Line data Source code
1 : /* $OpenBSD: ti.c,v 1.25 2017/01/22 10:17:38 dlg Exp $ */
2 :
3 : /*
4 : * Copyright (c) 1997, 1998, 1999
5 : * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
6 : *
7 : * Redistribution and use in source and binary forms, with or without
8 : * modification, are permitted provided that the following conditions
9 : * are met:
10 : * 1. Redistributions of source code must retain the above copyright
11 : * notice, this list of conditions and the following disclaimer.
12 : * 2. Redistributions in binary form must reproduce the above copyright
13 : * notice, this list of conditions and the following disclaimer in the
14 : * documentation and/or other materials provided with the distribution.
15 : * 3. All advertising materials mentioning features or use of this software
16 : * must display the following acknowledgement:
17 : * This product includes software developed by Bill Paul.
18 : * 4. Neither the name of the author nor the names of any co-contributors
19 : * may be used to endorse or promote products derived from this software
20 : * without specific prior written permission.
21 : *
22 : * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 : * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 : * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 : * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 : * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 : * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 : * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 : * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 : * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 : * THE POSSIBILITY OF SUCH DAMAGE.
33 : *
34 : * $FreeBSD: src/sys/pci/if_ti.c,v 1.25 2000/01/18 00:26:29 wpaul Exp $
35 : */
36 :
37 : /*
38 : * Alteon Networks Tigon PCI gigabit ethernet driver for OpenBSD.
39 : *
40 : * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 : * Electrical Engineering Department
42 : * Columbia University, New York City
43 : */
44 :
45 : /*
46 : * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 : * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 : * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 : * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 : * filtering and jumbo (9014 byte) frames. The hardware is largely
51 : * controlled by firmware, which must be loaded into the NIC during
52 : * initialization.
53 : *
54 : * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 : * revision, which supports new features such as extended commands,
56 : * extended jumbo receive ring desciptors and a mini receive ring.
57 : *
58 : * Alteon Networks is to be commended for releasing such a vast amount
59 : * of development material for the Tigon NIC without requiring an NDA
60 : * (although they really should have done it a long time ago). With
61 : * any luck, the other vendors will finally wise up and follow Alteon's
62 : * stellar example.
63 : *
64 : * The following people deserve special thanks:
65 : * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
66 : * for testing
67 : * - Raymond Lee of Netgear, for providing a pair of Netgear
68 : * GA620 Tigon 2 boards for testing
69 : * - Ulf Zimmermann, for bringing the GA260 to my attention and
70 : * convincing me to write this driver.
71 : * - Andrew Gallatin for providing FreeBSD/Alpha support.
72 : */
73 :
74 : #include "bpfilter.h"
75 : #include "vlan.h"
76 :
77 : #include <sys/param.h>
78 : #include <sys/systm.h>
79 : #include <sys/sockio.h>
80 : #include <sys/mbuf.h>
81 : #include <sys/malloc.h>
82 : #include <sys/kernel.h>
83 : #include <sys/socket.h>
84 : #include <sys/device.h>
85 : #include <sys/queue.h>
86 :
87 : #include <net/if.h>
88 :
89 : #include <netinet/in.h>
90 : #include <netinet/if_ether.h>
91 :
92 : #include <net/if_media.h>
93 :
94 : #if NBPFILTER > 0
95 : #include <net/bpf.h>
96 : #endif
97 :
98 : #include <machine/bus.h>
99 :
100 : #include <dev/ic/tireg.h>
101 : #include <dev/ic/tivar.h>
102 : #include <dev/pci/pcireg.h>
103 :
104 : struct cfdriver ti_cd = {
105 : NULL, "ti", DV_IFNET
106 : };
107 :
108 : void ti_txeof_tigon1(struct ti_softc *);
109 : void ti_txeof_tigon2(struct ti_softc *);
110 : void ti_rxeof(struct ti_softc *);
111 :
112 : void ti_stats_update(struct ti_softc *);
113 : int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
114 : int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
115 :
116 : int ti_intr(void *);
117 : void ti_start(struct ifnet *);
118 : int ti_ioctl(struct ifnet *, u_long, caddr_t);
119 : void ti_init(void *);
120 : void ti_init2(struct ti_softc *);
121 : void ti_stop(struct ti_softc *);
122 : void ti_watchdog(struct ifnet *);
123 : int ti_ifmedia_upd(struct ifnet *);
124 : void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
125 :
126 : u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
127 : u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
128 : int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
129 :
130 : void ti_add_mcast(struct ti_softc *, struct ether_addr *);
131 : void ti_del_mcast(struct ti_softc *, struct ether_addr *);
132 : void ti_iff(struct ti_softc *);
133 :
134 : void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
135 : void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, const void*);
136 : void ti_mem_set(struct ti_softc *, u_int32_t, u_int32_t);
137 : void ti_loadfw(struct ti_softc *);
138 : void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
139 : void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *,
140 : caddr_t, int);
141 : void ti_handle_events(struct ti_softc *);
142 : int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
143 : int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
144 : int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
145 : int ti_init_rx_ring_std(struct ti_softc *);
146 : void ti_free_rx_ring_std(struct ti_softc *);
147 : int ti_init_rx_ring_jumbo(struct ti_softc *);
148 : void ti_free_rx_ring_jumbo(struct ti_softc *);
149 : int ti_init_rx_ring_mini(struct ti_softc *);
150 : void ti_free_rx_ring_mini(struct ti_softc *);
151 : void ti_free_tx_ring(struct ti_softc *);
152 : int ti_init_tx_ring(struct ti_softc *);
153 :
154 : int ti_64bitslot_war(struct ti_softc *);
155 : int ti_chipinit(struct ti_softc *);
156 : void ti_chipinit_pci(struct ti_softc *);
157 : void ti_chipinit_sbus(struct ti_softc *);
158 : int ti_gibinit(struct ti_softc *);
159 :
160 : /*
161 : * Send an instruction or address to the EEPROM, check for ACK.
162 : */
163 : u_int32_t
164 0 : ti_eeprom_putbyte(struct ti_softc *sc, int byte)
165 : {
166 : int i, ack = 0;
167 :
168 : /*
169 : * Make sure we're in TX mode.
170 : */
171 0 : TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
172 :
173 : /*
174 : * Feed in each bit and strobe the clock.
175 : */
176 0 : for (i = 0x80; i; i >>= 1) {
177 0 : if (byte & i)
178 0 : TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
179 : else
180 0 : TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
181 0 : DELAY(1);
182 0 : TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
183 0 : DELAY(1);
184 0 : TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
185 : }
186 :
187 : /*
188 : * Turn off TX mode.
189 : */
190 0 : TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
191 :
192 : /*
193 : * Check for ack.
194 : */
195 0 : TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
196 0 : ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
197 0 : TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
198 :
199 0 : return (ack);
200 : }
201 :
202 : /*
203 : * Read a byte of data stored in the EEPROM at address 'addr.'
204 : * We have to send two address bytes since the EEPROM can hold
205 : * more than 256 bytes of data.
206 : */
207 : u_int8_t
208 0 : ti_eeprom_getbyte(struct ti_softc *sc, int addr, u_int8_t *dest)
209 : {
210 : int i;
211 : u_int8_t byte = 0;
212 :
213 0 : EEPROM_START;
214 :
215 : /*
216 : * Send write control code to EEPROM.
217 : */
218 0 : if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
219 0 : printf("%s: failed to send write command, status: %x\n",
220 0 : sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
221 0 : return (1);
222 : }
223 :
224 : /*
225 : * Send first byte of address of byte we want to read.
226 : */
227 0 : if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
228 0 : printf("%s: failed to send address, status: %x\n",
229 0 : sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
230 0 : return (1);
231 : }
232 : /*
233 : * Send second byte address of byte we want to read.
234 : */
235 0 : if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
236 0 : printf("%s: failed to send address, status: %x\n",
237 0 : sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
238 0 : return (1);
239 : }
240 :
241 0 : EEPROM_STOP;
242 0 : EEPROM_START;
243 : /*
244 : * Send read control code to EEPROM.
245 : */
246 0 : if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
247 0 : printf("%s: failed to send read command, status: %x\n",
248 0 : sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
249 0 : return (1);
250 : }
251 :
252 : /*
253 : * Start reading bits from EEPROM.
254 : */
255 0 : TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
256 0 : for (i = 0x80; i; i >>= 1) {
257 0 : TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258 0 : DELAY(1);
259 0 : if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
260 0 : byte |= i;
261 0 : TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
262 0 : DELAY(1);
263 : }
264 :
265 0 : EEPROM_STOP;
266 :
267 : /*
268 : * No ACK generated for read, so just return byte.
269 : */
270 :
271 0 : *dest = byte;
272 :
273 0 : return (0);
274 0 : }
275 :
276 : /*
277 : * Read a sequence of bytes from the EEPROM.
278 : */
279 : int
280 0 : ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
281 : {
282 : int err = 0, i;
283 0 : u_int8_t byte = 0;
284 :
285 0 : for (i = 0; i < cnt; i++) {
286 0 : err = ti_eeprom_getbyte(sc, off + i, &byte);
287 0 : if (err)
288 : break;
289 0 : *(dest + i) = byte;
290 : }
291 :
292 0 : return (err ? 1 : 0);
293 0 : }
294 :
295 : /*
296 : * NIC memory read function.
297 : * Can be used to copy data from NIC local memory.
