ath_hal_set_key(ah, i, &hk) != AH_TRUE)
1084 0 : return (EINVAL);
1085 0 : }
1086 0 : }
1087 :
1088 0 : return (0);
1089 0 : }
1090 :
1091 : void
1092 0 : ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1093 : {
1094 : u_int32_t val;
1095 : u_int8_t pos;
1096 :
1097 0 : val = LE_READ_4(dl + 0);
1098 0 : pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1099 0 : val = LE_READ_4(dl + 3);
1100 0 : pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1101 0 : pos &= 0x3f;
1102 0 : (*mfilt)[pos / 32] |= (1 << (pos % 32));
1103 0 : }
1104 :
1105 : void
1106 0 : ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1107 : {
1108 0 : struct arpcom *ac = &sc->sc_ic.ic_ac;
1109 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
1110 : struct ether_multi *enm;
1111 : struct ether_multistep estep;
1112 :
1113 0 : if (ac->ac_multirangecnt > 0) {
1114 : /* XXX Punt on ranges. */
1115 0 : (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1116 0 : ifp->if_flags |= IFF_ALLMULTI;
1117 0 : return;
1118 : }
1119 :
1120 0 : ETHER_FIRST_MULTI(estep, ac, enm);
1121 0 : while (enm != NULL) {
1122 0 : ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1123 0 : ETHER_NEXT_MULTI(estep, enm);
1124 : }
1125 0 : ifp->if_flags &= ~IFF_ALLMULTI;
1126 0 : }
1127 :
1128 : /*
1129 : * Calculate the receive filter according to the
1130 : * operating mode and state:
1131 : *
1132 : * o always accept unicast, broadcast, and multicast traffic
1133 : * o maintain current state of phy error reception
1134 : * o probe request frames are accepted only when operating in
1135 : * hostap, adhoc, or monitor modes
1136 : * o enable promiscuous mode according to the interface state
1137 : * o accept beacons:
1138 : * - when operating in adhoc mode so the 802.11 layer creates
1139 : * node table entries for peers,
1140 : * - when operating in station mode for collecting rssi data when
1141 : * the station is otherwise quiet, or
1142 : * - when scanning
1143 : */
1144 : u_int32_t
1145 0 : ath_calcrxfilter(struct ath_softc *sc)
1146 : {
1147 0 : struct ieee80211com *ic = &sc->sc_ic;
1148 0 : struct ath_hal *ah = sc->sc_ah;
1149 0 : struct ifnet *ifp = &ic->ic_if;
1150 : u_int32_t rfilt;
1151 :
1152 0 : rfilt = (ath_hal_get_rx_filter(ah) & HAL_RX_FILTER_PHYERR)
1153 0 : | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1154 0 : if (ic->ic_opmode != IEEE80211_M_STA)
1155 0 : rfilt |= HAL_RX_FILTER_PROBEREQ;
1156 : #ifndef IEEE80211_STA_ONLY
1157 0 : if (ic->ic_opmode != IEEE80211_M_AHDEMO)
1158 : #endif
1159 0 : rfilt |= HAL_RX_FILTER_BEACON;
1160 0 : if (ifp->if_flags & IFF_PROMISC)
1161 0 : rfilt |= HAL_RX_FILTER_PROM;
1162 0 : return rfilt;
1163 : }
1164 :
1165 : void
1166 0 : ath_mode_init(struct ath_softc *sc)
1167 : {
1168 0 : struct ath_hal *ah = sc->sc_ah;
1169 0 : u_int32_t rfilt, mfilt[2];
1170 :
1171 : /* configure rx filter */
1172 0 : rfilt = ath_calcrxfilter(sc);
1173 0 : ath_hal_set_rx_filter(ah, rfilt);
1174 :
1175 : /* configure operational mode */
1176 0 : ath_hal_set_opmode(ah);
1177 :
1178 : /* calculate and install multicast filter */
1179 0 : mfilt[0] = mfilt[1] = 0;
1180 0 : ath_mcastfilter_compute(sc, &mfilt);
1181 0 : ath_hal_set_mcast_filter(ah, mfilt[0], mfilt[1]);
1182 : DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
1183 : __func__, rfilt, mfilt[0], mfilt[1]));
1184 0 : }
1185 :
1186 : struct mbuf *
1187 0 : ath_getmbuf(int flags, int type, u_int pktlen)
1188 : {
1189 : struct mbuf *m;
1190 :
1191 0 : KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1192 : #ifdef __FreeBSD__
1193 : if (pktlen <= MHLEN) {
1194 : MGETHDR(m, flags, type);
1195 : } else {
1196 : m = m_getcl(flags, type, M_PKTHDR);
1197 : }
1198 : #else
1199 0 : MGETHDR(m, flags, type);
1200 0 : if (m != NULL && pktlen > MHLEN) {
1201 0 : MCLGET(m, flags);
1202 0 : if ((m->m_flags & M_EXT) == 0) {
1203 0 : m_free(m);
1204 : m = NULL;
1205 0 : }
1206 : }
1207 : #endif
1208 0 : return m;
1209 : }
1210 :
1211 : #ifndef IEEE80211_STA_ONLY
1212 : int
1213 0 : ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1214 : {
1215 0 : struct ieee80211com *ic = &sc->sc_ic;
1216 0 : struct ath_hal *ah = sc->sc_ah;
1217 : struct ath_buf *bf;
1218 : struct ath_desc *ds;
1219 : struct mbuf *m;
1220 : int error;
1221 : u_int8_t rate;
1222 : const HAL_RATE_TABLE *rt;
1223 : u_int flags = 0;
1224 :
1225 0 : bf = sc->sc_bcbuf;
1226 0 : if (bf->bf_m != NULL) {
1227 0 : bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1228 0 : m_freem(bf->bf_m);
1229 0 : bf->bf_m = NULL;
1230 0 : bf->bf_node = NULL;
1231 0 : }
1232 : /*
1233 : * NB: the beacon data buffer must be 32-bit aligned;
1234 : * we assume the mbuf routines will return us something
1235 : * with this alignment (perhaps should assert).
1236 : */
1237 0 : m = ieee80211_beacon_alloc(ic, ni);
1238 0 : if (m == NULL) {
1239 : DPRINTF(ATH_DEBUG_BEACON, ("%s: cannot get mbuf/cluster\n",
1240 : __func__));
1241 0 : sc->sc_stats.ast_be_nombuf++;
1242 0 : return ENOMEM;
1243 : }
1244 :
1245 : DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
1246 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1247 : BUS_DMA_NOWAIT);
1248 0 : if (error != 0) {
1249 0 : m_freem(m);
1250 0 : return error;
1251 : }
1252 0 : KASSERT(bf->bf_nseg == 1,
1253 : ("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
1254 0 : bf->bf_m = m;
1255 :
1256 : /* setup descriptors */
1257 0 : ds = bf->bf_desc;
1258 0 : bzero(ds, sizeof(struct ath_desc));
1259 :
1260 0 : if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_veol) {
1261 0 : ds->ds_link = bf->bf_daddr; /* link to self */
1262 : flags |= HAL_TXDESC_VEOL;
1263 0 : } else {
1264 0 : ds->ds_link = 0;
1265 : }
1266 0 : ds->ds_data = bf->bf_segs[0].ds_addr;
1267 :
1268 : DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__,
1269 : (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1270 :
1271 : /*
1272 : * Calculate rate code.
1273 : * XXX everything at min xmit rate
1274 : */
1275 0 : rt = sc->sc_currates;
1276 0 : KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1277 0 : if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
1278 0 : rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1279 0 : } else {
1280 : rate = rt->info[0].rateCode;
1281 : }
1282 :
1283 : flags = HAL_TXDESC_NOACK;
1284 0 : if (ic->ic_opmode == IEEE80211_M_IBSS)
1285 0 : flags |= HAL_TXDESC_VEOL;
1286 :
1287 0 : if (!ath_hal_setup_tx_desc(ah, ds
1288 : , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1289 : , sizeof(struct ieee80211_frame) /* header length */
1290 : , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1291 : , 60 /* txpower XXX */
1292 : , rate, 1 /* series 0 rate/tries */
1293 : , HAL_TXKEYIX_INVALID /* no encryption */
1294 : , 0 /* antenna mode */
1295 : , flags /* no ack for beacons */
1296 : , 0 /* rts/cts rate */
1297 : , 0 /* rts/cts duration */
1298 : )) {
1299 0 : printf("%s: ath_hal_setup_tx_desc failed\n", __func__);
1300 0 : return -1;
1301 : }
1302 : /* NB: beacon's BufLen must be a multiple of 4 bytes */
1303 : /* XXX verify mbuf data area covers this roundup */
1304 0 : if (!ath_hal_fill_tx_desc(ah, ds
1305 : , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1306 : , AH_TRUE /* first segment */
1307 : , AH_TRUE /* last segment */
1308 : )) {
1309 0 : printf("%s: ath_hal_fill_tx_desc failed\n", __func__);
1310 0 : return -1;
1311 : }
1312 :
1313 : /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1314 :
1315 0 : return 0;
1316 0 : }
1317 :
1318 : void
1319 0 : ath_beacon_proc(void *arg, int pending)
1320 : {
1321 0 : struct ath_softc *sc = arg;
1322 0 : struct ieee80211com *ic = &sc->sc_ic;
1323 0 : struct ath_buf *bf = sc->sc_bcbuf;
1324 0 : struct ath_hal *ah = sc->sc_ah;
1325 :
1326 : DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
1327 0 : if (ic->ic_opmode == IEEE80211_M_STA ||
1328 0 : bf == NULL || bf->bf_m == NULL) {
1329 : DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
1330 : __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1331 0 : return;
1332 : }
1333 : /* TODO: update beacon to reflect PS poll state */
1334 0 : if (!ath_hal_stop_tx_dma(ah, sc->sc_bhalq)) {
1335 : DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
1336 : __func__, sc->sc_bhalq));
1337 : }
1338 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
1339 : bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1340 :
1341 0 : ath_hal_put_tx_buf(ah, sc->sc_bhalq, bf->bf_daddr);
1342 0 : ath_hal_tx_start(ah, sc->sc_bhalq);
1343 : DPRINTF(ATH_DEBUG_BEACON_PROC,
1344 : ("%s: TXDP%u = %p (%p)\n", __func__,
1345 : sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1346 0 : }
1347 :
1348 : void
1349 0 : ath_beacon_free(struct ath_softc *sc)
1350 : {
1351 0 : struct ath_buf *bf = sc->sc_bcbuf;
1352 :
1353 0 : if (bf->bf_m != NULL) {
1354 0 : bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1355 0 : m_freem(bf->bf_m);
1356 0 : bf->bf_m = NULL;
1357 0 : bf->bf_node = NULL;
1358 0 : }
1359 0 : }
1360 : #endif /* IEEE80211_STA_ONLY */
1361 :
1362 : /*
1363 : * Configure the beacon and sleep timers.
