Line data Source code
1 : /* $OpenBSD: elink3.c,v 1.95 2017/01/22 10:17:38 dlg Exp $ */
2 : /* $NetBSD: elink3.c,v 1.32 1997/05/14 00:22:00 thorpej Exp $ */
3 :
4 : /*
5 : * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
6 : * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
7 : * All rights reserved.
8 : *
9 : * Redistribution and use in source and binary forms, with or without
10 : * modification, are permitted provided that the following conditions
11 : * are met:
12 : * 1. Redistributions of source code must retain the above copyright
13 : * notice, this list of conditions and the following disclaimer.
14 : * 2. Redistributions in binary form must reproduce the above copyright
15 : * notice, this list of conditions and the following disclaimer in the
16 : * documentation and/or other materials provided with the distribution.
17 : * 3. All advertising materials mentioning features or use of this software
18 : * must display the following acknowledgement:
19 : * This product includes software developed by Herb Peyerl.
20 : * 4. The name of Herb Peyerl may not be used to endorse or promote products
21 : * derived from this software without specific prior written permission.
22 : *
23 : * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 : * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 : * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 : * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 : * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 : * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 : * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 : * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 : * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 : * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 : */
34 :
35 : #include "bpfilter.h"
36 :
37 : #include <sys/param.h>
38 : #include <sys/systm.h>
39 : #include <sys/mbuf.h>
40 : #include <sys/socket.h>
41 : #include <sys/ioctl.h>
42 : #include <sys/errno.h>
43 : #include <sys/syslog.h>
44 : #include <sys/selinfo.h>
45 : #include <sys/timeout.h>
46 : #include <sys/device.h>
47 :
48 : #include <net/if.h>
49 : #include <net/if_media.h>
50 :
51 : #include <netinet/in.h>
52 : #include <netinet/if_ether.h>
53 :
54 : #if NBPFILTER > 0
55 : #include <net/bpf.h>
56 : #endif
57 :
58 : #include <machine/cpu.h>
59 : #include <machine/bus.h>
60 :
61 : #include <dev/mii/mii.h>
62 : #include <dev/mii/miivar.h>
63 :
64 : #include <dev/ic/elink3var.h>
65 : #include <dev/ic/elink3reg.h>
66 :
67 : /*
68 : * Structure to map media-present bits in boards to
69 : * ifmedia codes and printable media names. Used for table-driven
70 : * ifmedia initialization.
71 : */
72 : struct ep_media {
73 : int epm_eeprom_data; /* bitmask for eeprom config */
74 : int epm_conn; /* sc->ep_connectors code for medium */
75 : char *epm_name; /* name of medium */
76 : uint64_t epm_ifmedia; /* ifmedia word for medium */
77 : int epm_ifdata;
78 : };
79 :
80 : /*
81 : * ep_media table for Vortex/Demon/Boomerang:
82 : * map from media-present bits in register RESET_OPTIONS+2
83 : * to ifmedia "media words" and printable names.
84 : *
85 : * XXX indexed directly by INTERNAL_CONFIG default_media field,
86 : * (i.e., EPMEDIA_ constants) forcing order of entries.
87 : * Note that 3 is reserved.
88 : */
89 : const struct ep_media ep_vortex_media[] = {
90 : { EP_PCI_UTP, EPC_UTP, "utp", IFM_ETHER|IFM_10_T,
91 : EPMEDIA_10BASE_T },
92 : { EP_PCI_AUI, EPC_AUI, "aui", IFM_ETHER|IFM_10_5,
93 : EPMEDIA_AUI },
94 : { 0, 0, "reserved", IFM_NONE, EPMEDIA_RESV1 },
95 : { EP_PCI_BNC, EPC_BNC, "bnc", IFM_ETHER|IFM_10_2,
96 : EPMEDIA_10BASE_2 },
97 : { EP_PCI_100BASE_TX, EPC_100TX, "100-TX", IFM_ETHER|IFM_100_TX,
98 : EPMEDIA_100BASE_TX },
99 : { EP_PCI_100BASE_FX, EPC_100FX, "100-FX", IFM_ETHER|IFM_100_FX,
100 : EPMEDIA_100BASE_FX },
101 : { EP_PCI_100BASE_MII,EPC_MII, "mii", IFM_ETHER|IFM_100_TX,
102 : EPMEDIA_MII },
103 : { EP_PCI_100BASE_T4, EPC_100T4, "100-T4", IFM_ETHER|IFM_100_T4,
104 : EPMEDIA_100BASE_T4 }
105 : };
106 :
107 : /*
108 : * ep_media table for 3c509/3c509b/3c579/3c589:
109 : * map from media-present bits in register CNFG_CNTRL
110 : * (window 0, offset ?) to ifmedia "media words" and printable names.
111 : */
112 : struct ep_media ep_isa_media[] = {
113 : { EP_W0_CC_UTP, EPC_UTP, "utp", IFM_ETHER|IFM_10_T, EPMEDIA_10BASE_T },
114 : { EP_W0_CC_AUI, EPC_AUI, "aui", IFM_ETHER|IFM_10_5, EPMEDIA_AUI },
115 : { EP_W0_CC_BNC, EPC_BNC, "bnc", IFM_ETHER|IFM_10_2, EPMEDIA_10BASE_2 },
116 : };
117 :
118 : /* Map vortex reset_options bits to if_media codes. */
119 : const uint64_t ep_default_to_media[] = {
120 : IFM_ETHER | IFM_10_T,
121 : IFM_ETHER | IFM_10_5,
122 : 0, /* reserved by 3Com */
123 : IFM_ETHER | IFM_10_2,
124 : IFM_ETHER | IFM_100_TX,
125 : IFM_ETHER | IFM_100_FX,
126 : IFM_ETHER | IFM_100_TX, /* XXX really MII: need to talk to PHY */
127 : IFM_ETHER | IFM_100_T4,
128 : };
129 :
130 : struct cfdriver ep_cd = {
131 : NULL, "ep", DV_IFNET
132 : };
133 :
134 : void ep_vortex_probemedia(struct ep_softc *sc);
135 : void ep_isa_probemedia(struct ep_softc *sc);
136 :
137 : void eptxstat(struct ep_softc *);
138 : int epstatus(struct ep_softc *);
139 : int epioctl(struct ifnet *, u_long, caddr_t);
140 : void epstart(struct ifnet *);
141 : void epwatchdog(struct ifnet *);
142 : void epreset(struct ep_softc *);
143 : void epread(struct ep_softc *);
144 : struct mbuf *epget(struct ep_softc *, int);
145 : void epmbuffill(void *);
146 : void epmbufempty(struct ep_softc *);
147 : void epsetfilter(struct ep_softc *);
148 : void ep_roadrunner_mii_enable(struct ep_softc *);
149 : int epsetmedia(struct ep_softc *, int);
150 :
151 : /* ifmedia callbacks */
152 : int ep_media_change(struct ifnet *);
153 : void ep_media_status(struct ifnet *, struct ifmediareq *);
154 :
155 : /* MII callbacks */
156 : int ep_mii_readreg(struct device *, int, int);
157 : void ep_mii_writereg(struct device *, int, int, int);
158 : void ep_statchg(struct device *);
159 :
160 : void ep_mii_setbit(struct ep_softc *, u_int16_t);
161 : void ep_mii_clrbit(struct ep_softc *, u_int16_t);
162 : u_int16_t ep_mii_readbit(struct ep_softc *, u_int16_t);
163 : void ep_mii_sync(struct ep_softc *);
164 : void ep_mii_sendbits(struct ep_softc *, u_int32_t, int);
165 :
166 : int epbusyeeprom(struct ep_softc *);
167 : u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
168 :
169 : static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd,u_int arg);
170 : static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
171 : static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
172 : static __inline int ep_w1_reg(struct ep_softc *, int);
173 :
174 : /*
175 : * Issue a (reset) command, and be sure it has completed.
176 : * Used for global reset, TX_RESET, RX_RESET.
177 : */
178 : static inline void
179 0 : ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
180 : {
181 0 : bus_space_tag_t iot = sc->sc_iot;
182 0 : bus_space_handle_t ioh = sc->sc_ioh;
183 :
184 0 : bus_space_write_2(iot, ioh, cmd, arg);
185 0 : ep_finish_reset(iot, ioh);
186 0 : }
187 :
188 : /*
189 : * Wait for any pending reset to complete.