298 : */
299 : void
300 0 : ti_mem_read(struct ti_softc *sc, u_int32_t addr, u_int32_t len, void *buf)
301 : {
302 : int segptr, segsize, cnt;
303 : caddr_t ptr;
304 :
305 : segptr = addr;
306 : cnt = len;
307 : ptr = buf;
308 :
309 0 : while(cnt) {
310 0 : if (cnt < TI_WINLEN)
311 0 : segsize = cnt;
312 : else
313 0 : segsize = TI_WINLEN - (segptr % TI_WINLEN);
314 0 : CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
315 0 : bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
316 : TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
317 : segsize / 4);
318 0 : ptr += segsize;
319 0 : segptr += segsize;
320 0 : cnt -= segsize;
321 : }
322 0 : }
323 :
324 : /*
325 : * NIC memory write function.
326 : * Can be used to copy data into NIC local memory.
327 : */
328 : void
329 0 : ti_mem_write(struct ti_softc *sc, u_int32_t addr, u_int32_t len,
330 : const void *buf)
331 : {
332 : int segptr, segsize, cnt;
333 : const char *ptr;
334 :
335 : segptr = addr;
336 : cnt = len;
337 : ptr = buf;
338 :
339 0 : while(cnt) {
340 0 : if (cnt < TI_WINLEN)
341 0 : segsize = cnt;
342 : else
343 0 : segsize = TI_WINLEN - (segptr % TI_WINLEN);
344 0 : CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
345 0 : bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
346 : TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
347 : segsize / 4);
348 0 : ptr += segsize;
349 0 : segptr += segsize;
350 0 : cnt -= segsize;
351 : }
352 0 : }
353 :
354 : /*
355 : * NIC memory write function.
356 : * Can be used to clear a section of NIC local memory.
357 : */
358 : void
359 0 : ti_mem_set(struct ti_softc *sc, u_int32_t addr, u_int32_t len)
360 : {
361 : int segptr, segsize, cnt;
362 :
363 : segptr = addr;
364 : cnt = len;
365 :
366 0 : while(cnt) {
367 0 : if (cnt < TI_WINLEN)
368 0 : segsize = cnt;
369 : else
370 0 : segsize = TI_WINLEN - (segptr % TI_WINLEN);
371 0 : CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
372 0 : bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
373 : TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
374 0 : segptr += segsize;
375 0 : cnt -= segsize;
376 : }
377 0 : }
378 :
379 : /*
380 : * Load firmware image into the NIC. Check that the firmware revision
381 : * is acceptable and see if we want the firmware for the Tigon 1 or
382 : * Tigon 2.
383 : */
384 : void
385 0 : ti_loadfw(struct ti_softc *sc)
386 : {
387 : struct tigon_firmware *tf;
388 0 : u_char *buf = NULL;
389 : u_int32_t *b;
390 0 : size_t buflen, i, cnt;
391 : char *name;
392 : int error;
393 :
394 0 : switch(sc->ti_hwrev) {
395 : case TI_HWREV_TIGON:
396 : name = "tigon1";
397 0 : break;
398 : case TI_HWREV_TIGON_II:
399 : name = "tigon2";
400 0 : break;
401 : default:
402 0 : printf("%s: can't load firmware: unknown hardware rev\n",
403 0 : sc->sc_dv.dv_xname);
404 0 : return;
405 : }
406 :
407 0 : error = loadfirmware(name, &buf, &buflen);
408 0 : if (error)
409 0 : return;
410 : /* convert firmware to host byte order */
411 0 : b = (u_int32_t *)buf;
412 0 : cnt = buflen / sizeof(u_int32_t);
413 0 : for (i = 0; i < cnt; i++)
414 0 : b[i] = letoh32(b[i]);
415 :
416 0 : tf = (struct tigon_firmware *)buf;
417 0 : if (tf->FwReleaseMajor != TI_FIRMWARE_MAJOR ||
418 0 : tf->FwReleaseMinor != TI_FIRMWARE_MINOR ||
419 0 : tf->FwReleaseFix != TI_FIRMWARE_FIX) {
420 0 : printf("%s: firmware revision mismatch; want "
421 0 : "%d.%d.%d, got %d.%d.%d\n", sc->sc_dv.dv_xname,
422 : TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
423 0 : TI_FIRMWARE_FIX, tf->FwReleaseMajor,
424 0 : tf->FwReleaseMinor, tf->FwReleaseFix);
425 0 : free(buf, M_DEVBUF, buflen);
426 0 : return;
427 : }
428 0 : ti_mem_write(sc, tf->FwTextAddr, tf->FwTextLen,
429 0 : (caddr_t)&tf->data[tf->FwTextOffset]);
430 0 : ti_mem_write(sc, tf->FwRodataAddr, tf->FwRodataLen,
431 0 : (caddr_t)&tf->data[tf->FwRodataOffset]);
432 0 : ti_mem_write(sc, tf->FwDataAddr, tf->FwDataLen,
433 0 : (caddr_t)&tf->data[tf->FwDataOffset]);
434 0 : ti_mem_set(sc, tf->FwBssAddr, tf->FwBssLen);
435 0 : ti_mem_set(sc, tf->FwSbssAddr, tf->FwSbssLen);
436 0 : CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tf->FwStartAddr);
437 0 : free(buf, M_DEVBUF, buflen);
438 0 : }
439 :
440 : /*
441 : * Send the NIC a command via the command ring.
442 : */
443 : void
444 0 : ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
445 : {
446 : u_int32_t index;
447 :
448 0 : index = sc->ti_cmd_saved_prodidx;
449 0 : CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
450 0 : TI_INC(index, TI_CMD_RING_CNT);
451 0 : CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
452 0 : sc->ti_cmd_saved_prodidx = index;
453 0 : }
454 :
455 : /*
456 : * Send the NIC an extended command. The 'len' parameter specifies the
457 : * number of command slots to include after the initial command.
458 : */
459 : void
460 0 : ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg,
461 : int len)
462 : {
463 : u_int32_t index;
464 : int i;
465 :
466 0 : index = sc->ti_cmd_saved_prodidx;
467 0 : CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
468 0 : TI_INC(index, TI_CMD_RING_CNT);
469 0 : for (i = 0; i < len; i++) {
470 0 : CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
471 : *(u_int32_t *)(&arg[i * 4]));
472 0 : TI_INC(index, TI_CMD_RING_CNT);
473 : }
474 0 : CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
475 0 : sc->ti_cmd_saved_prodidx = index;
476 0 : }
477 :
478 : /*
479 : * Handle events that have triggered interrupts.
480 : */
481 : void
482 0 : ti_handle_events(struct ti_softc *sc)
483 : {
484 : struct ti_event_desc *e;
485 0 : struct ifnet *ifp = &sc->arpcom.ac_if;
486 :
487 0 : while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
488 0 : e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
489 0 : switch (TI_EVENT_EVENT(e)) {
490 : case TI_EV_LINKSTAT_CHANGED:
491 0 : sc->ti_linkstat = TI_EVENT_CODE(e);
492 0 : switch (sc->ti_linkstat) {
493 : case TI_EV_CODE_LINK_UP:
494 : case TI_EV_CODE_GIG_LINK_UP:
495 : {
496 0 : struct ifmediareq ifmr;
497 :
498 0 : bzero(&ifmr, sizeof(ifmr));
499 0 : ti_ifmedia_sts(ifp, &ifmr);
500 0 : if (ifmr.ifm_active & IFM_FDX) {
501 0 : ifp->if_link_state =
502 : LINK_STATE_FULL_DUPLEX;
503 0 : } else {
504 0 : ifp->if_link_state =
505 : LINK_STATE_HALF_DUPLEX;
506 : }
507 0 : if_link_state_change(ifp);
508 0 : ifp->if_baudrate =
509 0 : ifmedia_baudrate(ifmr.ifm_active);
510 : break;
511 0 : }
512 : case TI_EV_CODE_LINK_DOWN:
513 0 : ifp->if_link_state = LINK_STATE_DOWN;
514 0 : if_link_state_change(ifp);
515 0 : ifp->if_baudrate = 0;
516 0 : break;
517 : default:
518 0 : printf("%s: unknown link state code %d\n",
519 0 : sc->sc_dv.dv_xname, sc->ti_linkstat);
520 0 : }
521 : break;
522 : case TI_EV_ERROR:
523 0 : if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
524 0 : printf("%s: invalid command\n",
525 0 : sc->sc_dv.dv_xname);
526 0 : else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
527 0 : printf("%s: unknown command\n",
528 0 : sc->sc_dv.dv_xname);
529 0 : else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
530 0 : printf("%s: bad config data\n",
531 0 : sc->sc_dv.dv_xname);
532 : break;
533 : case TI_EV_FIRMWARE_UP:
534 0 : ti_init2(sc);
535 0 : break;
536 : case TI_EV_STATS_UPDATED:
537 0 : ti_stats_update(sc);
538 0 : break;
539 : case TI_EV_RESET_JUMBO_RING:
540 : case TI_EV_MCAST_UPDATED:
541 : /* Who cares. */
542 : break;
543 : default:
544 0 : printf("%s: unknown event: %d\n", sc->sc_dv.dv_xname,
545 : TI_EVENT_EVENT(e));
546 0 : break;
547 : }
548 : /* Advance the consumer index. */
549 0 : TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
550 0 : CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
551 : }
552 0 : }
553 :
554 : /*
555 : * Initialize a standard receive ring descriptor.