1364 : *
1365 : * When operating as an AP this resets the TSF and sets
1366 : * up the hardware to notify us when we need to issue beacons.
1367 : *
1368 : * When operating in station mode this sets up the beacon
1369 : * timers according to the timestamp of the last received
1370 : * beacon and the current TSF, configures PCF and DTIM
1371 : * handling, programs the sleep registers so the hardware
1372 : * will wakeup in time to receive beacons, and configures
1373 : * the beacon miss handling so we'll receive a BMISS
1374 : * interrupt when we stop seeing beacons from the AP
1375 : * we've associated with.
1376 : */
1377 : void
1378 0 : ath_beacon_config(struct ath_softc *sc)
1379 : {
1380 : #define MS_TO_TU(x) (((x) * 1000) / 1024)
1381 0 : struct ath_hal *ah = sc->sc_ah;
1382 0 : struct ieee80211com *ic = &sc->sc_ic;
1383 0 : struct ieee80211_node *ni = ic->ic_bss;
1384 : u_int32_t nexttbtt, intval;
1385 :
1386 0 : nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1387 0 : (LE_READ_4(ni->ni_tstamp) >> 10);
1388 0 : intval = MAX(1, ni->ni_intval) & HAL_BEACON_PERIOD;
1389 0 : if (nexttbtt == 0) { /* e.g. for ap mode */
1390 : nexttbtt = intval;
1391 0 : } else if (intval) {
1392 0 : nexttbtt = roundup(nexttbtt, intval);
1393 0 : }
1394 : DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
1395 : __func__, ni->ni_intval, nexttbtt));
1396 0 : if (ic->ic_opmode == IEEE80211_M_STA) {
1397 0 : HAL_BEACON_STATE bs;
1398 :
1399 : /* NB: no PCF support right now */
1400 0 : bzero(&bs, sizeof(bs));
1401 0 : bs.bs_intval = intval;
1402 0 : bs.bs_nexttbtt = nexttbtt;
1403 0 : bs.bs_dtimperiod = bs.bs_intval;
1404 0 : bs.bs_nextdtim = nexttbtt;
1405 : /*
1406 : * Calculate the number of consecutive beacons to miss
1407 : * before taking a BMISS interrupt.
1408 : * Note that we clamp the result to at most 7 beacons.
1409 : */
1410 0 : bs.bs_bmissthreshold = ic->ic_bmissthres;
1411 0 : if (bs.bs_bmissthreshold > 7) {
1412 0 : bs.bs_bmissthreshold = 7;
1413 0 : } else if (bs.bs_bmissthreshold <= 0) {
1414 0 : bs.bs_bmissthreshold = 1;
1415 0 : }
1416 :
1417 : /*
1418 : * Calculate sleep duration. The configuration is
1419 : * given in ms. We insure a multiple of the beacon
1420 : * period is used. Also, if the sleep duration is
1421 : * greater than the DTIM period then it makes senses
1422 : * to make it a multiple of that.
1423 : *
1424 : * XXX fixed at 100ms
1425 : */
1426 0 : bs.bs_sleepduration =
1427 0 : roundup(MS_TO_TU(100), bs.bs_intval);
1428 0 : if (bs.bs_sleepduration > bs.bs_dtimperiod) {
1429 0 : bs.bs_sleepduration =
1430 0 : roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1431 0 : }
1432 :
1433 : DPRINTF(ATH_DEBUG_BEACON,
1434 : ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u"
1435 : " sleep %u\n"
1436 : , __func__
1437 : , bs.bs_intval
1438 : , bs.bs_nexttbtt
1439 : , bs.bs_dtimperiod
1440 : , bs.bs_nextdtim
1441 : , bs.bs_bmissthreshold
1442 : , bs.bs_sleepduration
1443 : ));
1444 0 : ath_hal_set_intr(ah, 0);
1445 0 : ath_hal_set_beacon_timers(ah, &bs, 0/*XXX*/, 0, 0);
1446 0 : sc->sc_imask |= HAL_INT_BMISS;
1447 0 : ath_hal_set_intr(ah, sc->sc_imask);
1448 0 : }
1449 : #ifndef IEEE80211_STA_ONLY
1450 : else {
1451 0 : ath_hal_set_intr(ah, 0);
1452 0 : if (nexttbtt == intval)
1453 0 : intval |= HAL_BEACON_RESET_TSF;
1454 0 : if (ic->ic_opmode == IEEE80211_M_IBSS) {
1455 : /*
1456 : * In IBSS mode enable the beacon timers but only
1457 : * enable SWBA interrupts if we need to manually
1458 : * prepare beacon frames. Otherwise we use a
1459 : * self-linked tx descriptor and let the hardware
1460 : * deal with things.
1461 : */
1462 0 : intval |= HAL_BEACON_ENA;
1463 0 : if (!sc->sc_veol)
1464 0 : sc->sc_imask |= HAL_INT_SWBA;
1465 0 : } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1466 : /*
1467 : * In AP mode we enable the beacon timers and
1468 : * SWBA interrupts to prepare beacon frames.
1469 : */
1470 0 : intval |= HAL_BEACON_ENA;
1471 0 : sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1472 0 : }
1473 0 : ath_hal_init_beacon(ah, nexttbtt, intval);
1474 0 : ath_hal_set_intr(ah, sc->sc_imask);
1475 : /*
1476 : * When using a self-linked beacon descriptor in IBBS
1477 : * mode load it once here.
1478 : */
1479 0 : if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_veol)
1480 0 : ath_beacon_proc(sc, 0);
1481 : }
1482 : #endif
1483 0 : }
1484 :
1485 : int
1486 0 : ath_desc_alloc(struct ath_softc *sc)
1487 : {
1488 : int i, bsize, error = -1;
1489 : struct ath_desc *ds;
1490 : struct ath_buf *bf;
1491 :
1492 : /* allocate descriptors */
1493 0 : sc->sc_desc_len = sizeof(struct ath_desc) *
1494 : (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1495 0 : if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1496 0 : 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1497 0 : printf("%s: unable to allocate control data, error = %d\n",
1498 0 : sc->sc_dev.dv_xname, error);
1499 0 : goto fail0;
1500 : }
1501 :
1502 0 : if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1503 0 : sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1504 0 : printf("%s: unable to map control data, error = %d\n",
1505 0 : sc->sc_dev.dv_xname, error);
1506 0 : goto fail1;
1507 : }
1508 :
1509 0 : if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1510 0 : sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1511 0 : printf("%s: unable to create control data DMA map, "
1512 0 : "error = %d\n", sc->sc_dev.dv_xname, error);
1513 0 : goto fail2;
1514 : }
1515 :
1516 0 : if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1517 0 : sc->sc_desc_len, NULL, 0)) != 0) {
1518 0 : printf("%s: unable to load control data DMA map, error = %d\n",
1519 0 : sc->sc_dev.dv_xname, error);
1520 0 : goto fail3;
1521 : }
1522 :
1523 0 : ds = sc->sc_desc;
1524 0 : sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1525 :
1526 : DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC,
1527 : ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1528 : ds, (u_long)sc->sc_desc_len,
1529 : (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1530 :
1531 : /* allocate buffers */
1532 : bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1533 0 : bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1534 0 : if (bf == NULL) {
1535 0 : printf("%s: unable to allocate Tx/Rx buffers\n",
1536 0 : sc->sc_dev.dv_xname);
1537 : error = ENOMEM;
1538 0 : goto fail3;
1539 : }
1540 0 : sc->sc_bufptr = bf;
1541 :
1542 0 : TAILQ_INIT(&sc->sc_rxbuf);
1543 0 : for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1544 0 : bf->bf_desc = ds;
1545 0 : bf->bf_daddr = sc->sc_desc_paddr +
1546 0 : ((caddr_t)ds - (caddr_t)sc->sc_desc);
1547 0 : if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1548 0 : MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1549 0 : printf("%s: unable to create Rx dmamap, error = %d\n",
1550 0 : sc->sc_dev.dv_xname, error);
1551 0 : goto fail4;
1552 : }
1553 0 : TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1554 : }
1555 :
1556 0 : TAILQ_INIT(&sc->sc_txbuf);
1557 0 : for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1558 0 : bf->bf_desc = ds;
1559 0 : bf->bf_daddr = sc->sc_desc_paddr +
1560 0 : ((caddr_t)ds - (caddr_t)sc->sc_desc);
1561 0 : if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1562 0 : ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1563 0 : printf("%s: unable to create Tx dmamap, error = %d\n",
1564 0 : sc->sc_dev.dv_xname, error);
1565 0 : goto fail5;
1566 : }
1567 0 : TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1568 : }
1569 0 : TAILQ_INIT(&sc->sc_txq);
1570 :
1571 : /* beacon buffer */
1572 0 : bf->bf_desc = ds;
1573 0 : bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1574 0 : if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
1575 0 : &bf->bf_dmamap)) != 0) {
1576 0 : printf("%s: unable to create beacon dmamap, error = %d\n",
1577 0 : sc->sc_dev.dv_xname, error);
1578 0 : goto fail5;
1579 : }
1580 0 : sc->sc_bcbuf = bf;
1581 0 : return 0;
1582 :
1583 : fail5:
1584 0 : for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
1585 0 : if (sc->sc_bufptr[i].bf_dmamap == NULL)
1586 : continue;
1587 0 : bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1588 0 : }
1589 : fail4:
1590 0 : for (i = 0; i < ATH_RXBUF; i++) {
1591 0 : if (sc->sc_bufptr[i].bf_dmamap == NULL)
1592 : continue;
1593 0 : bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1594 0 : }
1595 : fail3:
1596 0 : bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1597 : fail2:
1598 0 : bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1599 0 : sc->sc_ddmamap = NULL;
1600 : fail1:
1601 0 : bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
1602 : fail0:
1603 0 : bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1604 0 : return error;
1605 0 : }
1606 :
1607 : void
1608 0 : ath_desc_free(struct ath_softc *sc)
1609 : {
1610 : struct ath_buf *bf;
1611 :
1612 0 : bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1613 0 : bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1614 0 : bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1615 :
1616 0 : TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1617 0 : bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1618 0 : bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1619 0 : m_freem(bf->bf_m);
1620 : }
1621 0 : TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1622 0 : bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1623 0 : TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1624 0 : if (bf->bf_m) {
1625 0 : bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1626 0 : bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1627 0 : m_freem(bf->bf_m);
1628 0 : bf->bf_m = NULL;
1629 0 : }
1630 : }
1631 0 : if (sc->sc_bcbuf != NULL) {
1632 0 : bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1633 0 : bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1634 0 : sc->sc_bcbuf = NULL;
1635 0 : }
1636 :
1637 0 : TAILQ_INIT(&sc->sc_rxbuf);
1638 0 : TAILQ_INIT(&sc->sc_txbuf);
1639 0 : TAILQ_INIT(&sc->sc_txq);
1640 0 : free(sc->sc_bufptr, M_DEVBUF, 0);
1641 0 : sc->sc_bufptr = NULL;
1642 0 : }
1643 :
1644 : struct ieee80211_node *
1645 0 : ath_node_alloc(struct ieee80211com *ic)
1646 : {
1647 : struct ath_node *an;
1648 :
1649 0 : an = malloc(sizeof(*an), M_DEVBUF, M_NOWAIT | M_ZERO);
1650 0 : if (an) {
1651 : int i;
1652 0 : for (i = 0; i < ATH_RHIST_SIZE; i++)
1653 0 : an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1654 0 : an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1655 0 : return &an->an_node;
1656 : } else
1657 0 : return NULL;
1658 0 : }
1659 :
1660 : void
1661 0 : ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1662 : {
1663 0 : struct ath_softc *sc = ic->ic_if.if_softc;
1664 : struct ath_buf *bf;
1665 :
1666 0 : TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1667 0 : if (bf->bf_node == ni)
1668 0 : bf->bf_node = NULL;
1669 : }
1670 0 : (*sc->sc_node_free)(ic, ni);
1671 0 : }
1672 :
1673 : void
1674 0 : ath_node_copy(struct ieee80211com *ic,
1675 : struct ieee80211_node *dst, const struct ieee80211_node *src)
1676 : {
1677 0 : struct ath_softc *sc = ic->ic_if.if_softc;
1678 :
1679 0 : bcopy(&src[1], &dst[1],
1680 : sizeof(struct ath_node) - sizeof(struct ieee80211_node));
1681 0 : (*sc->sc_node_copy)(ic, dst, src);
1682 0 : }
1683 :
1684 : u_int8_t
1685 0 : ath_node_getrssi(struct ieee80211com *ic, const struct ieee80211_node *ni)
1686 : {
1687 0 : const struct ath_node *an = ATH_NODE(ni);
1688 : int i, now, nsamples, rssi;
1689 :
1690 : /*
1691 : * Calculate the average over the last second of sampled data.