190 : */
191 : static inline void
192 0 : ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
193 : {
194 : int i;
195 :
196 0 : for (i = 0; i < 10000; i++) {
197 0 : if ((bus_space_read_2(iot, ioh, EP_STATUS) &
198 0 : S_COMMAND_IN_PROGRESS) == 0)
199 : break;
200 0 : DELAY(10);
201 : }
202 0 : }
203 :
204 : static inline void
205 0 : ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
206 : {
207 : int i;
208 :
209 0 : bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
210 :
211 : /*
212 : * Spin for about 1 msec, to avoid forcing a DELAY() between
213 : * every received packet (adding latency and limiting pkt-recv rate).
214 : * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
215 : * is about right.
216 : */
217 0 : for (i = 0; i < 8000; i++) {
218 0 : if ((bus_space_read_2(iot, ioh, EP_STATUS) &
219 0 : S_COMMAND_IN_PROGRESS) == 0)
220 0 : return;
221 : }
222 :
223 : /* not fast enough, do DELAY()s */
224 0 : ep_finish_reset(iot, ioh);
225 0 : }
226 :
227 : /*
228 : * Some chips (i.e., 3c574 RoadRunner) have Window 1 registers offset.
229 : */
230 : static __inline int
231 0 : ep_w1_reg(struct ep_softc *sc, int reg)
232 : {
233 0 : switch (sc->ep_chipset) {
234 : case EP_CHIPSET_ROADRUNNER:
235 0 : switch (reg) {
236 : case EP_W1_FREE_TX:
237 : case EP_W1_RUNNER_RDCTL:
238 : case EP_W1_RUNNER_WRCTL:
239 0 : return (reg);
240 : }
241 0 : return (reg + 0x10);
242 : }
243 0 : return (reg);
244 0 : }
245 :
246 : /*
247 : * Back-end attach and configure.
248 : */
249 : void
250 0 : epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
251 : {
252 0 : struct ifnet *ifp = &sc->sc_arpcom.ac_if;
253 0 : bus_space_tag_t iot = sc->sc_iot;
254 0 : bus_space_handle_t ioh = sc->sc_ioh;
255 : u_int16_t i;
256 :
257 0 : sc->ep_chipset = chipset;
258 :
259 : /*
260 : * We could have been groveling around in other register
261 : * windows in the front-end; make sure we're in window 0
262 : * to read the EEPROM.
263 : */
264 0 : GO_WINDOW(0);
265 :
266 0 : if (enaddr == NULL) {
267 : /*
268 : * Read the station address from the eeprom.
269 : */
270 0 : for (i = 0; i < 3; i++) {
271 0 : u_int16_t x = ep_read_eeprom(sc, i);
272 :
273 0 : sc->sc_arpcom.ac_enaddr[(i << 1)] = x >> 8;
274 0 : sc->sc_arpcom.ac_enaddr[(i << 1) + 1] = x;
275 : }
276 : } else {
277 0 : bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
278 : }
279 :
280 0 : printf(" address %s", ether_sprintf(sc->sc_arpcom.ac_enaddr));
281 0 : if (sc->ep_flags & EP_FLAGS_MII)
282 0 : printf("\n");
283 : else
284 0 : printf(", ");
285 :
286 : /*
287 : * Vortex-based (3c59x pci,eisa) cards allow FDDI-sized (4500) byte
288 : * packets. Commands only take an 11-bit parameter, and 11 bits
289 : * isn't enough to hold a full-size packet length.
290 : * Commands to these cards implicitly upshift a packet size
291 : * or threshold by 2 bits.
292 : * To detect cards with large-packet support, we probe by setting
293 : * the transmit threshold register, then change windows and
294 : * read back the threshold register directly, and see if the
295 : * threshold value was shifted or not.
296 : */
297 0 : bus_space_write_2(iot, ioh, EP_COMMAND,
298 : SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
299 0 : GO_WINDOW(5);
300 0 : i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
301 0 : GO_WINDOW(1);
302 0 : switch (i) {
303 : case EP_LARGEWIN_PROBE:
304 : case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
305 0 : sc->txashift = 0;
306 0 : break;
307 :
308 : case (EP_LARGEWIN_PROBE << 2):
309 0 : sc->txashift = 2;
310 : /* XXX does the 3c515 support Vortex-style RESET_OPTIONS? */
311 0 : break;
312 :
313 : default:
314 0 : printf("wrote %x to TX_AVAIL_THRESH, read back %x. "
315 : "Interface disabled\n", EP_THRESH_DISABLE, (int) i);
316 0 : return;
317 : }
318 :
319 0 : timeout_set(&sc->sc_epmbuffill_tmo, epmbuffill, sc);
320 :
321 : /*
322 : * Ensure Tx-available interrupts are enabled for
323 : * start the interface.
324 : * XXX should be in epinit()?
325 : */
326 0 : bus_space_write_2(iot, ioh, EP_COMMAND,
327 : SET_TX_AVAIL_THRESH | (1600 >> sc->txashift));
328 :
329 0 : bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
330 0 : ifp->if_softc = sc;
331 0 : ifp->if_start = epstart;
332 0 : ifp->if_ioctl = epioctl;
333 0 : ifp->if_watchdog = epwatchdog;
334 0 : ifp->if_flags =
335 : IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
336 : /* 64 packets are around 100ms on 10Mbps */
337 0 : IFQ_SET_MAXLEN(&ifp->if_snd, 64);
338 :
339 0 : if_attach(ifp);
340 0 : ether_ifattach(ifp);
341 :
342 : /*
343 : * Finish configuration:
344 : * determine chipset if the front-end couldn't do so,
345 : * show board details, set media.
346 : */
347 :
348 0 : GO_WINDOW(0);
349 :
350 0 : ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
351 : ep_media_status);
352 0 : sc->sc_mii.mii_ifp = ifp;
353 0 : sc->sc_mii.mii_readreg = ep_mii_readreg;
354 0 : sc->sc_mii.mii_writereg = ep_mii_writereg;
355 0 : sc->sc_mii.mii_statchg = ep_statchg;
356 :
357 : /*
358 : * If we've got an indirect (ISA, PCMCIA?) board, the chipset
359 : * is unknown. If the board has large-packet support, it's a
360 : * Vortex/Boomerang, otherwise it's a 3c509.
361 : * XXX use eeprom capability word instead?
362 : */
363 0 : if (sc->ep_chipset == EP_CHIPSET_UNKNOWN && sc->txashift) {
364 0 : printf("warning: unknown chipset, possibly 3c515?\n");
365 : #ifdef notyet
366 : sc->sc_chipset = EP_CHIPSET_VORTEX;
367 : #endif /* notyet */
368 0 : }
369 :
370 : /*
371 : * Ascertain which media types are present and inform ifmedia.
372 : */
373 0 : switch (sc->ep_chipset) {
374 : case EP_CHIPSET_ROADRUNNER:
375 0 : if (sc->ep_flags & EP_FLAGS_MII) {
376 0 : ep_roadrunner_mii_enable(sc);
377 0 : GO_WINDOW(0);
378 0 : }
379 : /* FALLTHROUGH */
380 :
381 : case EP_CHIPSET_BOOMERANG:
382 : /*
383 : * If the device has MII, probe it. We won't be using
384 : * any `native' media in this case, only PHYs. If
385 : * we don't, just treat the Boomerang like the Vortex.
386 : */
387 0 : if (sc->ep_flags & EP_FLAGS_MII) {
388 0 : mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
389 : MII_PHY_ANY, MII_OFFSET_ANY, 0);
390 0 : if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
391 0 : ifmedia_add(&sc->sc_mii.mii_media,
392 : IFM_ETHER|IFM_NONE, 0, NULL);
393 0 : ifmedia_set(&sc->sc_mii.mii_media,
394 : IFM_ETHER|IFM_NONE);
395 0 : } else {
396 0 : ifmedia_set(&sc->sc_mii.mii_media,
397 : IFM_ETHER|IFM_AUTO);
398 : }
399 : break;
400 : }
401 : /* FALLTHROUGH */
402 :
403 : /* on a direct bus, the attach routine can tell, but check anyway. */
404 : case EP_CHIPSET_VORTEX:
405 : case EP_CHIPSET_BOOMERANG2:
406 0 : ep_vortex_probemedia(sc);
407 0 : break;
408 :
409 : /* on ISA we can't yet tell 3c509 from 3c515. Assume the former. */
410 : case EP_CHIPSET_3C509:
411 : default:
412 0 : ep_isa_probemedia(sc);
413 0 : break;
414 : }
415 :
416 0 : GO_WINDOW(1); /* Window 1 is operating window */
417 :
418 0 : sc->tx_start_thresh = 20; /* probably a good starting point. */
419 :
420 0 : ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
421 0 : ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
422 0 : }
423 :
424 : int
425 0 : ep_detach(struct device *self)
426 : {
427 0 : struct ep_softc *sc = (struct ep_softc *)self;
428 0 : struct ifnet *ifp = &sc->sc_arpcom.ac_if;
429 :
430 0 : if (sc->ep_flags & EP_FLAGS_MII)
431 0 : mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
432 :
433 0 : ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
434 :
435 0 : ether_ifdetach(ifp);
436 0 : if_detach(ifp);
437 :
438 0 : return (0);
439 : }
440 :
441 : /*
442 : * Find supported media on 3c509-generation hardware that doesn't have
443 : * a "reset_options" register in window 3.