556 : */
557 : int
558 0 : ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m,
559 : bus_dmamap_t dmamap)
560 : {
561 : struct mbuf *m_new = NULL;
562 : struct ti_rx_desc *r;
563 :
564 0 : if (dmamap == NULL) {
565 : /* if (m) panic() */
566 :
567 0 : if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
568 : 0, BUS_DMA_NOWAIT, &dmamap)) {
569 0 : printf("%s: can't create recv map\n",
570 0 : sc->sc_dv.dv_xname);
571 0 : return (ENOMEM);
572 : }
573 0 : } else if (m == NULL)
574 0 : bus_dmamap_unload(sc->sc_dmatag, dmamap);
575 :
576 0 : sc->ti_cdata.ti_rx_std_map[i] = dmamap;
577 :
578 0 : if (m == NULL) {
579 0 : m_new = MCLGETI(NULL, MCLBYTES, NULL, M_DONTWAIT);
580 0 : if (m_new == NULL)
581 0 : return (ENOBUFS);
582 :
583 0 : m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
584 0 : m_adj(m_new, ETHER_ALIGN);
585 :
586 0 : if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
587 : BUS_DMA_NOWAIT)) {
588 0 : m_freem(m_new);
589 0 : return (ENOBUFS);
590 : }
591 : } else {
592 : /*
593 : * We're re-using a previously allocated mbuf;
594 : * be sure to re-init pointers and lengths to
595 : * default values.
596 : */
597 : m_new = m;
598 0 : m_new->m_data = m_new->m_ext.ext_buf;
599 0 : m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
600 0 : m_adj(m_new, ETHER_ALIGN);
601 : }
602 :
603 0 : sc->ti_cdata.ti_rx_std_chain[i] = m_new;
604 0 : r = &sc->ti_rdata->ti_rx_std_ring[i];
605 0 : TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
606 0 : r->ti_type = TI_BDTYPE_RECV_BD;
607 0 : r->ti_flags = TI_BDFLAG_IP_CKSUM;
608 0 : r->ti_len = dmamap->dm_segs[0].ds_len;
609 0 : r->ti_idx = i;
610 :
611 0 : return (0);
612 0 : }
613 :
614 : /*
615 : * Initialize a mini receive ring descriptor. This only applies to
616 : * the Tigon 2.
617 : */
618 : int
619 0 : ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m,
620 : bus_dmamap_t dmamap)
621 : {
622 : struct mbuf *m_new = NULL;
623 : struct ti_rx_desc *r;
624 :
625 0 : if (dmamap == NULL) {
626 : /* if (m) panic() */
627 :
628 0 : if (bus_dmamap_create(sc->sc_dmatag, MHLEN, 1, MHLEN,
629 : 0, BUS_DMA_NOWAIT, &dmamap)) {
630 0 : printf("%s: can't create recv map\n",
631 0 : sc->sc_dv.dv_xname);
632 0 : return (ENOMEM);
633 : }
634 0 : } else if (m == NULL)
635 0 : bus_dmamap_unload(sc->sc_dmatag, dmamap);
636 :
637 0 : sc->ti_cdata.ti_rx_mini_map[i] = dmamap;
638 :
639 0 : if (m == NULL) {
640 0 : MGETHDR(m_new, M_DONTWAIT, MT_DATA);
641 0 : if (m_new == NULL)
642 0 : return (ENOBUFS);
643 :
644 0 : m_new->m_len = m_new->m_pkthdr.len = MHLEN;
645 0 : m_adj(m_new, ETHER_ALIGN);
646 :
647 0 : if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
648 : BUS_DMA_NOWAIT)) {
649 0 : m_freem(m_new);
650 0 : return (ENOBUFS);
651 : }
652 : } else {
653 : /*
654 : * We're re-using a previously allocated mbuf;
655 : * be sure to re-init pointers and lengths to
656 : * default values.
657 : */
658 : m_new = m;
659 0 : m_new->m_data = m_new->m_pktdat;
660 0 : m_new->m_len = m_new->m_pkthdr.len = MHLEN;
661 : }
662 :
663 0 : r = &sc->ti_rdata->ti_rx_mini_ring[i];
664 0 : sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
665 0 : TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
666 0 : r->ti_type = TI_BDTYPE_RECV_BD;
667 0 : r->ti_flags = TI_BDFLAG_MINI_RING | TI_BDFLAG_IP_CKSUM;
668 0 : r->ti_len = dmamap->dm_segs[0].ds_len;
669 0 : r->ti_idx = i;
670 :
671 0 : return (0);
672 0 : }
673 :
674 : /*
675 : * Initialize a jumbo receive ring descriptor. This allocates
676 : * a jumbo buffer from the pool managed internally by the driver.
677 : */
678 : int
679 0 : ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m,
680 : bus_dmamap_t dmamap)
681 : {
682 : struct mbuf *m_new = NULL;
683 : struct ti_rx_desc *r;
684 :
685 0 : if (dmamap == NULL) {
686 : /* if (m) panic() */
687 :
688 0 : if (bus_dmamap_create(sc->sc_dmatag, TI_JUMBO_FRAMELEN, 1,
689 : TI_JUMBO_FRAMELEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
690 0 : printf("%s: can't create recv map\n",
691 0 : sc->sc_dv.dv_xname);
692 0 : return (ENOMEM);
693 : }
694 0 : } else if (m == NULL)
695 0 : bus_dmamap_unload(sc->sc_dmatag, dmamap);
696 :
697 0 : if (m == NULL) {
698 0 : m_new = MCLGETI(NULL, TI_JUMBO_FRAMELEN, NULL, M_DONTWAIT);
699 0 : if (m_new == NULL)
700 0 : return (ENOBUFS);
701 :
702 0 : m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
703 0 : m_adj(m_new, ETHER_ALIGN);
704 :
705 0 : if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
706 : BUS_DMA_NOWAIT)) {
707 0 : m_freem(m_new);
708 0 : return (ENOBUFS);
709 : }
710 : } else {
711 : /*
712 : * We're re-using a previously allocated mbuf;
713 : * be sure to re-init pointers and lengths to
714 : * default values.
715 : */
716 : m_new = m;
717 0 : m_new->m_data = m_new->m_ext.ext_buf;
718 0 : m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
719 0 : m_adj(m_new, ETHER_ALIGN);
720 : }
721 :
722 : /* Set up the descriptor. */
723 0 : r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
724 0 : sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
725 0 : TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
726 0 : r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
727 0 : r->ti_flags = TI_BDFLAG_JUMBO_RING | TI_BDFLAG_IP_CKSUM;
728 0 : r->ti_len = m_new->m_len;
729 0 : r->ti_idx = i;
730 :
731 0 : return (0);
732 0 : }
733 :
734 : /*
735 : * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
736 : * that's 1MB of memory, which is a lot. For now, we fill only the first
737 : * 256 ring entries and hope that our CPU is fast enough to keep up with
738 : * the NIC.
739 : */
740 : int
741 0 : ti_init_rx_ring_std(struct ti_softc *sc)
742 : {
743 : int i;
744 0 : struct ti_cmd_desc cmd;
745 :
746 0 : for (i = 0; i < TI_SSLOTS; i++) {
747 0 : if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
748 0 : return (ENOBUFS);
749 : }
750 :
751 0 : TI_UPDATE_STDPROD(sc, i - 1);
752 0 : sc->ti_std = i - 1;
753 :
754 0 : return (0);
755 0 : }
756 :
757 : void
758 0 : ti_free_rx_ring_std(struct ti_softc *sc)
759 : {
760 : int i;
761 :
762 0 : for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
763 0 : if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
764 0 : m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
765 0 : sc->ti_cdata.ti_rx_std_chain[i] = NULL;
766 0 : bus_dmamap_destroy(sc->sc_dmatag,
767 : sc->ti_cdata.ti_rx_std_map[i]);
768 0 : sc->ti_cdata.ti_rx_std_map[i] = 0;
769 0 : }
770 0 : bzero(&sc->ti_rdata->ti_rx_std_ring[i],
771 : sizeof(struct ti_rx_desc));
772 : }
773 0 : }
774 :
775 : int
776 0 : ti_init_rx_ring_jumbo(struct ti_softc *sc)
777 : {
778 : int i;
779 0 : struct ti_cmd_desc cmd;
780 :
781 0 : for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
782 0 : if (ti_newbuf_jumbo(sc, i, NULL, 0) == ENOBUFS)
783 0 : return (ENOBUFS);
784 : };
785 :
786 0 : TI_UPDATE_JUMBOPROD(sc, i - 1);
787 0 : sc->ti_jumbo = i - 1;
788 :
789 0 : return (0);
790 0 : }
791 :
792 : void
793 0 : ti_free_rx_ring_jumbo(struct ti_softc *sc)
794 : {
795 : int i;
796 :
797 0 : for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
798 0 : if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
799 0 : m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
800 0 : sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
801 0 : }
802 0 : bzero(&sc->ti_rdata->ti_rx_jumbo_ring[i],
803 : sizeof(struct ti_rx_desc));
804 : }
805 0 : }
806 :
807 : int
808 0 : ti_init_rx_ring_mini(struct ti_softc *sc)
809 : {
810 : int i;
811 :
812 0 : for (i = 0; i < TI_MSLOTS; i++) {
813 0 : if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
814 0 : return (ENOBUFS);
815 : };
816 :
817 0 : TI_UPDATE_MINIPROD(sc, i - 1);
818 0 : sc->ti_mini = i - 1;
819 :
820 0 : return (0);
821 0 : }
822 :
823 : void
824 0 : ti_free_rx_ring_mini(struct ti_softc *sc)
825 : {
826 : int i;
827 :
828 0 : for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
829 0 : if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
830 0 : m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
831 0 : sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
832 0 : bus_dmamap_destroy(sc->sc_dmatag,
833 : sc->ti_cdata.ti_rx_mini_map[i]);
834 0 : sc->ti_cdata.ti_rx_mini_map[i] = 0;
835 0 : }
836 0 : bzero(&sc->ti_rdata->ti_rx_mini_ring[i],
837 : sizeof(struct ti_rx_desc));
838 : }
839 0 : }
840 :
841 : void
842 0 : ti_free_tx_ring(struct ti_softc *sc)
843 : {
844 : int i;
845 : struct ti_txmap_entry *entry;
846 :
847 0 : for (i = 0; i < TI_TX_RING_CNT; i++) {
848 0 : if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
849 0 : m_freem(sc->ti_cdata.ti_tx_chain[i]);
850 0 : sc->ti_cdata.ti_tx_chain[i] = NULL;
851 0 : SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead,
852 : sc->ti_cdata.ti_tx_map[i], link);
853 0 : sc->ti_cdata.ti_tx_map[i] = 0;
854 0 : }
855 0 : bzero(&sc->ti_rdata->ti_tx_ring[i],
856 : sizeof(struct ti_tx_desc));
857 : }
858 :
859 0 : while ((entry = SLIST_FIRST(&sc->ti_tx_map_listhead))) {
860 0 : SLIST_REMOVE_HEAD(&sc->ti_tx_map_listhead, link);
861 0 : bus_dmamap_destroy(sc->sc_dmatag, entry->dmamap);
862 0 : free(entry, M_DEVBUF, sizeof *entry);
863 : }
864 0 : }
865 :
866 : int
867 0 : ti_init_tx_ring(struct ti_softc *sc)
868 : {
869 : int i;
870 0 : bus_dmamap_t dmamap;
871 : struct ti_txmap_entry *entry;
872 :
873 0 : sc->ti_txcnt = 0;
874 0 : sc->ti_tx_saved_considx = 0;
875 0 : sc->ti_tx_saved_prodidx = 0;
876 0 : CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
877 :
878 0 : SLIST_INIT(&sc->ti_tx_map_listhead);
879 0 : for (i = 0; i < TI_TX_RING_CNT; i++) {
880 0 : if (bus_dmamap_create(sc->sc_dmatag, TI_JUMBO_FRAMELEN,
881 : TI_NTXSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap))
882 0 : return (ENOBUFS);
883 :
884 0 : entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
885 0 : if (!entry) {
886 0 : bus_dmamap_destroy(sc->sc_dmatag, dmamap);
887 0 : return (ENOBUFS);
888 : }
889 0 : entry->dmamap = dmamap;
890 0 : SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead, entry, link);
891 : }
892 :
893 0 : return (0);
894 0 : }
895 :
896 : /*
897 : * The Tigon 2 firmware has a new way to add/delete multicast addresses,
898 : * but we have to support the old way too so that Tigon 1 cards will
899 : * work.