1692 : */
1693 0 : now = ATH_TICKS();
1694 : nsamples = 0;
1695 : rssi = 0;
1696 0 : i = an->an_rx_hist_next;
1697 0 : do {
1698 0 : const struct ath_recv_hist *rh = &an->an_rx_hist[i];
1699 0 : if (rh->arh_ticks == ATH_RHIST_NOTIME)
1700 0 : goto done;
1701 0 : if (now - rh->arh_ticks > hz)
1702 0 : goto done;
1703 0 : rssi += rh->arh_rssi;
1704 0 : nsamples++;
1705 0 : if (i == 0) {
1706 : i = ATH_RHIST_SIZE-1;
1707 0 : } else {
1708 0 : i--;
1709 : }
1710 0 : } while (i != an->an_rx_hist_next);
1711 : done:
1712 : /*
1713 : * Return either the average or the last known
1714 : * value if there is no recent data.
1715 : */
1716 0 : return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
1717 0 : }
1718 :
1719 : int
1720 0 : ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1721 : {
1722 0 : struct ath_hal *ah = sc->sc_ah;
1723 : int error;
1724 : struct mbuf *m;
1725 : struct ath_desc *ds;
1726 :
1727 0 : m = bf->bf_m;
1728 0 : if (m == NULL) {
1729 : /*
1730 : * NB: by assigning a page to the rx dma buffer we
1731 : * implicitly satisfy the Atheros requirement that
1732 : * this buffer be cache-line-aligned and sized to be
1733 : * multiple of the cache line size. Not doing this
1734 : * causes weird stuff to happen (for the 5210 at least).
1735 : */
1736 0 : m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
1737 0 : if (m == NULL) {
1738 : DPRINTF(ATH_DEBUG_ANY,
1739 : ("%s: no mbuf/cluster\n", __func__));
1740 0 : sc->sc_stats.ast_rx_nombuf++;
1741 0 : return ENOMEM;
1742 : }
1743 0 : bf->bf_m = m;
1744 0 : m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1745 :
1746 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1747 : BUS_DMA_NOWAIT);
1748 0 : if (error != 0) {
1749 : DPRINTF(ATH_DEBUG_ANY,
1750 : ("%s: ath_bus_dmamap_load_mbuf failed;"
1751 : " error %d\n", __func__, error));
1752 0 : sc->sc_stats.ast_rx_busdma++;
1753 0 : return error;
1754 : }
1755 0 : KASSERT(bf->bf_nseg == 1,
1756 : ("ath_rxbuf_init: multi-segment packet; nseg %u",
1757 : bf->bf_nseg));
1758 : }
1759 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
1760 : bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1761 :
1762 : /*
1763 : * Setup descriptors. For receive we always terminate
1764 : * the descriptor list with a self-linked entry so we'll
1765 : * not get overrun under high load (as can happen with a
1766 : * 5212 when ANI processing enables PHY errors).
1767 : *
1768 : * To insure the last descriptor is self-linked we create
1769 : * each descriptor as self-linked and add it to the end. As
1770 : * each additional descriptor is added the previous self-linked
1771 : * entry is ``fixed'' naturally. This should be safe even
1772 : * if DMA is happening. When processing RX interrupts we
1773 : * never remove/process the last, self-linked, entry on the
1774 : * descriptor list. This insures the hardware always has
1775 : * someplace to write a new frame.
1776 : */
1777 0 : ds = bf->bf_desc;
1778 0 : bzero(ds, sizeof(struct ath_desc));
1779 : #ifndef IEEE80211_STA_ONLY
1780 0 : if (sc->sc_ic.ic_opmode != IEEE80211_M_HOSTAP)
1781 0 : ds->ds_link = bf->bf_daddr; /* link to self */
1782 : #endif
1783 0 : ds->ds_data = bf->bf_segs[0].ds_addr;
1784 0 : ath_hal_setup_rx_desc(ah, ds
1785 : , m->m_len /* buffer size */
1786 : , 0
1787 : );
1788 :
1789 0 : if (sc->sc_rxlink != NULL)
1790 0 : *sc->sc_rxlink = bf->bf_daddr;
1791 0 : sc->sc_rxlink = &ds->ds_link;
1792 0 : return 0;
1793 0 : }
1794 :
1795 : void
1796 0 : ath_rx_proc(void *arg, int npending)
1797 : {
1798 : #define PA2DESC(_sc, _pa) \
1799 : ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
1800 : ((_pa) - (_sc)->sc_desc_paddr)))
1801 0 : struct ath_softc *sc = arg;
1802 : struct ath_buf *bf;
1803 0 : struct ieee80211com *ic = &sc->sc_ic;
1804 0 : struct ifnet *ifp = &ic->ic_if;
1805 0 : struct ath_hal *ah = sc->sc_ah;
1806 : struct ath_desc *ds;
1807 : struct mbuf *m;
1808 : struct ieee80211_frame *wh;
1809 0 : struct ieee80211_frame whbuf;
1810 0 : struct ieee80211_rxinfo rxi;
1811 : struct ieee80211_node *ni;
1812 : struct ath_node *an;
1813 : struct ath_recv_hist *rh;
1814 : int len;
1815 : u_int phyerr;
1816 : HAL_STATUS status;
1817 :
1818 : DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
1819 0 : do {
1820 0 : bf = TAILQ_FIRST(&sc->sc_rxbuf);
1821 0 : if (bf == NULL) { /* NB: shouldn't happen */
1822 0 : printf("%s: ath_rx_proc: no buffer!\n", ifp->if_xname);
1823 0 : break;
1824 : }
1825 0 : ds = bf->bf_desc;
1826 0 : if (ds->ds_link == bf->bf_daddr) {
1827 : /* NB: never process the self-linked entry at the end */
1828 : break;
1829 : }
1830 0 : m = bf->bf_m;
1831 0 : if (m == NULL) { /* NB: shouldn't happen */
1832 0 : printf("%s: ath_rx_proc: no mbuf!\n", ifp->if_xname);
1833 0 : continue;
1834 : }
1835 : /* XXX sync descriptor memory */
1836 : /*
1837 : * Must provide the virtual address of the current
1838 : * descriptor, the physical address, and the virtual
1839 : * address of the next descriptor in the h/w chain.
1840 : * This allows the HAL to look ahead to see if the
1841 : * hardware is done with a descriptor by checking the
1842 : * done bit in the following descriptor and the address
1843 : * of the current descriptor the DMA engine is working
1844 : * on. All this is necessary because of our use of
1845 : * a self-linked list to avoid rx overruns.
1846 : */
1847 0 : status = ath_hal_proc_rx_desc(ah, ds,
1848 : bf->bf_daddr, PA2DESC(sc, ds->ds_link));
1849 : #ifdef AR_DEBUG
1850 : if (ath_debug & ATH_DEBUG_RECV_DESC)
1851 : ath_printrxbuf(bf, status == HAL_OK);
1852 : #endif
1853 0 : if (status == HAL_EINPROGRESS)
1854 : break;
1855 0 : TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1856 :
1857 0 : if (ds->ds_rxstat.rs_more) {
1858 : /*
1859 : * Frame spans multiple descriptors; this
1860 : * cannot happen yet as we don't support
1861 : * jumbograms. If not in monitor mode,
1862 : * discard the frame.
1863 : */
1864 :
1865 : /*
1866 : * Enable this if you want to see error
1867 : * frames in Monitor mode.
1868 : */
1869 : #ifdef ERROR_FRAMES
1870 : if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1871 : /* XXX statistic */
1872 : goto rx_next;
1873 : }
1874 : #endif
1875 : /* fall thru for monitor mode handling... */
1876 :
1877 0 : } else if (ds->ds_rxstat.rs_status != 0) {
1878 0 : if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1879 0 : sc->sc_stats.ast_rx_crcerr++;
1880 0 : if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1881 0 : sc->sc_stats.ast_rx_fifoerr++;
1882 0 : if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1883 0 : sc->sc_stats.ast_rx_badcrypt++;
1884 0 : if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1885 0 : sc->sc_stats.ast_rx_phyerr++;
1886 0 : phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1887 0 : sc->sc_stats.ast_rx_phy[phyerr]++;
1888 0 : }
1889 :
1890 : /*
1891 : * reject error frames, we normally don't want
1892 : * to see them in monitor mode.