444 : * Use the config_cntrl register in window 0 instead.
445 : * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
446 : * that implement CONFIG_CTRL. We don't have a good way to set the
447 : * default active medium; punt to ifconfig instead.
448 : *
449 : * XXX what about 3c515, pcmcia 10/100?
450 : */
451 : void
452 0 : ep_isa_probemedia(struct ep_softc *sc)
453 : {
454 0 : bus_space_tag_t iot = sc->sc_iot;
455 0 : bus_space_handle_t ioh = sc->sc_ioh;
456 0 : struct ifmedia *ifm = &sc->sc_mii.mii_media;
457 : int conn, i;
458 : u_int16_t ep_w0_config, port;
459 :
460 : conn = 0;
461 0 : GO_WINDOW(0);
462 0 : ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
463 0 : for (i = 0; i < nitems(ep_isa_media); i++) {
464 0 : struct ep_media * epm = ep_isa_media + i;
465 :
466 0 : if ((ep_w0_config & epm->epm_eeprom_data) != 0) {
467 0 : ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0);
468 0 : if (conn)
469 0 : printf("/");
470 0 : printf("%s", epm->epm_name);
471 0 : conn |= epm->epm_conn;
472 0 : }
473 : }
474 0 : sc->ep_connectors = conn;
475 :
476 : /* get default medium from EEPROM */
477 0 : if (epbusyeeprom(sc))
478 0 : return; /* XXX why is eeprom busy? */
479 0 : bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
480 : READ_EEPROM | EEPROM_ADDR_CFG);
481 0 : if (epbusyeeprom(sc))
482 0 : return; /* XXX why is eeprom busy? */
483 0 : port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
484 0 : port = port >> 14;
485 :
486 0 : printf(" (default %s)\n", ep_vortex_media[port].epm_name);
487 :
488 : /* tell ifconfig what currently-active media is. */
489 0 : ifmedia_set(ifm, ep_default_to_media[port]);
490 :
491 : /* XXX autoselect not yet implemented */
492 0 : }
493 :
494 :
495 : /*
496 : * Find media present on large-packet-capable elink3 devices.
497 : * Show onboard configuration of large-packet-capable elink3 devices
498 : * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
499 : * Use media and card-version info in window 3 instead.
500 : *
501 : * XXX how much of this works with 3c515, pcmcia 10/100?
502 : */
503 : void
504 0 : ep_vortex_probemedia(struct ep_softc *sc)
505 : {
506 0 : bus_space_tag_t iot = sc->sc_iot;
507 0 : bus_space_handle_t ioh = sc->sc_ioh;
508 0 : struct ifmedia *ifm = &sc->sc_mii.mii_media;
509 : u_int config1, conn;
510 : int reset_options;
511 : int default_media; /* 3-bit encoding of default (EEPROM) media */
512 : int autoselect; /* boolean: should default to autoselect */
513 : const char *medium_name;
514 : register int i;
515 :
516 0 : GO_WINDOW(3);
517 0 : config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
518 0 : reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
519 0 : GO_WINDOW(0);
520 :
521 0 : default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
522 0 : autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
523 :
524 : /* set available media options */
525 : conn = 0;
526 0 : for (i = 0; i < nitems(ep_vortex_media); i++) {
527 0 : const struct ep_media *epm = ep_vortex_media + i;
528 :
529 0 : if ((reset_options & epm->epm_eeprom_data) != 0) {
530 0 : if (conn)
531 0 : printf("/");
532 0 : printf("%s", epm->epm_name);
533 0 : conn |= epm->epm_conn;
534 0 : ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0);
535 0 : }
536 : }
537 :
538 0 : sc->ep_connectors = conn;
539 :
540 : /* Show eeprom's idea of default media. */
541 0 : medium_name = (default_media > nitems(ep_vortex_media) - 1)
542 : ? "(unknown/impossible media)"
543 0 : : ep_vortex_media[default_media].epm_name;
544 0 : printf(" default %s%s",
545 0 : medium_name, (autoselect) ? "/autoselect" : "");
546 : /* sc->sc_media = ep_vortex_media[default_media].epm_ifdata;*/
547 :
548 : #ifdef notyet
549 : /*
550 : * Set default: either the active interface the card
551 : * reads from the EEPROM, or if autoselect is true,
552 : * whatever we find is actually connected.
553 : *
554 : * XXX autoselect not yet implemented.
555 : */
556 : #endif /* notyet */
557 :
558 : /* tell ifconfig what currently-active media is. */
559 0 : ifmedia_set(ifm, ep_default_to_media[default_media]);
560 0 : }
561 :
562 : /*
563 : * Bring device up.
564 : *
565 : * The order in here seems important. Otherwise we may not receive
566 : * interrupts. ?!
567 : */
568 : void
569 0 : epinit(struct ep_softc *sc)
570 : {
571 0 : register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
572 0 : bus_space_tag_t iot = sc->sc_iot;
573 0 : bus_space_handle_t ioh = sc->sc_ioh;
574 : int i;
575 :
576 : /* make sure any pending reset has completed before touching board */
577 0 : ep_finish_reset(iot, ioh);
578 :
579 : /* cancel any pending I/O */
580 0 : epstop(sc);
581 :
582 0 : if (sc->bustype != EP_BUS_PCI) {
583 0 : GO_WINDOW(0);
584 0 : bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
585 0 : bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
586 0 : }
587 :
588 0 : if (sc->bustype == EP_BUS_PCMCIA) {
589 0 : bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
590 0 : }
591 :
592 0 : GO_WINDOW(2);
593 0 : for (i = 0; i < 6; i++) /* Reload the ether_addr. */
594 0 : bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
595 : sc->sc_arpcom.ac_enaddr[i]);
596 :
597 0 : if (sc->bustype == EP_BUS_PCI || sc->bustype == EP_BUS_EISA)
598 : /*
599 : * Reset the station-address receive filter.
600 : * A bug workaround for busmastering (Vortex, Demon) cards.
601 : */
602 0 : for (i = 0; i < 6; i++)
603 0 : bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
604 :
605 0 : ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
606 0 : ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
607 :
608 0 : GO_WINDOW(1); /* Window 1 is operating window */
609 0 : for (i = 0; i < 31; i++)
610 0 : bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS));
611 :
612 : /* Set threshold for for Tx-space available interrupt. */
613 0 : bus_space_write_2(iot, ioh, EP_COMMAND,
614 : SET_TX_AVAIL_THRESH | (1600 >> sc->txashift));
615 :
616 0 : if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
617 : /* Enable options in the PCMCIA LAN COR register, via
618 : * RoadRunner Window 1.
619 : *
620 : * XXX MAGIC CONSTANTS!
621 : */
622 : u_int16_t cor;
623 :
624 0 : bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, (1 << 11));
625 :
626 0 : cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
627 0 : bus_space_write_2(iot, ioh, 0, cor);
628 :
629 0 : bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
630 0 : bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
631 :
632 0 : if (sc->ep_flags & EP_FLAGS_MII) {
633 0 : ep_roadrunner_mii_enable(sc);
634 0 : GO_WINDOW(1);
635 0 : }
636 0 : }
637 :
638 : /* Enable interrupts. */
639 0 : bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK |
640 : S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
641 0 : bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK |
642 : S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
643 :
644 : /*
645 : * Attempt to get rid of any stray interrupts that occurred during
646 : * configuration. On the i386 this isn't possible because one may
647 : * already be queued. However, a single stray interrupt is
648 : * unimportant.