900 : */
901 : void
902 0 : ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
903 : {
904 0 : struct ti_cmd_desc cmd;
905 : u_int16_t *m;
906 0 : u_int32_t ext[2] = {0, 0};
907 :
908 0 : m = (u_int16_t *)&addr->ether_addr_octet[0];
909 :
910 0 : switch(sc->ti_hwrev) {
911 : case TI_HWREV_TIGON:
912 0 : CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
913 0 : CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
914 0 : TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
915 0 : break;
916 : case TI_HWREV_TIGON_II:
917 0 : ext[0] = htons(m[0]);
918 0 : ext[1] = (htons(m[1]) << 16) | htons(m[2]);
919 0 : TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
920 0 : break;
921 : default:
922 0 : printf("%s: unknown hwrev\n", sc->sc_dv.dv_xname);
923 0 : break;
924 : }
925 0 : }
926 :
927 : void
928 0 : ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
929 : {
930 0 : struct ti_cmd_desc cmd;
931 : u_int16_t *m;
932 0 : u_int32_t ext[2] = {0, 0};
933 :
934 0 : m = (u_int16_t *)&addr->ether_addr_octet[0];
935 :
936 0 : switch(sc->ti_hwrev) {
937 : case TI_HWREV_TIGON:
938 0 : CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
939 0 : CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
940 0 : TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
941 0 : break;
942 : case TI_HWREV_TIGON_II:
943 0 : ext[0] = htons(m[0]);
944 0 : ext[1] = (htons(m[1]) << 16) | htons(m[2]);
945 0 : TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
946 0 : break;
947 : default:
948 0 : printf("%s: unknown hwrev\n", sc->sc_dv.dv_xname);
949 0 : break;
950 : }
951 0 : }
952 :
953 : /*
954 : * Configure the Tigon's multicast address filter.
955 : *
956 : * The actual multicast table management is a bit of a pain, thanks to
957 : * slight brain damage on the part of both Alteon and us. With our
958 : * multicast code, we are only alerted when the multicast address table
959 : * changes and at that point we only have the current list of addresses:
960 : * we only know the current state, not the previous state, so we don't
961 : * actually know what addresses were removed or added. The firmware has
962 : * state, but we can't get our grubby mits on it, and there is no 'delete
963 : * all multicast addresses' command. Hence, we have to maintain our own
964 : * state so we know what addresses have been programmed into the NIC at
965 : * any given time.
966 : */
967 : void
968 0 : ti_iff(struct ti_softc *sc)
969 : {
970 0 : struct ifnet *ifp = &sc->arpcom.ac_if;
971 : struct arpcom *ac = &sc->arpcom;
972 : struct ether_multi *enm;
973 : struct ether_multistep step;
974 0 : struct ti_cmd_desc cmd;
975 : struct ti_mc_entry *mc;
976 : u_int32_t intrs;
977 :
978 0 : TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
979 0 : TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
980 0 : ifp->if_flags &= ~IFF_ALLMULTI;
981 :
982 0 : if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
983 0 : ifp->if_flags |= IFF_ALLMULTI;
984 0 : if (ifp->if_flags & IFF_PROMISC) {
985 0 : TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
986 : TI_CMD_CODE_PROMISC_ENB, 0);
987 0 : } else {
988 0 : TI_DO_CMD(TI_CMD_SET_ALLMULTI,
989 : TI_CMD_CODE_ALLMULTI_ENB, 0);
990 : }
991 : } else {
992 : /* Disable interrupts. */
993 0 : intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
994 0 : CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
995 :
996 : /* First, zot all the existing filters. */
997 0 : while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
998 : mc = SLIST_FIRST(&sc->ti_mc_listhead);
999 0 : ti_del_mcast(sc, &mc->mc_addr);
1000 0 : SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1001 0 : free(mc, M_DEVBUF, sizeof *mc);
1002 : }
1003 :
1004 : /* Now program new ones. */
1005 0 : ETHER_FIRST_MULTI(step, ac, enm);
1006 0 : while (enm != NULL) {
1007 0 : mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1008 : M_NOWAIT);
1009 0 : if (mc == NULL)
1010 0 : panic("ti_iff");
1011 :
1012 0 : bcopy(enm->enm_addrlo, &mc->mc_addr,
1013 : ETHER_ADDR_LEN);
1014 0 : SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc,
1015 : mc_entries);
1016 0 : ti_add_mcast(sc, &mc->mc_addr);
1017 :
1018 0 : ETHER_NEXT_MULTI(step, enm);
1019 : }
1020 :
1021 : /* Re-enable interrupts. */
1022 0 : CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1023 : }
1024 0 : }
1025 :
1026 : /*
1027 : * Check to see if the BIOS has configured us for a 64 bit slot when
1028 : * we aren't actually in one. If we detect this condition, we can work
1029 : * around it on the Tigon 2 by setting a bit in the PCI state register,
1030 : * but for the Tigon 1 we must give up and abort the interface attach.
1031 : */
1032 : int
1033 0 : ti_64bitslot_war(struct ti_softc *sc)
1034 : {
1035 0 : if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1036 0 : CSR_WRITE_4(sc, 0x600, 0);
1037 0 : CSR_WRITE_4(sc, 0x604, 0);
1038 0 : CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1039 0 : if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1040 0 : if (sc->ti_hwrev == TI_HWREV_TIGON)
1041 0 : return (EINVAL);
1042 : else {
1043 0 : TI_SETBIT(sc, TI_PCI_STATE,
1044 : TI_PCISTATE_32BIT_BUS);
1045 0 : return (0);
1046 : }
1047 : }
1048 : }
1049 :
1050 0 : return (0);
1051 0 : }
1052 :
1053 : /*
1054 : * Do endian, PCI and DMA initialization. Also check the on-board ROM
1055 : * self-test results.