1893 : */
1894 0 : if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) ||
1895 0 : (ds->ds_rxstat.rs_status & HAL_RXERR_PHY))
1896 : goto rx_next;
1897 :
1898 : /*
1899 : * In monitor mode, allow through packets that
1900 : * cannot be decrypted
1901 : */
1902 0 : if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) ||
1903 0 : sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1904 : goto rx_next;
1905 : }
1906 :
1907 0 : len = ds->ds_rxstat.rs_datalen;
1908 0 : if (len < IEEE80211_MIN_LEN) {
1909 : DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
1910 : __func__, len));
1911 0 : sc->sc_stats.ast_rx_tooshort++;
1912 0 : goto rx_next;
1913 : }
1914 :
1915 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
1916 : bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1917 :
1918 0 : bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1919 0 : bf->bf_m = NULL;
1920 0 : m->m_pkthdr.len = m->m_len = len;
1921 :
1922 : #if NBPFILTER > 0
1923 0 : if (sc->sc_drvbpf) {
1924 0 : struct mbuf mb;
1925 :
1926 0 : sc->sc_rxtap.wr_flags = IEEE80211_RADIOTAP_F_FCS;
1927 0 : sc->sc_rxtap.wr_rate =
1928 0 : sc->sc_hwmap[ds->ds_rxstat.rs_rate] &
1929 : IEEE80211_RATE_VAL;
1930 0 : sc->sc_rxtap.wr_antenna = ds->ds_rxstat.rs_antenna;
1931 0 : sc->sc_rxtap.wr_rssi = ds->ds_rxstat.rs_rssi;
1932 0 : sc->sc_rxtap.wr_max_rssi = ic->ic_max_rssi;
1933 :
1934 0 : mb.m_data = (caddr_t)&sc->sc_rxtap;
1935 0 : mb.m_len = sc->sc_rxtap_len;
1936 0 : mb.m_next = m;
1937 0 : mb.m_nextpkt = NULL;
1938 0 : mb.m_type = 0;
1939 0 : mb.m_flags = 0;
1940 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1941 0 : }
1942 : #endif
1943 0 : m_adj(m, -IEEE80211_CRC_LEN);
1944 0 : wh = mtod(m, struct ieee80211_frame *);
1945 0 : rxi.rxi_flags = 0;
1946 0 : if (!ath_softcrypto && (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1947 : /*
1948 : * WEP is decrypted by hardware. Clear WEP bit
1949 : * and trim WEP header for ieee80211_input().
1950 : */
1951 0 : wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1952 0 : bcopy(wh, &whbuf, sizeof(whbuf));
1953 0 : m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1954 0 : wh = mtod(m, struct ieee80211_frame *);
1955 0 : bcopy(&whbuf, wh, sizeof(whbuf));
1956 : /*
1957 : * Also trim WEP ICV from the tail.
1958 : */
1959 0 : m_adj(m, -IEEE80211_WEP_CRCLEN);
1960 : /*
1961 : * The header has probably moved.
1962 : */
1963 0 : wh = mtod(m, struct ieee80211_frame *);
1964 :
1965 0 : rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1966 0 : }
1967 :
1968 : /*
1969 : * Locate the node for sender, track state, and
1970 : * then pass this node (referenced) up to the 802.11
1971 : * layer for its use.
1972 : */
1973 0 : ni = ieee80211_find_rxnode(ic, wh);
1974 :
1975 : /*
1976 : * Record driver-specific state.
1977 : */
1978 0 : an = ATH_NODE(ni);
1979 0 : if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
1980 0 : an->an_rx_hist_next = 0;
1981 0 : rh = &an->an_rx_hist[an->an_rx_hist_next];
1982 0 : rh->arh_ticks = ATH_TICKS();
1983 0 : rh->arh_rssi = ds->ds_rxstat.rs_rssi;
1984 0 : rh->arh_antenna = ds->ds_rxstat.rs_antenna;
1985 :
1986 : /*
1987 : * Send frame up for processing.
1988 : */
1989 0 : rxi.rxi_rssi = ds->ds_rxstat.rs_rssi;
1990 0 : rxi.rxi_tstamp = ds->ds_rxstat.rs_tstamp;
1991 0 : ieee80211_input(ifp, m, ni, &rxi);
1992 :
1993 : /* Handle the rate adaption */
1994 0 : ieee80211_rssadapt_input(ic, ni, &an->an_rssadapt,
1995 0 : ds->ds_rxstat.rs_rssi);
1996 :
1997 : /*
1998 : * The frame may have caused the node to be marked for
1999 : * reclamation (e.g. in response to a DEAUTH message)
2000 : * so use release_node here instead of unref_node.
2001 : */
2002 0 : ieee80211_release_node(ic, ni);
2003 :
2004 : rx_next:
2005 0 : TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2006 0 : } while (ath_rxbuf_init(sc, bf) == 0);
2007 :
2008 0 : ath_hal_set_rx_signal(ah); /* rx signal state monitoring */
2009 0 : ath_hal_start_rx(ah); /* in case of RXEOL */
2010 : #undef PA2DESC
2011 0 : }
2012 :
2013 : /*
2014 : * XXX Size of an ACK control frame in bytes.
2015 : */
2016 : #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
2017 :
2018 : int
2019 0 : ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
2020 : struct ath_buf *bf, struct mbuf *m0)
2021 : {
2022 0 : struct ieee80211com *ic = &sc->sc_ic;
2023 0 : struct ath_hal *ah = sc->sc_ah;
2024 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
2025 : int i, error, iswep, hdrlen, pktlen, len, s, tries;
2026 : u_int8_t rix, cix, txrate, ctsrate;
2027 : struct ath_desc *ds;
2028 : struct ieee80211_frame *wh;
2029 : struct ieee80211_key *k;
2030 : u_int32_t iv;
2031 : u_int8_t *ivp;
2032 0 : u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2033 : IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2034 : u_int subtype, flags, ctsduration, antenna;
2035 : HAL_PKT_TYPE atype;
2036 : const HAL_RATE_TABLE *rt;
2037 : HAL_BOOL shortPreamble;
2038 : struct ath_node *an;
2039 : u_int8_t hwqueue = HAL_TX_QUEUE_ID_DATA_MIN;
2040 :
2041 0 : wh = mtod(m0, struct ieee80211_frame *);
2042 0 : iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
2043 : hdrlen = sizeof(struct ieee80211_frame);
2044 0 : pktlen = m0->m_pkthdr.len;
2045 :
2046 0 : if (ath_softcrypto && iswep) {
2047 0 : k = ieee80211_get_txkey(ic, wh, ni);
2048 0 : if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
2049 0 : return ENOMEM;
2050 0 : wh = mtod(m0, struct ieee80211_frame *);
2051 :
2052 : /* reset len in case we got a new mbuf */
2053 0 : pktlen = m0->m_pkthdr.len;
2054 0 : } else if (!ath_softcrypto && iswep) {
2055 0 : bcopy(mtod(m0, caddr_t), hdrbuf, hdrlen);
2056 0 : m_adj(m0, hdrlen);
2057 0 : M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2058 0 : if (m0 == NULL) {
2059 0 : sc->sc_stats.ast_tx_nombuf++;
2060 0 : return ENOMEM;
2061 : }
2062 0 : ivp = hdrbuf + hdrlen;
2063 0 : wh = mtod(m0, struct ieee80211_frame *);
2064 : /*
2065 : * XXX
2066 : * IV must not duplicate during the lifetime of the key.
2067 : * But no mechanism to renew keys is defined in IEEE 802.11
2068 : * for WEP. And the IV may be duplicated at other stations
2069 : * because the session key itself is shared. So we use a
2070 : * pseudo random IV for now, though it is not the right way.
2071 : *
2072 : * NB: Rather than use a strictly random IV we select a
2073 : * random one to start and then increment the value for
2074 : * each frame. This is an explicit tradeoff between
2075 : * overhead and security. Given the basic insecurity of
2076 : * WEP this seems worthwhile.
2077 : */
2078 :
2079 : /*
2080 : * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2081 : * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
2082 : */
2083 0 : iv = ic->ic_iv;
2084 0 : if ((iv & 0xff00) == 0xff00) {
2085 0 : int B = (iv & 0xff0000) >> 16;
2086 0 : if (3 <= B && B < 16)
2087 0 : iv = (B+1) << 16;
2088 0 : }
2089 0 : ic->ic_iv = iv + 1;
2090 :
2091 : /*
2092 : * NB: Preserve byte order of IV for packet
2093 : * sniffers; it doesn't matter otherwise.
2094 : */
2095 : #if BYTE_ORDER == BIG_ENDIAN
2096 : ivp[0] = iv >> 0;
2097 : ivp[1] = iv >> 8;
2098 : ivp[2] = iv >> 16;
2099 : #else
2100 0 : ivp[2] = iv >> 0;
2101 0 : ivp[1] = iv >> 8;
2102 0 : ivp[0] = iv >> 16;
2103 : #endif
2104 0 : ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */
2105 0 : bcopy(hdrbuf, mtod(m0, caddr_t), sizeof(hdrbuf));
2106 : /*
2107 : * The length of hdrlen and pktlen must be increased for WEP
2108 : */
2109 : len = IEEE80211_WEP_IVLEN +
2110 : IEEE80211_WEP_KIDLEN +
2111 : IEEE80211_WEP_CRCLEN;
2112 : hdrlen += len;
2113 0 : pktlen += len;
2114 0 : }
2115 0 : pktlen += IEEE80211_CRC_LEN;
2116 :
2117 : /*
2118 : * Load the DMA map so any coalescing is done. This
2119 : * also calculates the number of descriptors we need.
2120 : */
2121 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
2122 : BUS_DMA_NOWAIT);
2123 : /*
2124 : * Discard null packets and check for packets that
2125 : * require too many TX descriptors. We try to convert
2126 : * the latter to a cluster.
2127 : */
2128 0 : if (error == EFBIG) { /* too many desc's, linearize */
2129 0 : sc->sc_stats.ast_tx_linear++;
2130 0 : if (m_defrag(m0, M_DONTWAIT)) {
2131 0 : sc->sc_stats.ast_tx_nomcl++;
2132 0 : m_freem(m0);
2133 0 : return ENOMEM;
2134 : }
2135 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
2136 : BUS_DMA_NOWAIT);
2137 0 : if (error != 0) {
2138 0 : sc->sc_stats.ast_tx_busdma++;
2139 0 : m_freem(m0);
2140 0 : return error;
2141 : }
2142 0 : KASSERT(bf->bf_nseg == 1,
2143 : ("ath_tx_start: packet not one segment; nseg %u",
2144 : bf->bf_nseg));
2145 0 : } else if (error != 0) {
2146 0 : sc->sc_stats.ast_tx_busdma++;
2147 0 : m_freem(m0);
2148 0 : return error;
2149 0 : } else if (bf->bf_nseg == 0) { /* null packet, discard */
2150 0 : sc->sc_stats.ast_tx_nodata++;
2151 0 : m_freem(m0);
2152 0 : return EIO;
2153 : }
2154 : DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
2155 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2156 : bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2157 0 : bf->bf_m = m0;
2158 0 : bf->bf_node = ni; /* NB: held reference */
2159 0 : an = ATH_NODE(ni);
2160 :
2161 : /* setup descriptors */
2162 0 : ds = bf->bf_desc;
2163 0 : rt = sc->sc_currates;
2164 0 : KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2165 :
2166 : /*
2167 : * Calculate Atheros packet type from IEEE80211 packet header
2168 : * and setup for rate calculations.