649 : */
650 0 : bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
651 :
652 0 : epsetfilter(sc);
653 0 : epsetmedia(sc, sc->sc_mii.mii_media.ifm_cur->ifm_data);
654 :
655 0 : bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
656 0 : bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
657 :
658 0 : epmbuffill(sc);
659 :
660 : /* Interface is now `running', with no output active. */
661 0 : ifp->if_flags |= IFF_RUNNING;
662 0 : ifq_clr_oactive(&ifp->if_snd);
663 :
664 : /* Attempt to start output, if any. */
665 0 : epstart(ifp);
666 0 : }
667 :
668 : /*
669 : * Set multicast receive filter.
670 : * elink3 hardware has no selective multicast filter in hardware.
671 : * Enable reception of all multicasts and filter in software.
672 : */
673 : void
674 0 : epsetfilter(struct ep_softc *sc)
675 : {
676 0 : register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
677 :
678 0 : GO_WINDOW(1); /* Window 1 is operating window */
679 0 : bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
680 : FIL_INDIVIDUAL | FIL_BRDCST |
681 : ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
682 : ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
683 0 : }
684 :
685 :
686 : int
687 0 : ep_media_change(struct ifnet *ifp)
688 : {
689 0 : register struct ep_softc *sc = ifp->if_softc;
690 :
691 0 : return epsetmedia(sc, sc->sc_mii.mii_media.ifm_cur->ifm_data);
692 : }
693 :
694 : /*
695 : * Reset and enable the MII on the RoadRunner.
696 : */
697 : void
698 0 : ep_roadrunner_mii_enable(struct ep_softc *sc)
699 : {
700 0 : bus_space_tag_t iot = sc->sc_iot;
701 0 : bus_space_handle_t ioh = sc->sc_ioh;
702 :
703 0 : GO_WINDOW(3);
704 0 : bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
705 : EP_PCI_100BASE_MII|EP_RUNNER_ENABLE_MII);
706 0 : delay(1000);
707 0 : bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
708 : EP_PCI_100BASE_MII|EP_RUNNER_MII_RESET|EP_RUNNER_ENABLE_MII);
709 0 : ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
710 0 : ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
711 0 : delay(1000);
712 0 : bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
713 : EP_PCI_100BASE_MII|EP_RUNNER_ENABLE_MII);
714 0 : }
715 :
716 : /*
717 : * Set active media to a specific given EPMEDIA_<> value.
718 : * For vortex/demon/boomerang cards, update media field in w3_internal_config,
719 : * and power on selected transceiver.
720 : * For 3c509-generation cards (3c509/3c579/3c589/3c509B),
721 : * update media field in w0_address_config, and power on selected xcvr.
722 : */
723 : int
724 0 : epsetmedia(struct ep_softc *sc, int medium)
725 : {
726 0 : bus_space_tag_t iot = sc->sc_iot;
727 0 : bus_space_handle_t ioh = sc->sc_ioh;
728 : int w4_media;
729 : int config0, config1;
730 :
731 : /*
732 : * you can `ifconfig (link0|-link0) ep0' to get the following
733 : * behaviour:
734 : * -link0 disable AUI/UTP. enable BNC.
735 : * link0 disable BNC. enable AUI.
736 : * link1 if the card has a UTP connector, and link0 is
737 : * set too, then you get the UTP port.
738 : */
739 :
740 : /*
741 : * First, change the media-control bits in EP_W4_MEDIA_TYPE.
742 : */
743 :
744 : /* Turn everything off. First turn off linkbeat and UTP. */
745 0 : GO_WINDOW(4);
746 0 : w4_media = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE);
747 0 : w4_media = w4_media & ~(ENABLE_UTP|SQE_ENABLE);
748 0 : bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, w4_media);
749 :
750 : /* Turn off coax */
751 0 : bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
752 0 : delay(1000);
753 :
754 : /* If the device has MII, select it, and then tell the
755 : * PHY which media to use.
756 : */
757 0 : if (sc->ep_flags & EP_FLAGS_MII) {
758 0 : GO_WINDOW(3);
759 :
760 0 : if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
761 : int resopt;
762 :
763 0 : resopt = bus_space_read_2(iot, ioh,
764 : EP_W3_RESET_OPTIONS);
765 0 : bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,
766 : resopt | EP_RUNNER_ENABLE_MII);
767 0 : }
768 :
769 0 : config0 = (u_int)bus_space_read_2(iot, ioh,
770 : EP_W3_INTERNAL_CONFIG);
771 0 : config1 = (u_int)bus_space_read_2(iot, ioh,
772 : EP_W3_INTERNAL_CONFIG + 2);
773 :
774 0 : config1 = config1 & ~CONFIG_MEDIAMASK;
775 0 : config1 |= (EPMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
776 :
777 0 : bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
778 0 : bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
779 0 : GO_WINDOW(1); /* back to operating window */
780 :
781 0 : mii_mediachg(&sc->sc_mii);
782 0 : return (0);
783 : }
784 :
785 : /*
786 : * Now turn on the selected media/transceiver.
787 : */
788 0 : GO_WINDOW(4);
789 0 : switch (medium) {
790 : case EPMEDIA_10BASE_T:
791 0 : bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, (ENABLE_UTP |
792 : (sc->bustype == EP_BUS_PCMCIA ? MEDIA_LED : 0)));
793 0 : break;
794 :
795 : case EPMEDIA_10BASE_2:
796 0 : bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
797 0 : DELAY(1000); /* 50ms not enough? */
798 0 : break;
799 :
800 : /* XXX following only for new-generation cards */
801 : case EPMEDIA_100BASE_TX:
802 : case EPMEDIA_100BASE_FX:
803 : case EPMEDIA_100BASE_T4: /* XXX check documentation */
804 0 : bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
805 : w4_media | LINKBEAT_ENABLE);
806 0 : DELAY(1000); /* not strictly necessary? */
807 0 : break;
808 :
809 : case EPMEDIA_AUI:
810 0 : bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
811 : w4_media | SQE_ENABLE);
812 0 : DELAY(1000); /* not strictly necessary? */
813 0 : break;
814 : case EPMEDIA_MII:
815 : break;
816 : default:
817 : #if defined(EP_DEBUG)
818 : printf("%s unknown media 0x%x\n", sc->sc_dev.dv_xname, medium);
819 : #endif
820 : break;
821 :
822 : }
823 :
824 : /*
825 : * Tell the chip which PHY [sic] to use.
826 : */
827 0 : switch (sc->ep_chipset) {
828 : case EP_CHIPSET_VORTEX:
829 : case EP_CHIPSET_BOOMERANG2:
830 0 : GO_WINDOW(3);
831 0 : config0 = (u_int)bus_space_read_2(iot, ioh,
832 : EP_W3_INTERNAL_CONFIG);
833 0 : config1 = (u_int)bus_space_read_2(iot, ioh,
834 : EP_W3_INTERNAL_CONFIG + 2);
835 :
836 : #if defined(EP_DEBUG)
837 : printf("%s: read 0x%x, 0x%x from EP_W3_CONFIG register\n",
838 : sc->sc_dev.dv_xname, config0, config1);
839 : #endif
840 0 : config1 = config1 & ~CONFIG_MEDIAMASK;
841 0 : config1 |= (medium << CONFIG_MEDIAMASK_SHIFT);
842 :
843 : #if defined(EP_DEBUG)
844 : printf("epsetmedia: %s: medium 0x%x, 0x%x to EP_W3_CONFIG\n",
845 : sc->sc_dev.dv_xname, medium, config1);
846 : #endif
847 0 : bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
848 0 : bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
849 0 : break;
850 :
851 : default:
852 0 : GO_WINDOW(0);
853 0 : config0 = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG);
854 0 : config0 &= 0x3fff;
855 0 : bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,
856 : config0 | (medium << 14));
857 0 : DELAY(1000);
858 0 : break;
859 : }
860 :
861 0 : GO_WINDOW(1); /* Window 1 is operating window */
862 0 : return (0);
863 0 : }
864 :
865 :
866 : /*
867 : * Get currently-selected media from card.
868 : * (if_media callback, may be called before interface is brought up).
869 : */
870 : void
871 0 : ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
872 : {
873 0 : register struct ep_softc *sc = ifp->if_softc;
874 0 : bus_space_tag_t iot = sc->sc_iot;
875 0 : bus_space_handle_t ioh = sc->sc_ioh;
876 : u_int config1;
877 : u_int ep_mediastatus;
878 :
879 : /*
880 : * If we have MII, go ask the PHY what's going on.