1056 : */
1057 : int
1058 0 : ti_chipinit(struct ti_softc *sc)
1059 : {
1060 : u_int32_t chip_rev;
1061 :
1062 : /* Initialize link to down state. */
1063 0 : sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1064 :
1065 : /* Set endianness before we access any non-PCI registers. */
1066 0 : CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1067 : TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1068 :
1069 : /* Check the ROM failed bit to see if self-tests passed. */
1070 0 : if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1071 0 : printf("%s: board self-diagnostics failed!\n",
1072 0 : sc->sc_dv.dv_xname);
1073 0 : return (ENODEV);
1074 : }
1075 :
1076 : /* Halt the CPU. */
1077 0 : TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1078 :
1079 : /* Figure out the hardware revision. */
1080 0 : chip_rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1081 0 : switch(chip_rev) {
1082 : case TI_REV_TIGON_I:
1083 0 : sc->ti_hwrev = TI_HWREV_TIGON;
1084 0 : break;
1085 : case TI_REV_TIGON_II:
1086 0 : sc->ti_hwrev = TI_HWREV_TIGON_II;
1087 0 : break;
1088 : default:
1089 0 : printf("\n");
1090 0 : printf("%s: unsupported chip revision: %x\n",
1091 0 : sc->sc_dv.dv_xname, chip_rev);
1092 0 : return (ENODEV);
1093 : }
1094 :
1095 : /* Do special setup for Tigon 2. */
1096 0 : if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1097 0 : TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1098 0 : TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1099 0 : TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1100 0 : }
1101 :
1102 0 : if (sc->ti_sbus)
1103 0 : ti_chipinit_sbus(sc);
1104 : else
1105 0 : ti_chipinit_pci(sc);
1106 :
1107 : /* Recommended settings from Tigon manual. */
1108 0 : CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1109 0 : CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1110 :
1111 0 : if (ti_64bitslot_war(sc)) {
1112 0 : printf("%s: bios thinks we're in a 64 bit slot, "
1113 0 : "but we aren't", sc->sc_dv.dv_xname);
1114 0 : return (EINVAL);
1115 : }
1116 :
1117 0 : return (0);
1118 0 : }
1119 :
1120 : void
1121 0 : ti_chipinit_pci(struct ti_softc *sc)
1122 : {
1123 : u_int32_t cacheline;
1124 : u_int32_t pci_writemax = 0;
1125 :
1126 : /* Set up the PCI state register. */
1127 0 : CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD);
1128 0 : if (sc->ti_hwrev == TI_HWREV_TIGON_II)
1129 0 : TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1130 :
1131 : /* Clear the read/write max DMA parameters. */
1132 0 : TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1133 : TI_PCISTATE_READ_MAXDMA));
1134 :
1135 : /* Get cache line size. */
1136 0 : cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1137 :
1138 : /*
1139 : * If the system has set enabled the PCI memory write
1140 : * and invalidate command in the command register, set
1141 : * the write max parameter accordingly. This is necessary
1142 : * to use MWI with the Tigon 2.
1143 : */
1144 0 : if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCI_COMMAND_INVALIDATE_ENABLE) {
1145 0 : switch(cacheline) {
1146 : case 1:
1147 : case 4:
1148 : case 8:
1149 : case 16:
1150 : case 32:
1151 : case 64:
1152 : break;
1153 : default:
1154 : /* Disable PCI memory write and invalidate. */
1155 0 : CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1156 : TI_PCI_CMDSTAT) & ~PCI_COMMAND_INVALIDATE_ENABLE);
1157 0 : break;
1158 : }
1159 : }
1160 :
1161 : #ifdef __brokenalpha__
1162 : /*
1163 : * From the Alteon sample driver:
1164 : * Must insure that we do not cross an 8K (bytes) boundary
1165 : * for DMA reads. Our highest limit is 1K bytes. This is a
1166 : * restriction on some ALPHA platforms with early revision
1167 : * 21174 PCI chipsets, such as the AlphaPC 164lx
1168 : */
1169 : TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1170 : #else
1171 0 : TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1172 : #endif
1173 :
1174 : /* This sets the min dma param all the way up (0xff). */
1175 0 : TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1176 :
1177 : /* Configure DMA variables. */
1178 0 : CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_DMA_SWAP_OPTIONS |
1179 : TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1180 : TI_OPMODE_DONT_FRAG_JUMBO);
1181 0 : }
1182 :
1183 : void
1184 0 : ti_chipinit_sbus(struct ti_softc *sc)
1185 : {
1186 : /* Set up the PCI state register. */
1187 0 : CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD |
1188 : TI_PCISTATE_NO_SWAP_READ_DMA | TI_PCISTATE_NO_SWAP_WRITE_DMA |
1189 : TI_PCI_WRITEMAX_64 | TI_PCI_READMAX_64 |
1190 : TI_PCISTATE_PROVIDE_LEN);
1191 :
1192 : /* Configure DMA variables. */
1193 0 : CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_WORDSWAP_BD |
1194 : TI_OPMODE_1_DMA_ACTIVE | TI_OPMODE_SBUS |
1195 : TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1196 : TI_OPMODE_DONT_FRAG_JUMBO);
1197 0 : }
1198 :
1199 : /*
1200 : * Initialize the general information block and firmware, and
1201 : * start the CPU(s) running.
1202 : */
1203 : int
1204 0 : ti_gibinit(struct ti_softc *sc)
1205 : {
1206 : struct ti_rcb *rcb;
1207 : int i;
1208 : struct ifnet *ifp;
1209 :
1210 0 : ifp = &sc->arpcom.ac_if;
1211 :
1212 : /* Disable interrupts for now. */
1213 0 : CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1214 :
1215 : /*
1216 : * Tell the chip where to find the general information block.
1217 : * While this struct could go into >4GB memory, we allocate it in a
1218 : * single slab with the other descriptors, and those don't seem to
1219 : * support being located in a 64-bit region.
1220 : */
1221 0 : CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1222 0 : CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
1223 : TI_RING_DMA_ADDR(sc, ti_info) & 0xffffffff);
1224 :
1225 : /* Load the firmware into SRAM. */
1226 0 : ti_loadfw(sc);
1227 :
1228 : /* Set up the contents of the general info and ring control blocks. */
1229 :
1230 : /* Set up the event ring and producer pointer. */
1231 0 : rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1232 :
1233 0 : TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc, ti_event_ring);
1234 0 : rcb->ti_flags = 0;
1235 0 : TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1236 0 : TI_RING_DMA_ADDR(sc, ti_ev_prodidx_r);
1237 0 : sc->ti_ev_prodidx.ti_idx = 0;
1238 0 : CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1239 0 : sc->ti_ev_saved_considx = 0;
1240 :
1241 : /* Set up the command ring and producer mailbox. */
1242 0 : rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1243 :
1244 0 : TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1245 0 : rcb->ti_flags = 0;
1246 0 : rcb->ti_max_len = 0;
1247 0 : for (i = 0; i < TI_CMD_RING_CNT; i++) {
1248 0 : CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1249 : }
1250 0 : CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1251 0 : CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1252 0 : sc->ti_cmd_saved_prodidx = 0;
1253 :
1254 : /*
1255 : * Assign the address of the stats refresh buffer.
1256 : * We re-use the current stats buffer for this to
1257 : * conserve memory.
1258 : */
1259 0 : TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1260 0 : TI_RING_DMA_ADDR(sc, ti_info.ti_stats);
1261 :
1262 : /* Set up the standard receive ring. */
1263 0 : rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1264 0 : TI_HOSTADDR(rcb->ti_hostaddr) =
1265 0 : TI_RING_DMA_ADDR(sc, ti_rx_std_ring);
1266 0 : rcb->ti_max_len = ETHER_MAX_LEN;
1267 0 : rcb->ti_flags = 0;
1268 0 : rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1269 : #if NVLAN > 0
1270 0 : if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1271 0 : rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1272 : #endif
1273 :
1274 : /* Set up the jumbo receive ring. */
1275 0 : rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1276 0 : TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc, ti_rx_jumbo_ring);
1277 0 : rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1278 0 : rcb->ti_flags = 0;
1279 0 : rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1280 : #if NVLAN > 0
1281 0 : if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1282 0 : rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1283 : #endif
1284 :
1285 : /*
1286 : * Set up the mini ring. Only activated on the
1287 : * Tigon 2 but the slot in the config block is
1288 : * still there on the Tigon 1.
1289 : */
1290 0 : rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1291 0 : TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc, ti_rx_mini_ring);
1292 0 : rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1293 0 : if (sc->ti_hwrev == TI_HWREV_TIGON)
1294 0 : rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1295 : else
1296 0 : rcb->ti_flags = 0;
1297 0 : rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1298 : #if NVLAN > 0
1299 0 : if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1300 0 : rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1301 : #endif
1302 :
1303 : /*
1304 : * Set up the receive return ring.
1305 : */
1306 0 : rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1307 0 : TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc,ti_rx_return_ring);
1308 0 : rcb->ti_flags = 0;
1309 0 : rcb->ti_max_len = TI_RETURN_RING_CNT;
1310 0 : TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1311 0 : TI_RING_DMA_ADDR(sc, ti_return_prodidx_r);
1312 :
1313 : /*
1314 : * Set up the tx ring. Note: for the Tigon 2, we have the option
1315 : * of putting the transmit ring in the host's address space and
1316 : * letting the chip DMA it instead of leaving the ring in the NIC's
1317 : * memory and accessing it through the shared memory region. We
1318 : * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1319 : * so we have to revert to the shared memory scheme if we detect
1320 : * a Tigon 1 chip.