2169 : */
2170 0 : bf->bf_id.id_node = NULL;
2171 : atype = HAL_PKT_TYPE_NORMAL; /* default */
2172 0 : switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2173 : case IEEE80211_FC0_TYPE_MGT:
2174 0 : subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2175 0 : if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2176 : atype = HAL_PKT_TYPE_BEACON;
2177 0 : } else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
2178 : atype = HAL_PKT_TYPE_PROBE_RESP;
2179 0 : } else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) {
2180 : atype = HAL_PKT_TYPE_ATIM;
2181 0 : }
2182 : rix = 0; /* XXX lowest rate */
2183 0 : break;
2184 : case IEEE80211_FC0_TYPE_CTL:
2185 0 : subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2186 0 : if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2187 0 : atype = HAL_PKT_TYPE_PSPOLL;
2188 : rix = 0; /* XXX lowest rate */
2189 0 : break;
2190 : default:
2191 : /* remember link conditions for rate adaptation algorithm */
2192 0 : if (ic->ic_fixed_rate == -1) {
2193 0 : bf->bf_id.id_len = m0->m_pkthdr.len;
2194 0 : bf->bf_id.id_rateidx = ni->ni_txrate;
2195 0 : bf->bf_id.id_node = ni;
2196 0 : bf->bf_id.id_rssi = ath_node_getrssi(ic, ni);
2197 0 : }
2198 0 : ni->ni_txrate = ieee80211_rssadapt_choose(&an->an_rssadapt,
2199 0 : &ni->ni_rates, wh, m0->m_pkthdr.len, ic->ic_fixed_rate,
2200 0 : ifp->if_xname, 0);
2201 0 : rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2202 : IEEE80211_RATE_VAL];
2203 0 : if (rix == 0xff) {
2204 0 : printf("%s: bogus xmit rate 0x%x (idx 0x%x)\n",
2205 : ifp->if_xname, ni->ni_rates.rs_rates[ni->ni_txrate],
2206 : ni->ni_txrate);
2207 0 : sc->sc_stats.ast_tx_badrate++;
2208 0 : m_freem(m0);
2209 0 : return EIO;
2210 : }
2211 : break;
2212 : }
2213 :
2214 : /*
2215 : * NB: the 802.11 layer marks whether or not we should
2216 : * use short preamble based on the current mode and
2217 : * negotiated parameters.
2218 : */
2219 0 : if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2220 0 : (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2221 0 : txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2222 : shortPreamble = AH_TRUE;
2223 0 : sc->sc_stats.ast_tx_shortpre++;
2224 0 : } else {
2225 0 : txrate = rt->info[rix].rateCode;
2226 : shortPreamble = AH_FALSE;
2227 : }
2228 :
2229 : /*
2230 : * Calculate miscellaneous flags.
2231 : */
2232 : flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2233 0 : if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2234 : flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2235 0 : sc->sc_stats.ast_tx_noack++;
2236 0 : } else if (pktlen > ic->ic_rtsthreshold) {
2237 : flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2238 0 : sc->sc_stats.ast_tx_rts++;
2239 0 : }
2240 :
2241 : /*
2242 : * Calculate duration. This logically belongs in the 802.11
2243 : * layer but it lacks sufficient information to calculate it.
2244 : */
2245 0 : if ((flags & HAL_TXDESC_NOACK) == 0 &&
2246 0 : (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2247 : u_int16_t dur;
2248 : /*
2249 : * XXX not right with fragmentation.
2250 : */
2251 0 : dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2252 0 : rix, shortPreamble);
2253 0 : *((u_int16_t*) wh->i_dur) = htole16(dur);
2254 0 : }
2255 :
2256 : /*
2257 : * Calculate RTS/CTS rate and duration if needed.
2258 : */
2259 : ctsduration = 0;
2260 0 : if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2261 : /*
2262 : * CTS transmit rate is derived from the transmit rate
2263 : * by looking in the h/w rate table. We must also factor
2264 : * in whether or not a short preamble is to be used.
2265 : */
2266 0 : cix = rt->info[rix].controlRate;
2267 0 : ctsrate = rt->info[cix].rateCode;
2268 0 : if (shortPreamble)
2269 0 : ctsrate |= rt->info[cix].shortPreamble;
2270 : /*
2271 : * Compute the transmit duration based on the size
2272 : * of an ACK frame. We call into the HAL to do the
2273 : * computation since it depends on the characteristics
2274 : * of the actual PHY being used.
2275 : */
2276 0 : if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2277 0 : ctsduration += ath_hal_computetxtime(ah,
2278 0 : rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2279 0 : }
2280 : /* SIFS + data */
2281 0 : ctsduration += ath_hal_computetxtime(ah,
2282 0 : rt, pktlen, rix, shortPreamble);
2283 0 : if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2284 0 : ctsduration += ath_hal_computetxtime(ah,
2285 0 : rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2286 0 : }
2287 : } else
2288 : ctsrate = 0;
2289 :
2290 : /*
2291 : * For now use the antenna on which the last good
2292 : * frame was received on. We assume this field is
2293 : * initialized to 0 which gives us ``auto'' or the
2294 : * ``default'' antenna.
2295 : */
2296 0 : if (an->an_tx_antenna) {
2297 : antenna = an->an_tx_antenna;
2298 0 : } else {
2299 0 : antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2300 : }
2301 :
2302 : #if NBPFILTER > 0
2303 0 : if (ic->ic_rawbpf)
2304 0 : bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
2305 :
2306 0 : if (sc->sc_drvbpf) {
2307 0 : struct mbuf mb;
2308 :
2309 0 : sc->sc_txtap.wt_flags = 0;
2310 0 : if (shortPreamble)
2311 0 : sc->sc_txtap.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2312 0 : if (!ath_softcrypto && iswep)
2313 0 : sc->sc_txtap.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2314 0 : sc->sc_txtap.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate] &
2315 : IEEE80211_RATE_VAL;
2316 0 : sc->sc_txtap.wt_txpower = 30;
2317 0 : sc->sc_txtap.wt_antenna = antenna;
2318 0 : sc->sc_txtap.wt_hwqueue = hwqueue;
2319 :
2320 0 : mb.m_data = (caddr_t)&sc->sc_txtap;
2321 0 : mb.m_len = sc->sc_txtap_len;
2322 0 : mb.m_next = m0;
2323 0 : mb.m_nextpkt = NULL;
2324 0 : mb.m_type = 0;
2325 0 : mb.m_flags = 0;
2326 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
2327 0 : }
2328 : #endif
2329 :
2330 : /*
2331 : * Formulate first tx descriptor with tx controls.
2332 : */
2333 0 : tries = IEEE80211_IS_MULTICAST(wh->i_addr1) ? 1 : 15;
2334 : /* XXX check return value? */
2335 0 : ath_hal_setup_tx_desc(ah, ds
2336 : , pktlen /* packet length */
2337 : , hdrlen /* header length */
2338 : , atype /* Atheros packet type */
2339 : , 60 /* txpower XXX */
2340 : , txrate, tries /* series 0 rate/tries */
2341 : , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2342 : , antenna /* antenna mode */
2343 : , flags /* flags */
2344 : , ctsrate /* rts/cts rate */
2345 : , ctsduration /* rts/cts duration */
2346 : );
2347 : #ifdef notyet
2348 : ath_hal_setup_xtx_desc(ah, ds
2349 : , AH_FALSE /* short preamble */
2350 : , 0, 0 /* series 1 rate/tries */
2351 : , 0, 0 /* series 2 rate/tries */
2352 : , 0, 0 /* series 3 rate/tries */
2353 : );
2354 : #endif
2355 : /*
2356 : * Fillin the remainder of the descriptor info.
2357 : */
2358 0 : for (i = 0; i < bf->bf_nseg; i++, ds++) {
2359 0 : ds->ds_data = bf->bf_segs[i].ds_addr;
2360 0 : if (i == bf->bf_nseg - 1) {
2361 0 : ds->ds_link = 0;
2362 0 : } else {
2363 0 : ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2364 : }
2365 0 : ath_hal_fill_tx_desc(ah, ds
2366 : , bf->bf_segs[i].ds_len /* segment length */
2367 : , i == 0 /* first segment */
2368 : , i == bf->bf_nseg - 1 /* last segment */
2369 : );
2370 : DPRINTF(ATH_DEBUG_XMIT,
2371 : ("%s: %d: %08x %08x %08x %08x %08x %08x\n",
2372 : __func__, i, ds->ds_link, ds->ds_data,
2373 : ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
2374 : }
2375 :
2376 : /*
2377 : * Insert the frame on the outbound list and
2378 : * pass it on to the hardware.
2379 : */
2380 0 : s = splnet();
2381 0 : TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2382 0 : if (sc->sc_txlink == NULL) {
2383 0 : ath_hal_put_tx_buf(ah, sc->sc_txhalq[hwqueue], bf->bf_daddr);
2384 : DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
2385 : (caddr_t)bf->bf_daddr, bf->bf_desc));
2386 0 : } else {
2387 0 : *sc->sc_txlink = bf->bf_daddr;
2388 : DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
2389 : sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2390 : }
2391 0 : sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2392 0 : splx(s);
2393 :
2394 0 : ath_hal_tx_start(ah, sc->sc_txhalq[hwqueue]);
2395 0 : return 0;
2396 0 : }
2397 :
2398 : void
2399 0 : ath_tx_proc(void *arg, int npending)
2400 : {
2401 0 : struct ath_softc *sc = arg;
2402 0 : struct ath_hal *ah = sc->sc_ah;
2403 : struct ath_buf *bf;
2404 0 : struct ieee80211com *ic = &sc->sc_ic;
2405 0 : struct ifnet *ifp = &ic->ic_if;
2406 : struct ath_desc *ds;
2407 : struct ieee80211_node *ni;
2408 : struct ath_node *an;
2409 : int sr, lr, s;
2410 : HAL_STATUS status;
2411 :
2412 0 : for (;;) {
2413 0 : s = splnet();
2414 0 : bf = TAILQ_FIRST(&sc->sc_txq);
2415 0 : if (bf == NULL) {
2416 0 : sc->sc_txlink = NULL;
2417 0 : splx(s);
2418 0 : break;
2419 : }
2420 : /* only the last descriptor is needed */
2421 0 : ds = &bf->bf_desc[bf->bf_nseg - 1];
2422 0 : status = ath_hal_proc_tx_desc(ah, ds);
2423 : #ifdef AR_DEBUG
2424 : if (ath_debug & ATH_DEBUG_XMIT_DESC)
2425 : ath_printtxbuf(bf, status == HAL_OK);
2426 : #endif
2427 0 : if (status == HAL_EINPROGRESS) {
2428 0 : splx(s);
2429 0 : break;
2430 : }
2431 0 : TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2432 0 : splx(s);
2433 :
2434 0 : ni = bf->bf_node;
2435 0 : if (ni != NULL) {
2436 0 : an = (struct ath_node *) ni;
2437 0 : if (ds->ds_txstat.ts_status == 0) {
2438 0 : if (bf->bf_id.id_node != NULL)
2439 0 : ieee80211_rssadapt_raise_rate(ic,
2440 0 : &an->an_rssadapt, &bf->bf_id);
2441 0 : an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2442 0 : } else {
2443 0 : if (bf->bf_id.id_node != NULL)
2444 0 : ieee80211_rssadapt_lower_rate(ic, ni,
2445 0 : &an->an_rssadapt, &bf->bf_id);
2446 0 : if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2447 0 : sc->sc_stats.ast_tx_xretries++;
2448 0 : if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2449 0 : sc->sc_stats.ast_tx_fifoerr++;
2450 0 : if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2451 0 : sc->sc_stats.ast_tx_filtered++;
2452 0 : an->an_tx_antenna = 0; /* invalidate */
2453 : }
2454 0 : sr = ds->ds_txstat.ts_shortretry;
2455 0 : lr = ds->ds_txstat.ts_longretry;
2456 0 : sc->sc_stats.ast_tx_shortretry += sr;
2457 0 : sc->sc_stats.ast_tx_longretry += lr;
2458 : /*
2459 : * Reclaim reference to node.