881 : */
882 0 : if (sc->ep_flags & EP_FLAGS_MII) {
883 0 : mii_pollstat(&sc->sc_mii);
884 0 : req->ifm_active = sc->sc_mii.mii_media_active;
885 0 : req->ifm_status = sc->sc_mii.mii_media_status;
886 0 : return;
887 : }
888 :
889 : /* XXX read from softc when we start autosensing media */
890 0 : req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
891 :
892 0 : switch (sc->ep_chipset) {
893 : case EP_CHIPSET_VORTEX:
894 : case EP_CHIPSET_BOOMERANG:
895 0 : GO_WINDOW(3);
896 0 : delay(5000);
897 :
898 0 : config1 = bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
899 0 : GO_WINDOW(1);
900 :
901 : config1 =
902 0 : (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
903 0 : req->ifm_active = ep_default_to_media[config1];
904 :
905 : /* XXX check full-duplex bits? */
906 :
907 0 : GO_WINDOW(4);
908 0 : req->ifm_status = IFM_AVALID; /* XXX */
909 0 : ep_mediastatus = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE);
910 0 : if (ep_mediastatus & LINKBEAT_DETECT)
911 0 : req->ifm_status |= IFM_ACTIVE; /* XXX automedia */
912 :
913 : break;
914 :
915 : case EP_CHIPSET_UNKNOWN:
916 : case EP_CHIPSET_3C509:
917 0 : req->ifm_status = 0; /* XXX */
918 0 : break;
919 :
920 : default:
921 0 : printf("%s: media_status on unknown chipset 0x%x\n",
922 0 : ifp->if_xname, sc->ep_chipset);
923 0 : break;
924 : }
925 :
926 : /* XXX look for softc heartbeat for other chips or media */
927 :
928 0 : GO_WINDOW(1);
929 0 : return;
930 0 : }
931 :
932 :
933 :
934 : /*
935 : * Start outputting on the interface.
936 : * Always called as splnet().
937 : */
938 : void
939 0 : epstart(struct ifnet *ifp)
940 : {
941 0 : register struct ep_softc *sc = ifp->if_softc;
942 0 : bus_space_tag_t iot = sc->sc_iot;
943 0 : bus_space_handle_t ioh = sc->sc_ioh;
944 : struct mbuf *m, *m0;
945 : caddr_t data;
946 : int sh, len, pad, txreg;
947 :
948 : /* Don't transmit if interface is busy or not running */
949 0 : if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
950 0 : return;
951 :
952 : startagain:
953 : /* Sneak a peek at the next packet */
954 0 : m0 = ifq_deq_begin(&ifp->if_snd);
955 0 : if (m0 == NULL)
956 0 : return;
957 :
958 : /* We need to use m->m_pkthdr.len, so require the header */
959 0 : if ((m0->m_flags & M_PKTHDR) == 0)
960 0 : panic("epstart: no header mbuf");
961 0 : len = m0->m_pkthdr.len;
962 :
963 0 : pad = (4 - len) & 3;
964 :
965 : /*
966 : * The 3c509 automatically pads short packets to minimum ethernet
967 : * length, but we drop packets that are too large. Perhaps we should
968 : * truncate them instead?
969 : */
970 0 : if (len + pad > ETHER_MAX_LEN) {
971 : /* packet is obviously too large: toss it */
972 0 : ++ifp->if_oerrors;
973 0 : ifq_deq_commit(&ifp->if_snd, m0);
974 0 : m_freem(m0);
975 0 : goto readcheck;
976 : }
977 :
978 0 : if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_FREE_TX)) <
979 0 : len + pad + 4) {
980 0 : bus_space_write_2(iot, ioh, EP_COMMAND,
981 : SET_TX_AVAIL_THRESH | ((len + pad + 4) >> sc->txashift));
982 : /* not enough room in FIFO */
983 0 : ifq_deq_rollback(&ifp->if_snd, m0);
984 0 : ifq_set_oactive(&ifp->if_snd);
985 0 : return;
986 : } else {
987 0 : bus_space_write_2(iot, ioh, EP_COMMAND,
988 : SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE);
989 : }
990 :
991 0 : ifq_deq_commit(&ifp->if_snd, m0);
992 0 : if (m0 == NULL)
993 0 : return;
994 :
995 0 : bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
996 : ((len / 4 + sc->tx_start_thresh) /*>> sc->txashift*/));
997 :
998 : #if NBPFILTER > 0
999 0 : if (ifp->if_bpf)
1000 0 : bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1001 : #endif
1002 :
1003 : /*
1004 : * Do the output at splhigh() so that an interrupt from another device
1005 : * won't cause a FIFO underrun.
1006 : */
1007 0 : sh = splhigh();
1008 :
1009 0 : txreg = ep_w1_reg(sc, EP_W1_TX_PIO_WR_1);
1010 :
1011 0 : bus_space_write_2(iot, ioh, txreg, len);
1012 0 : bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1013 0 : if (EP_IS_BUS_32(sc->bustype)) {
1014 0 : for (m = m0; m; ) {
1015 0 : data = mtod(m, u_int8_t *);
1016 0 : if (m->m_len > 3 && ALIGNED_POINTER(data, uint32_t)) {
1017 0 : bus_space_write_raw_multi_4(iot, ioh, txreg,
1018 : data, m->m_len & ~3);
1019 0 : if (m->m_len & 3)
1020 0 : bus_space_write_multi_1(iot, ioh, txreg,
1021 : data + (m->m_len & ~3),
1022 : m->m_len & 3);
1023 : } else
1024 0 : bus_space_write_multi_1(iot, ioh, txreg,
1025 : data, m->m_len);
1026 0 : m0 = m_free(m);
1027 : m = m0;
1028 : }
1029 : } else {
1030 0 : for (m = m0; m; ) {
1031 0 : data = mtod(m, u_int8_t *);
1032 0 : if (m->m_len > 1 && ALIGNED_POINTER(data, uint16_t)) {
1033 0 : bus_space_write_raw_multi_2(iot, ioh, txreg,
1034 : data, m->m_len & ~1);
1035 0 : if (m->m_len & 1)
1036 0 : bus_space_write_1(iot, ioh, txreg,
1037 : *(data + m->m_len - 1));
1038 : } else
1039 0 : bus_space_write_multi_1(iot, ioh, txreg,
1040 : data, m->m_len);
1041 0 : m0 = m_free(m);
1042 : m = m0;
1043 : }
1044 : }
1045 0 : while (pad--)
1046 0 : bus_space_write_1(iot, ioh, txreg, 0);
1047 :
1048 0 : splx(sh);
1049 :
1050 : readcheck:
1051 0 : if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS)) &
1052 0 : ERR_INCOMPLETE) == 0) {
1053 : /* We received a complete packet. */
1054 0 : u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
1055 :
1056 0 : if ((status & S_INTR_LATCH) == 0) {
1057 : /*
1058 : * No interrupt, read the packet and continue
1059 : * Is this supposed to happen? Is my motherboard
1060 : * completely busted?
1061 : */
1062 0 : epread(sc);
1063 : } else
1064 : /* Got an interrupt, return to get it serviced. */
1065 0 : return;
1066 0 : } else {
1067 : /* Check if we are stuck and reset [see XXX comment] */
1068 0 : if (epstatus(sc)) {
1069 : #ifdef EP_DEBUG
1070 : if (ifp->if_flags & IFF_DEBUG)
1071 : printf("%s: adapter reset\n",
1072 : sc->sc_dev.dv_xname);
1073 : #endif
1074 0 : epreset(sc);
1075 0 : }
1076 : }
1077 :
1078 0 : goto startagain;
1079 0 : }
1080 :
1081 :
1082 : /*
1083 : * XXX: The 3c509 card can get in a mode where both the fifo status bit
1084 : * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1085 : * We detect this situation and we reset the adapter.
1086 : * It happens at times when there is a lot of broadcast traffic
1087 : * on the cable (once in a blue moon).