1321 : */
1322 0 : CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1323 0 : bzero(sc->ti_rdata->ti_tx_ring,
1324 : TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1325 0 : rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1326 0 : if (sc->ti_hwrev == TI_HWREV_TIGON)
1327 0 : rcb->ti_flags = 0;
1328 : else
1329 0 : rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1330 0 : rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1331 : #if NVLAN > 0
1332 0 : if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1333 0 : rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1334 : #endif
1335 0 : rcb->ti_max_len = TI_TX_RING_CNT;
1336 0 : if (sc->ti_hwrev == TI_HWREV_TIGON)
1337 0 : TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1338 : else
1339 0 : TI_HOSTADDR(rcb->ti_hostaddr) =
1340 0 : TI_RING_DMA_ADDR(sc, ti_tx_ring);
1341 0 : TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1342 0 : TI_RING_DMA_ADDR(sc, ti_tx_considx_r);
1343 :
1344 0 : TI_RING_DMASYNC(sc, ti_info, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1345 :
1346 : /* Set up tuneables */
1347 0 : CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, (sc->ti_rx_coal_ticks / 10));
1348 0 : CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1349 0 : CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1350 0 : CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1351 0 : CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1352 0 : CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1353 :
1354 : /* Turn interrupts on. */
1355 0 : CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1356 0 : CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1357 :
1358 : /* Start CPU. */
1359 0 : TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1360 :
1361 0 : return (0);
1362 : }
1363 :
1364 : int
1365 0 : ti_attach(struct ti_softc *sc)
1366 : {
1367 0 : bus_dma_segment_t seg;
1368 0 : int rseg;
1369 : struct ifnet *ifp;
1370 0 : caddr_t kva;
1371 :
1372 0 : if (ti_chipinit(sc)) {
1373 0 : printf("%s: chip initialization failed\n", sc->sc_dv.dv_xname);
1374 0 : return (1);
1375 : }
1376 :
1377 : /* Zero out the NIC's on-board SRAM. */
1378 0 : ti_mem_set(sc, 0x2000, 0x100000 - 0x2000);
1379 :
1380 : /* Init again -- zeroing memory may have clobbered some registers. */
1381 0 : if (ti_chipinit(sc)) {
1382 0 : printf("%s: chip initialization failed\n", sc->sc_dv.dv_xname);
1383 0 : return (1);
1384 : }
1385 :
1386 : /*
1387 : * Get station address from the EEPROM. Note: the manual states
1388 : * that the MAC address is at offset 0x8c, however the data is
1389 : * stored as two longwords (since that's how it's loaded into
1390 : * the NIC). This means the MAC address is actually preceded
1391 : * by two zero bytes. We need to skip over those.
1392 : */
1393 0 : if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1394 : TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1395 0 : printf("%s: failed to read station address\n",
1396 0 : sc->sc_dv.dv_xname);
1397 0 : return (1);
1398 : }
1399 :
1400 : /*
1401 : * A Tigon chip was detected. Inform the world.
1402 : */
1403 0 : printf(", address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
1404 :
1405 : /* Allocate the general information block and ring buffers. */
1406 0 : if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct ti_ring_data),
1407 : PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1408 0 : printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
1409 0 : return (1);
1410 : }
1411 0 : if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1412 : sizeof(struct ti_ring_data), &kva, BUS_DMA_NOWAIT)) {
1413 0 : printf("%s: can't map dma buffers (%zu bytes)\n",
1414 0 : sc->sc_dv.dv_xname, sizeof(struct ti_ring_data));
1415 0 : goto fail_1;
1416 : }
1417 0 : if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct ti_ring_data), 1,
1418 : sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1419 : &sc->ti_ring_map)) {
1420 0 : printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
1421 0 : goto fail_2;
1422 : }
1423 0 : if (bus_dmamap_load(sc->sc_dmatag, sc->ti_ring_map, kva,
1424 : sizeof(struct ti_ring_data), NULL, BUS_DMA_NOWAIT)) {
1425 : goto fail_3;
1426 : }
1427 0 : sc->ti_rdata = (struct ti_ring_data *)kva;
1428 0 : bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1429 :
1430 : /* Set default tuneable values. */
1431 0 : sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1432 0 : sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1433 0 : sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1434 0 : sc->ti_rx_max_coal_bds = 64;
1435 0 : sc->ti_tx_max_coal_bds = 128;
1436 0 : sc->ti_tx_buf_ratio = 21;
1437 :
1438 : /* Set up ifnet structure */
1439 0 : ifp = &sc->arpcom.ac_if;
1440 0 : ifp->if_softc = sc;
1441 0 : ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1442 0 : ifp->if_ioctl = ti_ioctl;
1443 0 : ifp->if_start = ti_start;
1444 0 : ifp->if_watchdog = ti_watchdog;
1445 0 : ifp->if_hardmtu = TI_JUMBO_FRAMELEN - ETHER_HDR_LEN;
1446 0 : IFQ_SET_MAXLEN(&ifp->if_snd, TI_TX_RING_CNT - 1);
1447 0 : bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
1448 :
1449 0 : ifp->if_capabilities = IFCAP_VLAN_MTU;
1450 :
1451 : #if NVLAN > 0
1452 0 : ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
1453 : #endif
1454 :
1455 : /* Set up ifmedia support. */
1456 0 : ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1457 0 : if (sc->ti_copper) {
1458 : /*
1459 : * Copper cards allow manual 10/100 mode selection,
1460 : * but not manual 1000baseTX mode selection. Why?
1461 : * Because currently there's no way to specify the
1462 : * master/slave setting through the firmware interface,
1463 : * so Alteon decided to just bag it and handle it
1464 : * via autonegotiation.
1465 : */
1466 0 : ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1467 0 : ifmedia_add(&sc->ifmedia,
1468 : IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1469 0 : ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1470 0 : ifmedia_add(&sc->ifmedia,
1471 : IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1472 0 : ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1473 0 : ifmedia_add(&sc->ifmedia,
1474 : IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1475 0 : } else {
1476 : /* Fiber cards don't support 10/100 modes. */
1477 0 : ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1478 0 : ifmedia_add(&sc->ifmedia,
1479 : IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1480 : }
1481 0 : ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1482 0 : ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1483 :
1484 : /*
1485 : * Call MI attach routines.
1486 : */
1487 0 : if_attach(ifp);
1488 0 : ether_ifattach(ifp);
1489 :
1490 0 : return (0);
1491 :
1492 : fail_3:
1493 0 : bus_dmamap_destroy(sc->sc_dmatag, sc->ti_ring_map);
1494 :
1495 : fail_2:
1496 0 : bus_dmamem_unmap(sc->sc_dmatag, kva,
1497 : sizeof(struct ti_ring_data));
1498 :
1499 : fail_1:
1500 0 : bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1501 :
1502 0 : return (1);
1503 0 : }
1504 :
1505 : /*
1506 : * Frame reception handling. This is called if there's a frame
1507 : * on the receive return list.
1508 : *
1509 : * Note: we have to be able to handle three possibilities here:
1510 : * 1) the frame is from the mini receive ring (can only happen)
1511 : * on Tigon 2 boards)
1512 : * 2) the frame is from the jumbo receive ring
1513 : * 3) the frame is from the standard receive ring
1514 : */
1515 :
1516 : void
1517 0 : ti_rxeof(struct ti_softc *sc)
1518 : {
1519 : struct ifnet *ifp;
1520 0 : struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1521 0 : struct ti_cmd_desc cmd;
1522 :
1523 0 : ifp = &sc->arpcom.ac_if;
1524 :
1525 0 : while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1526 : struct ti_rx_desc *cur_rx;
1527 : u_int32_t rxidx;
1528 : struct mbuf *m = NULL;
1529 : bus_dmamap_t dmamap;
1530 :
1531 : cur_rx =
1532 0 : &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1533 0 : rxidx = cur_rx->ti_idx;
1534 0 : TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1535 :
1536 0 : if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1537 0 : TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1538 0 : m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1539 0 : sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1540 0 : dmamap = sc->ti_cdata.ti_rx_jumbo_map[rxidx];
1541 0 : sc->ti_cdata.ti_rx_jumbo_map[rxidx] = 0;
1542 0 : if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1543 0 : ifp->if_ierrors++;
1544 0 : ti_newbuf_jumbo(sc, sc->ti_jumbo, m, dmamap);
1545 0 : continue;
1546 : }
1547 0 : if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL, dmamap)
1548 0 : == ENOBUFS) {
1549 0 : ifp->if_ierrors++;
1550 0 : ti_newbuf_jumbo(sc, sc->ti_jumbo, m, dmamap);
1551 0 : continue;
1552 : }
1553 0 : } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1554 0 : TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1555 0 : m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1556 0 : sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1557 0 : dmamap = sc->ti_cdata.ti_rx_mini_map[rxidx];
1558 0 : sc->ti_cdata.ti_rx_mini_map[rxidx] = 0;
1559 0 : if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1560 0 : ifp->if_ierrors++;
1561 0 : ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1562 0 : continue;
1563 : }
1564 0 : if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1565 0 : == ENOBUFS) {
1566 0 : ifp->if_ierrors++;
1567 0 : ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1568 0 : continue;
1569 : }
1570 : } else {
1571 0 : TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1572 0 : m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1573 0 : sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1574 0 : dmamap = sc->ti_cdata.ti_rx_std_map[rxidx];
1575 0 : sc->ti_cdata.ti_rx_std_map[rxidx] = 0;
1576 0 : if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1577 0 : ifp->if_ierrors++;
1578 0 : ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1579 0 : continue;
1580 : }
1581 0 : if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1582 0 : == ENOBUFS) {
1583 0 : ifp->if_ierrors++;
1584 0 : ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1585 0 : continue;
1586 : }
1587 : }
1588 :
1589 0 : if (m == NULL)
1590 0 : panic("%s: couldn't get mbuf", sc->sc_dv.dv_xname);
1591 :
1592 0 : m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1593 :
1594 : #if NVLAN > 0
1595 0 : if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1596 0 : m->m_pkthdr.ether_vtag = cur_rx->ti_vlan_tag;
1597 0 : m->m_flags |= M_VLANTAG;
1598 0 : }
1599 : #endif
1600 :
1601 0 : if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1602 0 : m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1603 :
1604 0 : ml_enqueue(&ml, m);
1605 0 : }
1606 :
1607 : /* Only necessary on the Tigon 1. */
1608 0 : if (sc->ti_hwrev == TI_HWREV_TIGON)
1609 0 : CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1610 : sc->ti_rx_saved_considx);
1611 :
1612 0 : TI_UPDATE_STDPROD(sc, sc->ti_std);
1613 0 : TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1614 0 : TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1615 :
1616 0 : if_input(ifp, &ml);
1617 0 : }
1618 :
1619 : void
1620 0 : ti_txeof_tigon1(struct ti_softc *sc)
1621 : {
1622 : struct ifnet *ifp;
1623 : struct ti_txmap_entry *entry;
1624 : int active = 1;
1625 :
1626 0 : ifp = &sc->arpcom.ac_if;
1627 :
1628 : /*
1629 : * Go through our tx ring and free mbufs for those
1630 : * frames that have been sent.