2460 : *
2461 : * NB: the node may be reclaimed here if, for example
2462 : * this is a DEAUTH message that was sent and the
2463 : * node was timed out due to inactivity.
2464 : */
2465 0 : ieee80211_release_node(ic, ni);
2466 0 : }
2467 0 : bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2468 : bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2469 0 : bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2470 0 : m_freem(bf->bf_m);
2471 0 : bf->bf_m = NULL;
2472 0 : bf->bf_node = NULL;
2473 :
2474 0 : s = splnet();
2475 0 : TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2476 0 : splx(s);
2477 : }
2478 0 : ifq_clr_oactive(&ifp->if_snd);
2479 0 : sc->sc_tx_timer = 0;
2480 :
2481 0 : ath_start(ifp);
2482 0 : }
2483 :
2484 : /*
2485 : * Drain the transmit queue and reclaim resources.
2486 : */
2487 : void
2488 0 : ath_draintxq(struct ath_softc *sc)
2489 : {
2490 0 : struct ath_hal *ah = sc->sc_ah;
2491 0 : struct ieee80211com *ic = &sc->sc_ic;
2492 0 : struct ifnet *ifp = &ic->ic_if;
2493 : struct ieee80211_node *ni;
2494 : struct ath_buf *bf;
2495 : int s, i;
2496 :
2497 : /* XXX return value */
2498 0 : if (!sc->sc_invalid) {
2499 0 : for (i = 0; i <= HAL_TX_QUEUE_ID_DATA_MAX; i++) {
2500 : /* don't touch the hardware if marked invalid */
2501 0 : (void) ath_hal_stop_tx_dma(ah, sc->sc_txhalq[i]);
2502 : DPRINTF(ATH_DEBUG_RESET,
2503 : ("%s: tx queue %d (%p), link %p\n", __func__, i,
2504 : (caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah,
2505 : sc->sc_txhalq[i]), sc->sc_txlink));
2506 : }
2507 0 : (void) ath_hal_stop_tx_dma(ah, sc->sc_bhalq);
2508 : DPRINTF(ATH_DEBUG_RESET,
2509 : ("%s: beacon queue (%p)\n", __func__,
2510 : (caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah, sc->sc_bhalq)));
2511 0 : }
2512 0 : for (;;) {
2513 0 : s = splnet();
2514 0 : bf = TAILQ_FIRST(&sc->sc_txq);
2515 0 : if (bf == NULL) {
2516 0 : sc->sc_txlink = NULL;
2517 0 : splx(s);
2518 : break;
2519 : }
2520 0 : TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2521 0 : splx(s);
2522 : #ifdef AR_DEBUG
2523 : if (ath_debug & ATH_DEBUG_RESET) {
2524 : ath_printtxbuf(bf,
2525 : ath_hal_proc_tx_desc(ah, bf->bf_desc) == HAL_OK);
2526 : }
2527 : #endif /* AR_DEBUG */
2528 0 : bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2529 0 : m_freem(bf->bf_m);
2530 0 : bf->bf_m = NULL;
2531 0 : ni = bf->bf_node;
2532 0 : bf->bf_node = NULL;
2533 0 : s = splnet();
2534 0 : if (ni != NULL) {
2535 : /*
2536 : * Reclaim node reference.
2537 : */
2538 0 : ieee80211_release_node(ic, ni);
2539 0 : }
2540 0 : TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2541 0 : splx(s);
2542 : }
2543 0 : ifq_clr_oactive(&ifp->if_snd);
2544 0 : sc->sc_tx_timer = 0;
2545 0 : }
2546 :
2547 : /*
2548 : * Disable the receive h/w in preparation for a reset.
2549 : */
2550 : void
2551 0 : ath_stoprecv(struct ath_softc *sc)
2552 : {
2553 : #define PA2DESC(_sc, _pa) \
2554 : ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2555 : ((_pa) - (_sc)->sc_desc_paddr)))
2556 0 : struct ath_hal *ah = sc->sc_ah;
2557 :
2558 0 : ath_hal_stop_pcu_recv(ah); /* disable PCU */
2559 0 : ath_hal_set_rx_filter(ah, 0); /* clear recv filter */
2560 0 : ath_hal_stop_rx_dma(ah); /* disable DMA engine */
2561 : #ifdef AR_DEBUG
2562 : if (ath_debug & ATH_DEBUG_RESET) {
2563 : struct ath_buf *bf;
2564 :
2565 : printf("%s: rx queue %p, link %p\n", __func__,
2566 : (caddr_t)(u_intptr_t)ath_hal_get_rx_buf(ah), sc->sc_rxlink);
2567 : TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2568 : struct ath_desc *ds = bf->bf_desc;
2569 : if (ath_hal_proc_rx_desc(ah, ds, bf->bf_daddr,
2570 : PA2DESC(sc, ds->ds_link)) == HAL_OK)
2571 : ath_printrxbuf(bf, 1);
2572 : }
2573 : }
2574 : #endif
2575 0 : sc->sc_rxlink = NULL; /* just in case */
2576 : #undef PA2DESC
2577 0 : }
2578 :
2579 : /*
2580 : * Enable the receive h/w following a reset.
2581 : */
2582 : int
2583 0 : ath_startrecv(struct ath_softc *sc)
2584 : {
2585 0 : struct ath_hal *ah = sc->sc_ah;
2586 : struct ath_buf *bf;
2587 :
2588 0 : sc->sc_rxlink = NULL;
2589 0 : TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2590 0 : int error = ath_rxbuf_init(sc, bf);
2591 0 : if (error != 0) {
2592 : DPRINTF(ATH_DEBUG_RECV,
2593 : ("%s: ath_rxbuf_init failed %d\n",
2594 : __func__, error));
2595 0 : return error;
2596 : }
2597 0 : }
2598 :
2599 0 : bf = TAILQ_FIRST(&sc->sc_rxbuf);
2600 0 : ath_hal_put_rx_buf(ah, bf->bf_daddr);
2601 0 : ath_hal_start_rx(ah); /* enable recv descriptors */
2602 0 : ath_mode_init(sc); /* set filters, etc. */
2603 0 : ath_hal_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
2604 0 : return 0;
2605 0 : }
2606 :
2607 : /*
2608 : * Set/change channels. If the channel is really being changed,
2609 : * it's done by resetting the chip. To accomplish this we must
2610 : * first cleanup any pending DMA, then restart stuff after a la
2611 : * ath_init.
2612 : */
2613 : int
2614 0 : ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2615 : {
2616 0 : struct ath_hal *ah = sc->sc_ah;
2617 0 : struct ieee80211com *ic = &sc->sc_ic;
2618 0 : struct ifnet *ifp = &ic->ic_if;
2619 :
2620 : DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
2621 : ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2622 : ic->ic_ibss_chan->ic_freq,
2623 : ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2624 0 : if (chan != ic->ic_ibss_chan) {
2625 0 : HAL_STATUS status;
2626 0 : HAL_CHANNEL hchan;
2627 : enum ieee80211_phymode mode;
2628 :
2629 : /*
2630 : * To switch channels clear any pending DMA operations;
2631 : * wait long enough for the RX fifo to drain, reset the
2632 : * hardware at the new frequency, and then re-enable
2633 : * the relevant bits of the h/w.
2634 : */
2635 0 : ath_hal_set_intr(ah, 0); /* disable interrupts */
2636 0 : ath_draintxq(sc); /* clear pending tx frames */
2637 0 : ath_stoprecv(sc); /* turn off frame recv */
2638 : /*
2639 : * Convert to a HAL channel description.
2640 : */
2641 0 : hchan.channel = chan->ic_freq;
2642 0 : hchan.channelFlags = chan->ic_flags;
2643 0 : if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE,
2644 : &status)) {
2645 0 : printf("%s: ath_chan_set: unable to reset "
2646 0 : "channel %u (%u MHz)\n", ifp->if_xname,
2647 0 : ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2648 0 : return EIO;
2649 : }
2650 0 : ath_set_slot_time(sc);
2651 : /*
2652 : * Re-enable rx framework.
2653 : */
2654 0 : if (ath_startrecv(sc) != 0) {
2655 0 : printf("%s: ath_chan_set: unable to restart recv "
2656 0 : "logic\n", ifp->if_xname);
2657 0 : return EIO;
2658 : }
2659 :
2660 : #if NBPFILTER > 0
2661 : /*
2662 : * Update BPF state.
2663 : */
2664 0 : sc->sc_txtap.wt_chan_freq = sc->sc_rxtap.wr_chan_freq =
2665 0 : htole16(chan->ic_freq);
2666 0 : sc->sc_txtap.wt_chan_flags = sc->sc_rxtap.wr_chan_flags =
2667 0 : htole16(chan->ic_flags);
2668 : #endif
2669 :
2670 : /*
2671 : * Change channels and update the h/w rate map
2672 : * if we're switching; e.g. 11a to 11b/g.
2673 : */
2674 0 : ic->ic_ibss_chan = chan;
2675 0 : mode = ieee80211_chan2mode(ic, chan);
2676 0 : if (mode != sc->sc_curmode)
2677 0 : ath_setcurmode(sc, mode);
2678 :
2679 : /*
2680 : * Re-enable interrupts.