1088 : */
1089 : int
1090 0 : epstatus(struct ep_softc *sc)
1091 : {
1092 0 : bus_space_tag_t iot = sc->sc_iot;
1093 0 : bus_space_handle_t ioh = sc->sc_ioh;
1094 : u_int16_t fifost;
1095 :
1096 : /*
1097 : * Check the FIFO status and act accordingly
1098 : */
1099 0 : GO_WINDOW(4);
1100 0 : fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
1101 0 : GO_WINDOW(1);
1102 :
1103 0 : if (fifost & FIFOS_RX_UNDERRUN) {
1104 : #ifdef EP_DEBUG
1105 : if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1106 : printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1107 : #endif
1108 0 : epreset(sc);
1109 0 : return 0;
1110 : }
1111 :
1112 0 : if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1113 : #ifdef EP_DEBUG
1114 : if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1115 : printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1116 : #endif
1117 0 : return 1;
1118 : }
1119 :
1120 0 : if (fifost & FIFOS_RX_OVERRUN) {
1121 : #ifdef EP_DEBUG
1122 : if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1123 : printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1124 : #endif
1125 0 : return 1;
1126 : }
1127 :
1128 0 : if (fifost & FIFOS_TX_OVERRUN) {
1129 : #ifdef EP_DEBUG
1130 : if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1131 : printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1132 : #endif
1133 0 : epreset(sc);
1134 0 : return 0;
1135 : }
1136 :
1137 0 : return 0;
1138 0 : }
1139 :
1140 :
1141 : void
1142 0 : eptxstat(struct ep_softc *sc)
1143 : {
1144 0 : bus_space_tag_t iot = sc->sc_iot;
1145 0 : bus_space_handle_t ioh = sc->sc_ioh;
1146 : int i;
1147 :
1148 : /*
1149 : * We need to read+write TX_STATUS until we get a 0 status
1150 : * in order to turn off the interrupt flag.
1151 : */
1152 0 : while ((i = bus_space_read_1(iot, ioh,
1153 0 : ep_w1_reg(sc, EP_W1_TX_STATUS))) & TXS_COMPLETE) {
1154 0 : bus_space_write_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS),
1155 : 0x0);
1156 :
1157 0 : if (i & TXS_JABBER) {
1158 0 : ++sc->sc_arpcom.ac_if.if_oerrors;
1159 : #ifdef EP_DEBUG
1160 : if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1161 : printf("%s: jabber (%x)\n",
1162 : sc->sc_dev.dv_xname, i);
1163 : #endif
1164 0 : epreset(sc);
1165 0 : } else if (i & TXS_UNDERRUN) {
1166 0 : ++sc->sc_arpcom.ac_if.if_oerrors;
1167 : #ifdef EP_DEBUG
1168 : if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
1169 : printf("%s: fifo underrun (%x) @%d\n",
1170 : sc->sc_dev.dv_xname, i,
1171 : sc->tx_start_thresh);
1172 : #endif
1173 0 : if (sc->tx_succ_ok < 100)
1174 0 : sc->tx_start_thresh = min(ETHER_MAX_LEN,
1175 0 : sc->tx_start_thresh + 20);
1176 0 : sc->tx_succ_ok = 0;
1177 0 : epreset(sc);
1178 0 : } else if (i & TXS_MAX_COLLISION) {
1179 0 : ++sc->sc_arpcom.ac_if.if_collisions;
1180 0 : bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
1181 0 : ifq_clr_oactive(&sc->sc_arpcom.ac_if.if_snd);
1182 0 : } else
1183 0 : sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1184 : }
1185 0 : }
1186 :
1187 : int
1188 0 : epintr(void *arg)
1189 : {
1190 0 : register struct ep_softc *sc = arg;
1191 0 : bus_space_tag_t iot = sc->sc_iot;
1192 0 : bus_space_handle_t ioh = sc->sc_ioh;
1193 0 : struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1194 : u_int16_t status;
1195 : int ret = 0;
1196 :
1197 0 : for (;;) {
1198 0 : bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1199 :
1200 0 : status = bus_space_read_2(iot, ioh, EP_STATUS);
1201 :
1202 0 : if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1203 0 : S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
1204 : break;
1205 :
1206 : ret = 1;
1207 :
1208 : /*
1209 : * Acknowledge any interrupts. It's important that we do this
1210 : * first, since there would otherwise be a race condition.
1211 : * Due to the i386 interrupt queueing, we may get spurious
1212 : * interrupts occasionally.
1213 : */
1214 0 : bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status);
1215 :
1216 0 : if (status & S_RX_COMPLETE)
1217 0 : epread(sc);
1218 0 : if (status & S_TX_AVAIL) {
1219 0 : ifq_clr_oactive(&ifp->if_snd);
1220 0 : epstart(ifp);
1221 0 : }
1222 0 : if (status & S_CARD_FAILURE) {
1223 0 : epreset(sc);
1224 0 : return (1);
1225 : }
1226 0 : if (status & S_TX_COMPLETE) {
1227 0 : eptxstat(sc);
1228 0 : epstart(ifp);
1229 0 : }
1230 : }
1231 :
1232 : /* no more interrupts */
1233 0 : return (ret);
1234 0 : }
1235 :
1236 : void
1237 0 : epread(struct ep_softc *sc)
1238 : {
1239 0 : bus_space_tag_t iot = sc->sc_iot;
1240 0 : bus_space_handle_t ioh = sc->sc_ioh;
1241 0 : struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1242 0 : struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1243 : struct mbuf *m;
1244 : int len, error = 0;
1245 :
1246 0 : len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS));
1247 :
1248 : again:
1249 : #ifdef EP_DEBUG
1250 : if (ifp->if_flags & IFF_DEBUG) {
1251 : int err = len & ERR_MASK;
1252 : char *s = NULL;
1253 :
1254 : if (len & ERR_INCOMPLETE)
1255 : s = "incomplete packet";
1256 : else if (err == ERR_OVERRUN)
1257 : s = "packet overrun";
1258 : else if (err == ERR_RUNT)
1259 : s = "runt packet";
1260 : else if (err == ERR_ALIGNMENT)
1261 : s = "bad alignment";
1262 : else if (err == ERR_CRC)
1263 : s = "bad crc";
1264 : else if (err == ERR_OVERSIZE)
1265 : s = "oversized packet";
1266 : else if (err == ERR_DRIBBLE)
1267 : s = "dribble bits";
1268 :
1269 : if (s)
1270 : printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1271 : }
1272 : #endif
1273 :
1274 0 : if (len & ERR_INCOMPLETE)
1275 : goto done;
1276 :
1277 0 : if (len & ERR_RX) {
1278 0 : ++ifp->if_ierrors;
1279 : error = 1;
1280 0 : goto done;
1281 : }
1282 :
1283 0 : len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1284 :
1285 : /* Pull packet off interface. */
1286 0 : m = epget(sc, len);
1287 0 : if (m == NULL) {
1288 0 : ifp->if_ierrors++;
1289 : error = 1;
1290 0 : goto done;
1291 : }
1292 :
1293 0 : ml_enqueue(&ml, m);
1294 :
1295 : /*
1296 : * In periods of high traffic we can actually receive enough
1297 : * packets so that the fifo overrun bit will be set at this point,
1298 : * even though we just read a packet. In this case we
1299 : * are not going to receive any more interrupts. We check for
1300 : * this condition and read again until the fifo is not full.
1301 : * We could simplify this test by not using epstatus(), but
1302 : * rechecking the RX_STATUS register directly. This test could
1303 : * result in unnecessary looping in cases where there is a new
1304 : * packet but the fifo is not full, but it will not fix the
1305 : * stuck behavior.
1306 : *
1307 : * Even with this improvement, we still get packet overrun errors
1308 : * which are hurting performance. Maybe when I get some more time
1309 : * I'll modify epread() so that it can handle RX_EARLY interrupts.
1310 : */
1311 0 : if (epstatus(sc)) {
1312 0 : len = bus_space_read_2(iot, ioh,
1313 : ep_w1_reg(sc, EP_W1_RX_STATUS));
1314 : /* Check if we are stuck and reset [see XXX comment] */
1315 0 : if (len & ERR_INCOMPLETE) {
1316 : #ifdef EP_DEBUG
1317 : if (ifp->if_flags & IFF_DEBUG)
1318 : printf("%s: adapter reset\n",
1319 : sc->sc_dev.dv_xname);
1320 : #endif
1321 0 : epreset(sc);
1322 0 : goto done;
1323 : }
1324 0 : goto again;
1325 : }
1326 : done:
1327 0 : if (error)
1328 0 : ep_discard_rxtop(iot, ioh);
1329 0 : if_input(ifp, &ml);
1330 0 : }
1331 :
1332 : struct mbuf *
1333 0 : epget(struct ep_softc *sc, int totlen)
1334 : {
1335 0 : bus_space_tag_t iot = sc->sc_iot;
1336 0 : bus_space_handle_t ioh = sc->sc_ioh;
1337 : struct mbuf *m;
1338 : caddr_t data;
1339 : int len, pad, off, sh, rxreg;
1340 :
1341 0 : splassert(IPL_NET);
1342 :
1343 0 : m = sc->mb[sc->next_mb];
1344 0 : sc->mb[sc->next_mb] = NULL;
1345 0 : if (m == NULL) {
1346 0 : m = MCLGETI(NULL, M_DONTWAIT, NULL, MCLBYTES);
1347 : /* If the queue is no longer full, refill. */
1348 0 : if (!timeout_pending(&sc->sc_epmbuffill_tmo))
1349 0 : timeout_add(&sc->sc_epmbuffill_tmo, 1);
1350 : }
1351 0 : if (!m)
1352 0 : return (NULL);
1353 :
1354 0 : sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1355 :
1356 : len = MCLBYTES;
1357 0 : m->m_pkthdr.len = totlen;
1358 0 : m->m_len = totlen;
1359 : pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1360 0 : m->m_data += pad;
1361 : len -= pad;
1362 :
1363 : /*
1364 : * We read the packet at splhigh() so that an interrupt from another
1365 : * device doesn't cause the card's buffer to overflow while we're
1366 : * reading it. We may still lose packets at other times.