1631 : */
1632 0 : while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1633 : u_int32_t idx = 0;
1634 0 : struct ti_tx_desc txdesc;
1635 :
1636 0 : idx = sc->ti_tx_saved_considx;
1637 0 : ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
1638 : sizeof(txdesc), (caddr_t)&txdesc);
1639 :
1640 0 : if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1641 0 : m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1642 0 : sc->ti_cdata.ti_tx_chain[idx] = NULL;
1643 :
1644 0 : entry = sc->ti_cdata.ti_tx_map[idx];
1645 0 : bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1646 : entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1647 :
1648 0 : bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1649 0 : SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead, entry,
1650 : link);
1651 0 : sc->ti_cdata.ti_tx_map[idx] = NULL;
1652 :
1653 0 : }
1654 0 : sc->ti_txcnt--;
1655 0 : TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1656 0 : ifp->if_timer = 0;
1657 :
1658 : active = 0;
1659 0 : }
1660 :
1661 0 : if (!active)
1662 0 : ifq_clr_oactive(&ifp->if_snd);
1663 0 : }
1664 :
1665 : void
1666 0 : ti_txeof_tigon2(struct ti_softc *sc)
1667 : {
1668 : struct ti_tx_desc *cur_tx = NULL;
1669 : struct ifnet *ifp;
1670 : struct ti_txmap_entry *entry;
1671 :
1672 0 : ifp = &sc->arpcom.ac_if;
1673 :
1674 : /*
1675 : * Go through our tx ring and free mbufs for those
1676 : * frames that have been sent.
1677 : */
1678 0 : while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1679 : u_int32_t idx = 0;
1680 :
1681 : idx = sc->ti_tx_saved_considx;
1682 0 : cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1683 :
1684 0 : if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1685 0 : m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1686 0 : sc->ti_cdata.ti_tx_chain[idx] = NULL;
1687 :
1688 0 : entry = sc->ti_cdata.ti_tx_map[idx];
1689 0 : bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1690 : entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1691 :
1692 0 : bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1693 0 : SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead, entry,
1694 : link);
1695 0 : sc->ti_cdata.ti_tx_map[idx] = NULL;
1696 :
1697 0 : }
1698 0 : sc->ti_txcnt--;
1699 0 : TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1700 0 : ifp->if_timer = 0;
1701 : }
1702 :
1703 0 : if (cur_tx != NULL)
1704 0 : ifq_clr_oactive(&ifp->if_snd);
1705 0 : }
1706 :
1707 : int
1708 0 : ti_intr(void *xsc)
1709 : {
1710 : struct ti_softc *sc;
1711 : struct ifnet *ifp;
1712 :
1713 0 : sc = xsc;
1714 0 : ifp = &sc->arpcom.ac_if;
1715 :
1716 : /* XXX checking this register is expensive. */
1717 : /* Make sure this is really our interrupt. */
1718 0 : if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1719 0 : return (0);
1720 :
1721 : /* Ack interrupt and stop others from occurring. */
1722 0 : CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1723 :
1724 0 : if (ifp->if_flags & IFF_RUNNING) {
1725 : /* Check RX return ring producer/consumer */
1726 0 : ti_rxeof(sc);
1727 :
1728 : /* Check TX ring producer/consumer */
1729 0 : if (sc->ti_hwrev == TI_HWREV_TIGON)
1730 0 : ti_txeof_tigon1(sc);
1731 : else
1732 0 : ti_txeof_tigon2(sc);
1733 : }
1734 :
1735 0 : ti_handle_events(sc);
1736 :
1737 : /* Re-enable interrupts. */
1738 0 : CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1739 :
1740 0 : if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
1741 0 : ti_start(ifp);
1742 :
1743 0 : return (1);
1744 0 : }
1745 :
1746 : void
1747 0 : ti_stats_update(struct ti_softc *sc)
1748 : {
1749 : struct ifnet *ifp;
1750 0 : struct ti_stats *stats = &sc->ti_rdata->ti_info.ti_stats;
1751 :
1752 0 : ifp = &sc->arpcom.ac_if;
1753 :
1754 0 : TI_RING_DMASYNC(sc, ti_info.ti_stats, BUS_DMASYNC_POSTREAD);
1755 :
1756 0 : ifp->if_collisions += stats->dot3StatsSingleCollisionFrames +
1757 0 : stats->dot3StatsMultipleCollisionFrames +
1758 0 : stats->dot3StatsExcessiveCollisions +
1759 0 : stats->dot3StatsLateCollisions -
1760 0 : ifp->if_collisions;
1761 :
1762 0 : TI_RING_DMASYNC(sc, ti_info.ti_stats, BUS_DMASYNC_PREREAD);
1763 0 : }
1764 :
1765 : /*
1766 : * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
1767 : * pointers to descriptors.
1768 : */
1769 : int
1770 0 : ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
1771 : {
1772 : u_int32_t frag, cur;
1773 : struct ti_txmap_entry *entry;
1774 : bus_dmamap_t txmap;
1775 0 : struct ti_tx_desc txdesc;
1776 : int i = 0;
1777 :
1778 0 : entry = SLIST_FIRST(&sc->ti_tx_map_listhead);
1779 0 : if (entry == NULL)
1780 0 : return (ENOBUFS);
1781 0 : txmap = entry->dmamap;
1782 :
1783 0 : cur = frag = *txidx;
1784 :
1785 : /*
1786 : * Start packing the mbufs in this chain into
1787 : * the fragment pointers. Stop when we run out
1788 : * of fragments or hit the end of the mbuf chain.
1789 : */
1790 0 : if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1791 : BUS_DMA_NOWAIT))
1792 0 : return (ENOBUFS);
1793 :
1794 : /*
1795 : * Sanity check: avoid coming within 16 descriptors
1796 : * of the end of the ring.
1797 : */
1798 0 : if (txmap->dm_nsegs > (TI_TX_RING_CNT - sc->ti_txcnt - 16))
1799 : goto fail_unload;
1800 :
1801 0 : for (i = 0; i < txmap->dm_nsegs; i++) {
1802 0 : if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1803 : break;
1804 :
1805 0 : memset(&txdesc, 0, sizeof(txdesc));
1806 :
1807 0 : TI_HOSTADDR(txdesc.ti_addr) = txmap->dm_segs[i].ds_addr;
1808 0 : txdesc.ti_len = txmap->dm_segs[i].ds_len & 0xffff;
1809 0 : txdesc.ti_flags = 0;
1810 0 : txdesc.ti_vlan_tag = 0;
1811 :
1812 : #if NVLAN > 0
1813 0 : if (m_head->m_flags & M_VLANTAG) {
1814 0 : txdesc.ti_flags |= TI_BDFLAG_VLAN_TAG;
1815 0 : txdesc.ti_vlan_tag = m_head->m_pkthdr.ether_vtag;
1816 0 : }
1817 : #endif
1818 :
1819 0 : ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
1820 : sizeof(txdesc), (caddr_t)&txdesc);
1821 :
1822 : cur = frag;
1823 0 : TI_INC(frag, TI_TX_RING_CNT);
1824 : }
1825 :
1826 0 : if (frag == sc->ti_tx_saved_considx)
1827 : goto fail_unload;
1828 :
1829 0 : txdesc.ti_flags |= TI_BDFLAG_END;
1830 0 : ti_mem_write(sc, TI_TX_RING_BASE + cur * sizeof(txdesc),
1831 : sizeof(txdesc), (caddr_t)&txdesc);
1832 :
1833 0 : bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1834 : BUS_DMASYNC_PREWRITE);
1835 :
1836 0 : sc->ti_cdata.ti_tx_chain[cur] = m_head;
1837 0 : SLIST_REMOVE_HEAD(&sc->ti_tx_map_listhead, link);
1838 0 : sc->ti_cdata.ti_tx_map[cur] = entry;
1839 0 : sc->ti_txcnt += txmap->dm_nsegs;
1840 :
1841 0 : *txidx = frag;
1842 :
1843 0 : return (0);
1844 :
1845 : fail_unload:
1846 0 : bus_dmamap_unload(sc->sc_dmatag, txmap);
1847 :
1848 0 : return (ENOBUFS);
1849 0 : }
1850 :
1851 : /*
1852 : * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
1853 : * pointers to descriptors.
1854 : */
1855 : int
1856 0 : ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
1857 : {
1858 : struct ti_tx_desc *f = NULL;
1859 : u_int32_t frag, cur;
1860 : struct ti_txmap_entry *entry;
1861 : bus_dmamap_t txmap;
1862 : int i = 0;
1863 :
1864 0 : entry = SLIST_FIRST(&sc->ti_tx_map_listhead);
1865 0 : if (entry == NULL)
1866 0 : return (ENOBUFS);
1867 0 : txmap = entry->dmamap;
1868 :
1869 0 : cur = frag = *txidx;
1870 :
1871 : /*
1872 : * Start packing the mbufs in this chain into
1873 : * the fragment pointers. Stop when we run out
1874 : * of fragments or hit the end of the mbuf chain.