2681 : */
2682 0 : ath_hal_set_intr(ah, sc->sc_imask);
2683 0 : }
2684 0 : return 0;
2685 0 : }
2686 :
2687 : void
2688 0 : ath_next_scan(void *arg)
2689 : {
2690 0 : struct ath_softc *sc = arg;
2691 0 : struct ieee80211com *ic = &sc->sc_ic;
2692 0 : struct ifnet *ifp = &ic->ic_if;
2693 : int s;
2694 :
2695 : /* don't call ath_start w/o network interrupts blocked */
2696 0 : s = splnet();
2697 :
2698 0 : if (ic->ic_state == IEEE80211_S_SCAN)
2699 0 : ieee80211_next_scan(ifp);
2700 0 : splx(s);
2701 0 : }
2702 :
2703 : int
2704 0 : ath_set_slot_time(struct ath_softc *sc)
2705 : {
2706 0 : struct ath_hal *ah = sc->sc_ah;
2707 0 : struct ieee80211com *ic = &sc->sc_ic;
2708 :
2709 0 : if (ic->ic_flags & IEEE80211_F_SHSLOT)
2710 0 : return (ath_hal_set_slot_time(ah, HAL_SLOT_TIME_9));
2711 :
2712 0 : return (0);
2713 0 : }
2714 :
2715 : /*
2716 : * Periodically recalibrate the PHY to account
2717 : * for temperature/environment changes.
2718 : */
2719 : void
2720 0 : ath_calibrate(void *arg)
2721 : {
2722 0 : struct ath_softc *sc = arg;
2723 0 : struct ath_hal *ah = sc->sc_ah;
2724 0 : struct ieee80211com *ic = &sc->sc_ic;
2725 : struct ieee80211_channel *c;
2726 0 : HAL_CHANNEL hchan;
2727 : int s;
2728 :
2729 0 : sc->sc_stats.ast_per_cal++;
2730 :
2731 : /*
2732 : * Convert to a HAL channel description.
2733 : */
2734 0 : c = ic->ic_ibss_chan;
2735 0 : hchan.channel = c->ic_freq;
2736 0 : hchan.channelFlags = c->ic_flags;
2737 :
2738 0 : s = splnet();
2739 : DPRINTF(ATH_DEBUG_CALIBRATE,
2740 : ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2741 :
2742 0 : if (ath_hal_get_rf_gain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2743 : /*
2744 : * Rfgain is out of bounds, reset the chip
2745 : * to load new gain values.
2746 : */
2747 0 : sc->sc_stats.ast_per_rfgain++;
2748 0 : ath_reset(sc, 1);
2749 0 : }
2750 0 : if (!ath_hal_calibrate(ah, &hchan)) {
2751 : DPRINTF(ATH_DEBUG_ANY,
2752 : ("%s: calibration of channel %u failed\n",
2753 : __func__, c->ic_freq));
2754 0 : sc->sc_stats.ast_per_calfail++;
2755 0 : }
2756 0 : timeout_add_sec(&sc->sc_cal_to, ath_calinterval);
2757 0 : splx(s);
2758 0 : }
2759 :
2760 : void
2761 0 : ath_ledstate(struct ath_softc *sc, enum ieee80211_state state)
2762 : {
2763 : HAL_LED_STATE led = HAL_LED_INIT;
2764 : u_int32_t softled = AR5K_SOFTLED_OFF;
2765 :
2766 0 : switch (state) {
2767 : case IEEE80211_S_INIT:
2768 : break;
2769 : case IEEE80211_S_SCAN:
2770 : led = HAL_LED_SCAN;
2771 0 : break;
2772 : case IEEE80211_S_AUTH:
2773 : led = HAL_LED_AUTH;
2774 0 : break;
2775 : case IEEE80211_S_ASSOC:
2776 : led = HAL_LED_ASSOC;
2777 : softled = AR5K_SOFTLED_ON;
2778 0 : break;
2779 : case IEEE80211_S_RUN:
2780 : led = HAL_LED_RUN;
2781 : softled = AR5K_SOFTLED_ON;
2782 0 : break;
2783 : }
2784 :
2785 0 : ath_hal_set_ledstate(sc->sc_ah, led);
2786 0 : if (sc->sc_softled) {
2787 0 : ath_hal_set_gpio_output(sc->sc_ah, AR5K_SOFTLED_PIN);
2788 0 : ath_hal_set_gpio(sc->sc_ah, AR5K_SOFTLED_PIN, softled);
2789 0 : }
2790 0 : }
2791 :
2792 : int
2793 0 : ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2794 : {
2795 0 : struct ifnet *ifp = &ic->ic_if;
2796 0 : struct ath_softc *sc = ifp->if_softc;
2797 0 : struct ath_hal *ah = sc->sc_ah;
2798 : struct ieee80211_node *ni;
2799 : const u_int8_t *bssid;
2800 : int error, i;
2801 :
2802 : u_int32_t rfilt;
2803 :
2804 : DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
2805 : ieee80211_state_name[ic->ic_state],
2806 : ieee80211_state_name[nstate]));
2807 :
2808 0 : timeout_del(&sc->sc_scan_to);
2809 0 : timeout_del(&sc->sc_cal_to);
2810 0 : ath_ledstate(sc, nstate);
2811 :
2812 0 : if (nstate == IEEE80211_S_INIT) {
2813 0 : timeout_del(&sc->sc_rssadapt_to);
2814 0 : sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2815 0 : ath_hal_set_intr(ah, sc->sc_imask);
2816 0 : return (*sc->sc_newstate)(ic, nstate, arg);
2817 : }
2818 0 : ni = ic->ic_bss;
2819 0 : error = ath_chan_set(sc, ni->ni_chan);
2820 0 : if (error != 0)
2821 : goto bad;
2822 0 : rfilt = ath_calcrxfilter(sc);
2823 0 : if (nstate == IEEE80211_S_SCAN ||
2824 0 : ic->ic_opmode == IEEE80211_M_MONITOR) {
2825 0 : bssid = sc->sc_broadcast_addr;
2826 0 : } else {
2827 0 : bssid = ni->ni_bssid;
2828 : }
2829 0 : ath_hal_set_rx_filter(ah, rfilt);
2830 : DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
2831 : __func__, rfilt, ether_sprintf((u_char*)bssid)));
2832 :
2833 0 : if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) {
2834 0 : ath_hal_set_associd(ah, bssid, ni->ni_associd);
2835 0 : } else {
2836 0 : ath_hal_set_associd(ah, bssid, 0);
2837 : }
2838 :
2839 0 : if (!ath_softcrypto && (ic->ic_flags & IEEE80211_F_WEPON)) {
2840 0 : for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2841 0 : if (ath_hal_is_key_valid(ah, i))
2842 0 : ath_hal_set_key_lladdr(ah, i, bssid);
2843 : }
2844 : }
2845 :
2846 0 : if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2847 : /* nothing to do */
2848 0 : } else if (nstate == IEEE80211_S_RUN) {
2849 : DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): "
2850 : "ic_flags=0x%08x iv=%d bssid=%s "
2851 : "capinfo=0x%04x chan=%d\n",
2852 : __func__,
2853 : ic->ic_flags,
2854 : ni->ni_intval,
2855 : ether_sprintf(ni->ni_bssid),
2856 : ni->ni_capinfo,
2857 : ieee80211_chan2ieee(ic, ni->ni_chan)));
2858 :
2859 : /*
2860 : * Allocate and setup the beacon frame for AP or adhoc mode.
2861 : */
2862 : #ifndef IEEE80211_STA_ONLY
2863 0 : if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2864 0 : ic->ic_opmode == IEEE80211_M_IBSS) {
2865 0 : error = ath_beacon_alloc(sc, ni);
2866 0 : if (error != 0)
2867 : goto bad;
2868 : }
2869 : #endif
2870 : /*
2871 : * Configure the beacon and sleep timers.
2872 : */
2873 0 : ath_beacon_config(sc);
2874 0 : } else {
2875 0 : sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2876 0 : ath_hal_set_intr(ah, sc->sc_imask);
2877 : }
2878 :
2879 : /*
2880 : * Invoke the parent method to complete the work.
2881 : */
2882 0 : error = (*sc->sc_newstate)(ic, nstate, arg);
2883 :
2884 0 : if (nstate == IEEE80211_S_RUN) {
2885 : /* start periodic recalibration timer */
2886 0 : timeout_add_sec(&sc->sc_cal_to, ath_calinterval);
2887 :
2888 0 : if (ic->ic_opmode != IEEE80211_M_MONITOR)
2889 0 : timeout_add_msec(&sc->sc_rssadapt_to, 100);
2890 0 : } else if (nstate == IEEE80211_S_SCAN) {
2891 : /* start ap/neighbor scan timer */
2892 0 : timeout_add_msec(&sc->sc_scan_to, ath_dwelltime);
2893 0 : }
2894 : bad:
2895 0 : return error;
2896 0 : }
2897 :
2898 : #ifndef IEEE80211_STA_ONLY
2899 : void
2900 0 : ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2901 : struct ieee80211_node *ni, struct ieee80211_rxinfo *rxi, int subtype)
2902 : {
2903 0 : struct ath_softc *sc = (struct ath_softc*)ic->ic_softc;
2904 0 : struct ath_hal *ah = sc->sc_ah;
2905 :
2906 0 : (*sc->sc_recv_mgmt)(ic, m, ni, rxi, subtype);
2907 :
2908 0 : switch (subtype) {
2909 : case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2910 : case IEEE80211_FC0_SUBTYPE_BEACON:
2911 0 : if (ic->ic_opmode != IEEE80211_M_IBSS ||
2912 0 : ic->ic_state != IEEE80211_S_RUN)
2913 : break;
2914 0 : if (ieee80211_ibss_merge(ic, ni, ath_hal_get_tsf64(ah)) ==
2915 : ENETRESET)
2916 0 : ath_hal_set_associd(ah, ic->ic_bss->ni_bssid, 0);
2917 : break;
2918 : default:
2919 : break;
2920 : }
2921 : return;
2922 0 : }
2923 : #endif
2924 :
2925 : /*
2926 : * Setup driver-specific state for a newly associated node.
2927 : * Note that we're called also on a re-associate, the isnew
2928 : * param tells us if this is the first time or not.
2929 : */
2930 : void
2931 0 : ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2932 : {
2933 0 : if (ic->ic_opmode == IEEE80211_M_MONITOR)
2934 : return;
2935 0 : }
2936 :
2937 : int
2938 0 : ath_getchannels(struct ath_softc *sc, HAL_BOOL outdoor, HAL_BOOL xchanmode)
2939 : {
2940 0 : struct ieee80211com *ic = &sc->sc_ic;
2941 0 : struct ifnet *ifp = &ic->ic_if;
2942 0 : struct ath_hal *ah = sc->sc_ah;
2943 : HAL_CHANNEL *chans;
2944 0 : int i, ix, nchan;
2945 :
2946 0 : sc->sc_nchan = 0;
2947 0 : chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2948 : M_TEMP, M_NOWAIT);
2949 0 : if (chans == NULL) {
2950 0 : printf("%s: unable to allocate channel table\n", ifp->if_xname);
2951 0 : return ENOMEM;
2952 : }
2953 0 : if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2954 : HAL_MODE_ALL, outdoor, xchanmode)) {
2955 0 : printf("%s: unable to collect channel list from hal\n",
2956 0 : ifp->if_xname);
2957 0 : free(chans, M_TEMP, 0);
2958 0 : return EINVAL;
2959 : }
2960 :
2961 : /*
2962 : * Convert HAL channels to ieee80211 ones and insert
2963 : * them in the table according to their channel number.