1367 : */
1368 0 : sh = splhigh();
1369 :
1370 0 : rxreg = ep_w1_reg(sc, EP_W1_RX_PIO_RD_1);
1371 :
1372 : off = 0;
1373 0 : while (totlen) {
1374 0 : len = min(totlen, M_TRAILINGSPACE(m));
1375 0 : if (len == 0)
1376 0 : panic("ep_get: packet does not fit in MCLBYTES");
1377 :
1378 0 : data = mtod(m, u_int8_t *);
1379 0 : if (EP_IS_BUS_32(sc->bustype))
1380 0 : pad = 4 - ((u_long)(data + off) & 0x3);
1381 : else
1382 0 : pad = (u_long)(data + off) & 0x1;
1383 :
1384 0 : if (pad) {
1385 0 : if (pad < len)
1386 0 : pad = len;
1387 0 : bus_space_read_multi_1(iot, ioh, rxreg,
1388 : data + off, pad);
1389 : len = pad;
1390 0 : } else if (EP_IS_BUS_32(sc->bustype) && len > 3 &&
1391 : ALIGNED_POINTER(data, uint32_t)) {
1392 0 : len &= ~3;
1393 0 : bus_space_read_raw_multi_4(iot, ioh, rxreg,
1394 : data + off, len);
1395 0 : } else if (len > 1 && ALIGNED_POINTER(data, uint16_t)) {
1396 0 : len &= ~1;
1397 0 : bus_space_read_raw_multi_2(iot, ioh, rxreg,
1398 : data + off, len);
1399 0 : } else
1400 0 : bus_space_read_multi_1(iot, ioh, rxreg,
1401 : data + off, len);
1402 :
1403 0 : off += len;
1404 0 : totlen -= len;
1405 : }
1406 :
1407 0 : ep_discard_rxtop(iot, ioh);
1408 :
1409 0 : splx(sh);
1410 :
1411 0 : return m;
1412 0 : }
1413 :
1414 : int
1415 0 : epioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1416 : {
1417 0 : struct ep_softc *sc = ifp->if_softc;
1418 0 : struct ifreq *ifr = (struct ifreq *)data;
1419 : int s, error = 0;
1420 :
1421 0 : s = splnet();
1422 :
1423 0 : switch (cmd) {
1424 : case SIOCSIFADDR:
1425 0 : ifp->if_flags |= IFF_UP;
1426 0 : if (!(ifp->if_flags & IFF_RUNNING))
1427 0 : epinit(sc);
1428 : break;
1429 :
1430 : case SIOCSIFFLAGS:
1431 0 : if (ifp->if_flags & IFF_UP) {
1432 0 : if (ifp->if_flags & IFF_RUNNING)
1433 0 : error = ENETRESET;
1434 : else
1435 0 : epinit(sc);
1436 : } else {
1437 0 : if (ifp->if_flags & IFF_RUNNING)
1438 0 : epstop(sc);
1439 : }
1440 : break;
1441 :
1442 : case SIOCSIFMEDIA:
1443 : case SIOCGIFMEDIA:
1444 0 : error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1445 0 : break;
1446 :
1447 : default:
1448 0 : error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1449 0 : }
1450 :
1451 0 : if (error == ENETRESET) {
1452 0 : if (ifp->if_flags & IFF_RUNNING)
1453 0 : epreset(sc);
1454 : error = 0;
1455 0 : }
1456 :
1457 0 : splx(s);
1458 0 : return (error);
1459 : }
1460 :
1461 : void
1462 0 : epreset(struct ep_softc *sc)
1463 : {
1464 : int s;
1465 :
1466 0 : s = splnet();
1467 0 : epinit(sc);
1468 0 : splx(s);
1469 0 : }
1470 :
1471 : void
1472 0 : epwatchdog(struct ifnet *ifp)
1473 : {
1474 0 : struct ep_softc *sc = ifp->if_softc;
1475 :
1476 0 : log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1477 0 : ++sc->sc_arpcom.ac_if.if_oerrors;
1478 :
1479 0 : epreset(sc);
1480 0 : }
1481 :
1482 : void
1483 0 : epstop(struct ep_softc *sc)
1484 : {
1485 0 : struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1486 0 : bus_space_tag_t iot = sc->sc_iot;
1487 0 : bus_space_handle_t ioh = sc->sc_ioh;
1488 :
1489 0 : ifp->if_flags &= ~IFF_RUNNING;
1490 0 : ifq_clr_oactive(&ifp->if_snd);
1491 :
1492 0 : if (sc->ep_flags & EP_FLAGS_MII) {
1493 0 : mii_down(&sc->sc_mii);
1494 0 : }
1495 :
1496 0 : if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
1497 : /* Clear the FIFO buffer count, thus halting
1498 : * any currently-running transactions.
1499 : */
1500 0 : GO_WINDOW(1); /* sanity */
1501 0 : bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
1502 0 : bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
1503 0 : }
1504 :
1505 0 : bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
1506 0 : ep_discard_rxtop(iot, ioh);
1507 :
1508 0 : bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
1509 0 : bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
1510 :
1511 0 : ep_reset_cmd(sc, EP_COMMAND, RX_RESET);
1512 0 : ep_reset_cmd(sc, EP_COMMAND, TX_RESET);
1513 :
1514 0 : bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1515 0 : bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
1516 0 : bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
1517 0 : bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
1518 :
1519 0 : epmbufempty(sc);
1520 0 : }
1521 :
1522 : /*
1523 : * We get eeprom data from the id_port given an offset into the
1524 : * eeprom. Basically; after the ID_sequence is sent to all of
1525 : * the cards; they enter the ID_CMD state where they will accept
1526 : * command requests. 0x80-0xbf loads the eeprom data. We then
1527 : * read the port 16 times and with every read; the cards check
1528 : * for contention (ie: if one card writes a 0 bit and another
1529 : * writes a 1 bit then the host sees a 0. At the end of the cycle;
1530 : * each card compares the data on the bus; if there is a difference
1531 : * then that card goes into ID_WAIT state again). In the meantime;
1532 : * one bit of data is returned in the AX register which is conveniently
1533 : * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1534 : * bit of data with each read.
1535 : *
1536 : * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1537 : */
1538 : u_int16_t
1539 0 : epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
1540 : {
1541 : u_int16_t data = 0;
1542 : int i;
1543 :
1544 0 : bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1545 0 : delay(1000);
1546 0 : for (i = 0; i < 16; i++)
1547 0 : data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1548 0 : return (data);
1549 : }
1550 :
1551 : int
1552 0 : epbusyeeprom(struct ep_softc *sc)
1553 : {
1554 0 : bus_space_tag_t iot = sc->sc_iot;
1555 0 : bus_space_handle_t ioh = sc->sc_ioh;
1556 : int i = 100, j;
1557 :
1558 0 : while (i--) {
1559 0 : j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
1560 0 : if (j & EEPROM_BUSY)
1561 0 : delay(100);
1562 : else
1563 : break;
1564 : }
1565 0 : if (!i) {
1566 0 : printf("\n%s: eeprom failed to come ready\n",
1567 0 : sc->sc_dev.dv_xname);
1568 0 : return (1);
1569 : }
1570 0 : if (sc->bustype != EP_BUS_PCMCIA && sc->bustype != EP_BUS_PCI &&
1571 0 : (j & EEPROM_TST_MODE)) {
1572 0 : printf("\n%s: erase pencil mark, or disable PnP mode!\n",
1573 0 : sc->sc_dev.dv_xname);
1574 0 : return (1);
1575 : }
1576 0 : return (0);
1577 0 : }
1578 :
1579 : u_int16_t
1580 0 : ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
1581 : {
1582 : u_int16_t readcmd;
1583 :
1584 : /*
1585 : * RoadRunner has a larger EEPROM, so a different read command
1586 : * is required.