2964 : */
2965 0 : for (i = 0; i < nchan; i++) {
2966 0 : HAL_CHANNEL *c = &chans[i];
2967 0 : ix = ieee80211_mhz2ieee(c->channel, c->channelFlags);
2968 0 : if (ix > IEEE80211_CHAN_MAX) {
2969 0 : printf("%s: bad hal channel %u (%u/%x) ignored\n",
2970 0 : ifp->if_xname, ix, c->channel, c->channelFlags);
2971 0 : continue;
2972 : }
2973 : DPRINTF(ATH_DEBUG_ANY,
2974 : ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
2975 : sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
2976 : ix));
2977 : /* NB: flags are known to be compatible */
2978 0 : if (ic->ic_channels[ix].ic_freq == 0) {
2979 0 : ic->ic_channels[ix].ic_freq = c->channel;
2980 0 : ic->ic_channels[ix].ic_flags = c->channelFlags;
2981 0 : } else {
2982 : /* channels overlap; e.g. 11g and 11b */
2983 0 : ic->ic_channels[ix].ic_flags |= c->channelFlags;
2984 : }
2985 : /* count valid channels */
2986 0 : sc->sc_nchan++;
2987 0 : }
2988 0 : free(chans, M_TEMP, 0);
2989 :
2990 0 : if (sc->sc_nchan < 1) {
2991 0 : printf("%s: no valid channels for regdomain %s(%u)\n",
2992 0 : ifp->if_xname, ieee80211_regdomain2name(ah->ah_regdomain),
2993 0 : ah->ah_regdomain);
2994 0 : return ENOENT;
2995 : }
2996 :
2997 : /* set an initial channel */
2998 0 : ic->ic_ibss_chan = &ic->ic_channels[0];
2999 :
3000 0 : return 0;
3001 0 : }
3002 :
3003 : int
3004 0 : ath_rate_setup(struct ath_softc *sc, u_int mode)
3005 : {
3006 0 : struct ath_hal *ah = sc->sc_ah;
3007 0 : struct ieee80211com *ic = &sc->sc_ic;
3008 : const HAL_RATE_TABLE *rt;
3009 : struct ieee80211_rateset *rs;
3010 : int i, maxrates;
3011 :
3012 0 : switch (mode) {
3013 : case IEEE80211_MODE_11A:
3014 0 : sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11A);
3015 0 : break;
3016 : case IEEE80211_MODE_11B:
3017 0 : sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11B);
3018 0 : break;
3019 : case IEEE80211_MODE_11G:
3020 0 : sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11G);
3021 0 : break;
3022 : default:
3023 : DPRINTF(ATH_DEBUG_ANY,
3024 : ("%s: invalid mode %u\n", __func__, mode));
3025 0 : return 0;
3026 : }
3027 0 : rt = sc->sc_rates[mode];
3028 0 : if (rt == NULL)
3029 0 : return 0;
3030 0 : if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3031 : DPRINTF(ATH_DEBUG_ANY,
3032 : ("%s: rate table too small (%u > %u)\n",
3033 : __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3034 : maxrates = IEEE80211_RATE_MAXSIZE;
3035 0 : } else {
3036 : maxrates = rt->rateCount;
3037 : }
3038 0 : rs = &ic->ic_sup_rates[mode];
3039 0 : for (i = 0; i < maxrates; i++)
3040 0 : rs->rs_rates[i] = rt->info[i].dot11Rate;
3041 0 : rs->rs_nrates = maxrates;
3042 0 : return 1;
3043 0 : }
3044 :
3045 : void
3046 0 : ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3047 : {
3048 : const HAL_RATE_TABLE *rt;
3049 0 : struct ieee80211com *ic = &sc->sc_ic;
3050 : struct ieee80211_node *ni;
3051 : int i;
3052 :
3053 0 : memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3054 0 : rt = sc->sc_rates[mode];
3055 0 : KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3056 0 : for (i = 0; i < rt->rateCount; i++)
3057 0 : sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3058 0 : bzero(sc->sc_hwmap, sizeof(sc->sc_hwmap));
3059 0 : for (i = 0; i < 32; i++)
3060 0 : sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3061 0 : sc->sc_currates = rt;
3062 0 : sc->sc_curmode = mode;
3063 0 : ni = ic->ic_bss;
3064 0 : ni->ni_rates.rs_nrates = sc->sc_currates->rateCount;
3065 0 : if (ni->ni_txrate >= ni->ni_rates.rs_nrates)
3066 0 : ni->ni_txrate = 0;
3067 0 : }
3068 :
3069 : void
3070 0 : ath_rssadapt_updatenode(void *arg, struct ieee80211_node *ni)
3071 : {
3072 0 : struct ath_node *an = ATH_NODE(ni);
3073 :
3074 0 : ieee80211_rssadapt_updatestats(&an->an_rssadapt);
3075 0 : }
3076 :
3077 : void
3078 0 : ath_rssadapt_updatestats(void *arg)
3079 : {
3080 0 : struct ath_softc *sc = (struct ath_softc *)arg;
3081 0 : struct ieee80211com *ic = &sc->sc_ic;
3082 :
3083 0 : if (ic->ic_opmode == IEEE80211_M_STA) {
3084 0 : ath_rssadapt_updatenode(arg, ic->ic_bss);
3085 0 : } else {
3086 0 : ieee80211_iterate_nodes(ic, ath_rssadapt_updatenode, arg);
3087 : }
3088 :
3089 0 : timeout_add_msec(&sc->sc_rssadapt_to, 100);
3090 0 : }
3091 :
3092 : #ifdef AR_DEBUG
3093 : void
3094 : ath_printrxbuf(struct ath_buf *bf, int done)
3095 : {
3096 : struct ath_desc *ds;
3097 : int i;
3098 :
3099 : for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3100 : printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3101 : i, ds, (struct ath_desc *)bf->bf_daddr + i,
3102 : ds->ds_link, ds->ds_data,
3103 : ds->ds_ctl0, ds->ds_ctl1,
3104 : ds->ds_hw[0], ds->ds_hw[1],
3105 : !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3106 : }
3107 : }
3108 :
3109 : void
3110 : ath_printtxbuf(struct ath_buf *bf, int done)
3111 : {
3112 : struct ath_desc *ds;
3113 : int i;
3114 :
3115 : for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3116 : printf("T%d (%p %p) "
3117 : "%08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3118 : i, ds, (struct ath_desc *)bf->bf_daddr + i,
3119 : ds->ds_link, ds->ds_data,
3120 : ds->ds_ctl0, ds->ds_ctl1,
3121 : ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3122 : !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3123 : }
3124 : }
3125 : #endif /* AR_DEBUG */
3126 :
3127 : int
3128 0 : ath_gpio_attach(struct ath_softc *sc, u_int16_t devid)
3129 : {
3130 0 : struct ath_hal *ah = sc->sc_ah;
3131 : struct gpiobus_attach_args gba;
3132 : int i;
3133 :
3134 0 : if (ah->ah_gpio_npins < 1)
3135 0 : return 0;
3136 :
3137 : /* Initialize gpio pins array */
3138 0 : for (i = 0; i < ah->ah_gpio_npins && i < AR5K_MAX_GPIO; i++) {
3139 0 : sc->sc_gpio_pins[i].pin_num = i;
3140 0 : sc->sc_gpio_pins[i].pin_caps = GPIO_PIN_INPUT |
3141 : GPIO_PIN_OUTPUT;
3142 :
3143 : /* Set pin mode to input */
3144 0 : ath_hal_set_gpio_input(ah, i);
3145 0 : sc->sc_gpio_pins[i].pin_flags = GPIO_PIN_INPUT;
3146 :
3147 : /* Get pin input */
3148 0 : sc->sc_gpio_pins[i].pin_state = ath_hal_get_gpio(ah, i) ?
3149 : GPIO_PIN_HIGH : GPIO_PIN_LOW;
3150 : }
3151 :
3152 : /* Enable GPIO-controlled software LED if available */
3153 0 : if ((ah->ah_version == AR5K_AR5211) ||
3154 0 : (devid == PCI_PRODUCT_ATHEROS_AR5212_IBM)) {
3155 0 : sc->sc_softled = 1;
3156 0 : ath_hal_set_gpio_output(ah, AR5K_SOFTLED_PIN);
3157 0 : ath_hal_set_gpio(ah, AR5K_SOFTLED_PIN, AR5K_SOFTLED_OFF);
3158 0 : }
3159 :
3160 : /* Create gpio controller tag */
3161 0 : sc->sc_gpio_gc.gp_cookie = sc;
3162 0 : sc->sc_gpio_gc.gp_pin_read = ath_gpio_pin_read;
3163 0 : sc->sc_gpio_gc.gp_pin_write = ath_gpio_pin_write;
3164 0 : sc->sc_gpio_gc.gp_pin_ctl = ath_gpio_pin_ctl;
3165 :
3166 : gba.gba_name = "gpio";
3167 : gba.gba_gc = &sc->sc_gpio_gc;
3168 0 : gba.gba_pins = sc->sc_gpio_pins;
3169 : gba.gba_npins = ah->ah_gpio_npins;
3170 :
3171 : #ifdef notyet
3172 : #if NGPIO > 0
3173 : if (config_found(&sc->sc_dev, &gba, gpiobus_print) == NULL)
3174 : return (ENODEV);
3175 : #endif
3176 : #endif
3177 :
3178 0 : return (0);
3179 0 : }
3180 :
3181 : int
3182 0 : ath_gpio_pin_read(void *arg, int pin)
3183 : {
3184 0 : struct ath_softc *sc = arg;
3185 0 : struct ath_hal *ah = sc->sc_ah;
3186 0 : return (ath_hal_get_gpio(ah, pin) ? GPIO_PIN_HIGH : GPIO_PIN_LOW);
3187 : }
3188 :
3189 : void
3190 0 : ath_gpio_pin_write(void *arg, int pin, int value)
3191 : {
3192 0 : struct ath_softc *sc = arg;
3193 0 : struct ath_hal *ah = sc->sc_ah;
3194 0 : ath_hal_set_gpio(ah, pin, value ? GPIO_PIN_HIGH : GPIO_PIN_LOW);
3195 0 : }
3196 :
3197 : void
3198 0 : ath_gpio_pin_ctl(void *arg, int pin, int flags)
3199 : {
3200 0 : struct ath_softc *sc = arg;
3201 0 : struct ath_hal *ah = sc->sc_ah;
3202 :
3203 0 : if (flags & GPIO_PIN_INPUT) {
3204 0 : ath_hal_set_gpio_input(ah, pin);
3205 0 : } else if (flags & GPIO_PIN_OUTPUT) {
3206 0 : ath_hal_set_gpio_output(ah, pin);
3207 0 : }
3208 0 : }
|