1587 : */
1588 0 : if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER)
1589 0 : readcmd = READ_EEPROM_RR;
1590 : else
1591 : readcmd = READ_EEPROM;
1592 :
1593 0 : if (epbusyeeprom(sc))
1594 0 : return (0); /* XXX why is eeprom busy? */
1595 0 : bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W0_EEPROM_COMMAND,
1596 : readcmd | offset);
1597 0 : if (epbusyeeprom(sc))
1598 0 : return (0); /* XXX why is eeprom busy? */
1599 :
1600 0 : return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W0_EEPROM_DATA));
1601 0 : }
1602 :
1603 : void
1604 0 : epmbuffill(void *v)
1605 : {
1606 0 : struct ep_softc *sc = v;
1607 : int s, i;
1608 :
1609 0 : s = splnet();
1610 0 : for (i = 0; i < MAX_MBS; i++) {
1611 0 : if (sc->mb[i] == NULL) {
1612 0 : sc->mb[i] = MCLGETI(NULL, M_DONTWAIT, NULL, MCLBYTES);
1613 0 : if (sc->mb[i] == NULL)
1614 : break;
1615 : }
1616 : }
1617 : /* If the queue was not filled, try again. */
1618 0 : if (i < MAX_MBS)
1619 0 : timeout_add(&sc->sc_epmbuffill_tmo, 1);
1620 0 : splx(s);
1621 0 : }
1622 :
1623 : void
1624 0 : epmbufempty(struct ep_softc *sc)
1625 : {
1626 : int s, i;
1627 :
1628 0 : s = splnet();
1629 0 : for (i = 0; i<MAX_MBS; i++) {
1630 0 : if (sc->mb[i]) {
1631 0 : m_freem(sc->mb[i]);
1632 0 : sc->mb[i] = NULL;
1633 0 : }
1634 : }
1635 0 : sc->next_mb = 0;
1636 0 : timeout_del(&sc->sc_epmbuffill_tmo);
1637 0 : splx(s);
1638 0 : }
1639 :
1640 : void
1641 0 : ep_mii_setbit(struct ep_softc *sc, u_int16_t bit)
1642 : {
1643 : u_int16_t val;
1644 :
1645 : /* We assume we're already in Window 4 */
1646 0 : val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
1647 0 : bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
1648 : val | bit);
1649 0 : }
1650 :
1651 : void
1652 0 : ep_mii_clrbit(struct ep_softc *sc, u_int16_t bit)
1653 : {
1654 : u_int16_t val;
1655 :
1656 : /* We assume we're already in Window 4 */
1657 0 : val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
1658 0 : bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
1659 : val & ~bit);
1660 0 : }
1661 :
1662 : u_int16_t
1663 0 : ep_mii_readbit(struct ep_softc *sc, u_int16_t bit)
1664 : {
1665 :
1666 : /* We assume we're already in Window 4 */
1667 0 : return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT) &
1668 0 : bit);
1669 : }
1670 :
1671 : void
1672 0 : ep_mii_sync(struct ep_softc *sc)
1673 : {
1674 : int i;
1675 :
1676 : /* We assume we're already in Window 4 */
1677 0 : ep_mii_clrbit(sc, PHYSMGMT_DIR);
1678 0 : for (i = 0; i < 32; i++) {
1679 0 : ep_mii_clrbit(sc, PHYSMGMT_CLK);
1680 0 : ep_mii_setbit(sc, PHYSMGMT_CLK);
1681 : }
1682 0 : }
1683 :
1684 : void
1685 0 : ep_mii_sendbits(struct ep_softc *sc, u_int32_t data, int nbits)
1686 : {
1687 : int i;
1688 :
1689 : /* We assume we're already in Window 4 */
1690 0 : ep_mii_setbit(sc, PHYSMGMT_DIR);
1691 0 : for (i = 1 << (nbits - 1); i; i = i >> 1) {
1692 0 : ep_mii_clrbit(sc, PHYSMGMT_CLK);
1693 0 : ep_mii_readbit(sc, PHYSMGMT_CLK);
1694 0 : if (data & i)
1695 0 : ep_mii_setbit(sc, PHYSMGMT_DATA);
1696 : else
1697 0 : ep_mii_clrbit(sc, PHYSMGMT_DATA);
1698 0 : ep_mii_setbit(sc, PHYSMGMT_CLK);
1699 0 : ep_mii_readbit(sc, PHYSMGMT_CLK);
1700 : }
1701 0 : }
1702 :
1703 : int
1704 0 : ep_mii_readreg(struct device *self, int phy, int reg)
1705 : {
1706 0 : struct ep_softc *sc = (struct ep_softc *)self;
1707 : int val = 0, i, err;
1708 :
1709 : /*
1710 : * Read the PHY register by manually driving the MII control lines.
1711 : */
1712 :
1713 0 : GO_WINDOW(4);
1714 :
1715 0 : bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT, 0);
1716 :
1717 0 : ep_mii_sync(sc);
1718 0 : ep_mii_sendbits(sc, MII_COMMAND_START, 2);
1719 0 : ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
1720 0 : ep_mii_sendbits(sc, phy, 5);
1721 0 : ep_mii_sendbits(sc, reg, 5);
1722 :
1723 0 : ep_mii_clrbit(sc, PHYSMGMT_DIR);
1724 0 : ep_mii_clrbit(sc, PHYSMGMT_CLK);
1725 0 : ep_mii_setbit(sc, PHYSMGMT_CLK);
1726 0 : ep_mii_clrbit(sc, PHYSMGMT_CLK);
1727 :
1728 0 : err = ep_mii_readbit(sc, PHYSMGMT_DATA);
1729 0 : ep_mii_setbit(sc, PHYSMGMT_CLK);
1730 :
1731 : /* Even if an error occurs, must still clock out the cycle. */
1732 0 : for (i = 0; i < 16; i++) {
1733 0 : val <<= 1;
1734 0 : ep_mii_clrbit(sc, PHYSMGMT_CLK);
1735 0 : if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
1736 0 : val |= 1;
1737 0 : ep_mii_setbit(sc, PHYSMGMT_CLK);
1738 : }
1739 0 : ep_mii_clrbit(sc, PHYSMGMT_CLK);
1740 0 : ep_mii_setbit(sc, PHYSMGMT_CLK);
1741 :
1742 0 : GO_WINDOW(1); /* back to operating window */
1743 :
1744 0 : return (err ? 0 : val);
1745 : }
1746 :
1747 : void
1748 0 : ep_mii_writereg(struct device *self, int phy, int reg, int val)
1749 : {
1750 0 : struct ep_softc *sc = (struct ep_softc *)self;
1751 :
1752 : /*
1753 : * Write the PHY register by manually driving the MII control lines.
1754 : */
1755 :
1756 0 : GO_WINDOW(4);
1757 :
1758 0 : ep_mii_sync(sc);
1759 0 : ep_mii_sendbits(sc, MII_COMMAND_START, 2);
1760 0 : ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
1761 0 : ep_mii_sendbits(sc, phy, 5);
1762 0 : ep_mii_sendbits(sc, reg, 5);
1763 0 : ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
1764 0 : ep_mii_sendbits(sc, val, 16);
1765 :
1766 0 : ep_mii_clrbit(sc, PHYSMGMT_CLK);
1767 0 : ep_mii_setbit(sc, PHYSMGMT_CLK);
1768 :
1769 0 : GO_WINDOW(1); /* back to operating window */
1770 0 : }
1771 :
1772 : void
1773 0 : ep_statchg(struct device *self)
1774 : {
1775 0 : struct ep_softc *sc = (struct ep_softc *)self;
1776 0 : bus_space_tag_t iot = sc->sc_iot;
1777 0 : bus_space_handle_t ioh = sc->sc_ioh;
1778 : int mctl;
1779 :
1780 : /* XXX Update ifp->if_baudrate */
1781 :
1782 0 : GO_WINDOW(3);
1783 0 : mctl = bus_space_read_2(iot, ioh, EP_W3_MAC_CONTROL);
1784 0 : if (sc->sc_mii.mii_media_active & IFM_FDX)
1785 0 : mctl |= MAC_CONTROL_FDX;
1786 : else
1787 0 : mctl &= ~MAC_CONTROL_FDX;
1788 0 : bus_space_write_2(iot, ioh, EP_W3_MAC_CONTROL, mctl);
1789 0 : GO_WINDOW(1); /* back to operating window */
1790 0 : }
|