1875 : */
1876 0 : if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1877 : BUS_DMA_NOWAIT))
1878 0 : return (ENOBUFS);
1879 :
1880 : /*
1881 : * Sanity check: avoid coming within 16 descriptors
1882 : * of the end of the ring.
1883 : */
1884 0 : if (txmap->dm_nsegs > (TI_TX_RING_CNT - sc->ti_txcnt - 16))
1885 : goto fail_unload;
1886 :
1887 0 : for (i = 0; i < txmap->dm_nsegs; i++) {
1888 0 : f = &sc->ti_rdata->ti_tx_ring[frag];
1889 :
1890 0 : if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1891 : break;
1892 :
1893 0 : TI_HOSTADDR(f->ti_addr) = txmap->dm_segs[i].ds_addr;
1894 0 : f->ti_len = txmap->dm_segs[i].ds_len & 0xffff;
1895 0 : f->ti_flags = 0;
1896 0 : f->ti_vlan_tag = 0;
1897 :
1898 : #if NVLAN > 0
1899 0 : if (m_head->m_flags & M_VLANTAG) {
1900 0 : f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1901 0 : f->ti_vlan_tag = m_head->m_pkthdr.ether_vtag;
1902 0 : }
1903 : #endif
1904 :
1905 : cur = frag;
1906 0 : TI_INC(frag, TI_TX_RING_CNT);
1907 : }
1908 :
1909 0 : if (frag == sc->ti_tx_saved_considx)
1910 : goto fail_unload;
1911 :
1912 0 : sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
1913 :
1914 0 : bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1915 : BUS_DMASYNC_PREWRITE);
1916 :
1917 0 : TI_RING_DMASYNC(sc, ti_tx_ring[cur], BUS_DMASYNC_POSTREAD);
1918 :
1919 0 : sc->ti_cdata.ti_tx_chain[cur] = m_head;
1920 0 : SLIST_REMOVE_HEAD(&sc->ti_tx_map_listhead, link);
1921 0 : sc->ti_cdata.ti_tx_map[cur] = entry;
1922 0 : sc->ti_txcnt += txmap->dm_nsegs;
1923 :
1924 0 : *txidx = frag;
1925 :
1926 0 : return (0);
1927 :
1928 : fail_unload:
1929 0 : bus_dmamap_unload(sc->sc_dmatag, txmap);
1930 :
1931 0 : return (ENOBUFS);
1932 0 : }
1933 :
1934 : /*
1935 : * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1936 : * to the mbuf data regions directly in the transmit descriptors.
1937 : */
1938 : void
1939 0 : ti_start(struct ifnet *ifp)
1940 : {
1941 : struct ti_softc *sc;
1942 : struct mbuf *m_head = NULL;
1943 0 : u_int32_t prodidx;
1944 : int pkts = 0, error;
1945 :
1946 0 : sc = ifp->if_softc;
1947 :
1948 0 : prodidx = sc->ti_tx_saved_prodidx;
1949 :
1950 0 : while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
1951 0 : m_head = ifq_deq_begin(&ifp->if_snd);
1952 0 : if (m_head == NULL)
1953 : break;
1954 :
1955 : /*
1956 : * Pack the data into the transmit ring. If we
1957 : * don't have room, set the OACTIVE flag and wait
1958 : * for the NIC to drain the ring.
1959 : */
1960 0 : if (sc->ti_hwrev == TI_HWREV_TIGON)
1961 0 : error = ti_encap_tigon1(sc, m_head, &prodidx);
1962 : else
1963 0 : error = ti_encap_tigon2(sc, m_head, &prodidx);
1964 :
1965 0 : if (error) {
1966 0 : ifq_deq_rollback(&ifp->if_snd, m_head);
1967 0 : ifq_set_oactive(&ifp->if_snd);
1968 0 : break;
1969 : }
1970 :
1971 : /* now we are committed to transmit the packet */
1972 0 : ifq_deq_commit(&ifp->if_snd, m_head);
1973 0 : pkts++;
1974 :
1975 : /*
1976 : * If there's a BPF listener, bounce a copy of this frame
1977 : * to him.
1978 : */
1979 : #if NBPFILTER > 0
1980 0 : if (ifp->if_bpf)
1981 0 : bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1982 : #endif
1983 : }
1984 0 : if (pkts == 0)
1985 0 : return;
1986 :
1987 : /* Transmit */
1988 0 : sc->ti_tx_saved_prodidx = prodidx;
1989 0 : CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
1990 :
1991 : /*
1992 : * Set a timeout in case the chip goes out to lunch.
1993 : */
1994 0 : ifp->if_timer = 5;
1995 0 : }
1996 :
1997 : void
1998 0 : ti_init(void *xsc)
1999 : {
2000 0 : struct ti_softc *sc = xsc;
2001 : int s;
2002 :
2003 0 : s = splnet();
2004 :
2005 : /* Cancel pending I/O and flush buffers. */
2006 0 : ti_stop(sc);
2007 :
2008 : /* Init the gen info block, ring control blocks and firmware. */
2009 0 : if (ti_gibinit(sc)) {
2010 0 : printf("%s: initialization failure\n", sc->sc_dv.dv_xname);
2011 0 : splx(s);
2012 0 : return;
2013 : }
2014 :
2015 0 : splx(s);
2016 0 : }
2017 :
2018 : void
2019 0 : ti_init2(struct ti_softc *sc)
2020 : {
2021 0 : struct ti_cmd_desc cmd;
2022 : struct ifnet *ifp;
2023 : u_int16_t *m;
2024 : struct ifmedia *ifm;
2025 : int tmp;
2026 :
2027 0 : ifp = &sc->arpcom.ac_if;
2028 :
2029 : /* Specify MTU and interface index. */
2030 0 : CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dv.dv_unit);
2031 0 : CSR_WRITE_4(sc, TI_GCR_IFMTU,
2032 : TI_JUMBO_FRAMELEN + ETHER_VLAN_ENCAP_LEN);
2033 0 : TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2034 :
2035 : /* Load our MAC address. */
2036 0 : m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2037 0 : CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2038 0 : CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2039 0 : TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2040 :
2041 : /* Program promiscuous mode and multicast filters. */
2042 0 : ti_iff(sc);
2043 :
2044 : /*
2045 : * If this is a Tigon 1, we should tell the
2046 : * firmware to use software packet filtering.
2047 : */
2048 0 : if (sc->ti_hwrev == TI_HWREV_TIGON)
2049 0 : TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2050 :
2051 : /* Init RX ring. */
2052 0 : if (ti_init_rx_ring_std(sc) == ENOBUFS)
2053 0 : panic("not enough mbufs for rx ring");
2054 :
2055 : /* Init jumbo RX ring. */
2056 0 : ti_init_rx_ring_jumbo(sc);
2057 :
2058 : /*
2059 : * If this is a Tigon 2, we can also configure the
2060 : * mini ring.
2061 : */
2062 0 : if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2063 0 : ti_init_rx_ring_mini(sc);
2064 :
2065 0 : CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2066 0 : sc->ti_rx_saved_considx = 0;
2067 :
2068 : /* Init TX ring. */
2069 0 : ti_init_tx_ring(sc);
2070 :
2071 : /* Tell firmware we're alive. */
2072 0 : TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2073 :
2074 : /* Enable host interrupts. */
2075 0 : CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2076 :
2077 0 : ifp->if_flags |= IFF_RUNNING;
2078 0 : ifq_clr_oactive(&ifp->if_snd);
2079 :
2080 : /*
2081 : * Make sure to set media properly. We have to do this
2082 : * here since we have to issue commands in order to set
2083 : * the link negotiation and we can't issue commands until
2084 : * the firmware is running.
2085 : */
2086 0 : ifm = &sc->ifmedia;
2087 0 : tmp = ifm->ifm_media;
2088 0 : ifm->ifm_media = ifm->ifm_cur->ifm_media;
2089 0 : ti_ifmedia_upd(ifp);
2090 0 : ifm->ifm_media = tmp;
2091 0 : }
2092 :
2093 : /*
2094 : * Set media options.
2095 : */
2096 : int
2097 0 : ti_ifmedia_upd(struct ifnet *ifp)
2098 : {
2099 : struct ti_softc *sc;
2100 : struct ifmedia *ifm;
2101 0 : struct ti_cmd_desc cmd;
2102 :
2103 0 : sc = ifp->if_softc;
2104 0 : ifm = &sc->ifmedia;
2105 :
2106 0 : if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2107 0 : return(EINVAL);
2108 :
2109 0 : switch(IFM_SUBTYPE(ifm->ifm_media)) {
2110 : case IFM_AUTO:
2111 0 : CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2112 : TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2113 : TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2114 0 : CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2115 : TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2116 : TI_LNK_AUTONEGENB|TI_LNK_ENB);
2117 0 : TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2118 : TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2119 0 : break;
2120 : case IFM_1000_SX:
2121 : case IFM_1000_T:
2122 0 : CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2123 : TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2124 0 : CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2125 0 : if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2126 0 : TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2127 0 : }
2128 0 : TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2129 : TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2130 0 : break;
2131 : case IFM_100_FX:
2132 : case IFM_10_FL:
2133 : case IFM_100_TX:
2134 : case IFM_10_T:
2135 0 : CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2136 0 : CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2137 0 : if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2138 0 : IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2139 0 : TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2140 0 : } else {
2141 0 : TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2142 : }
2143 0 : if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2144 0 : TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2145 0 : } else {
2146 0 : TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2147 : }
2148 0 : TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2149 : TI_CMD_CODE_NEGOTIATE_10_100, 0);
2150 0 : break;
2151 : }
2152 :
2153 0 : return (0);
2154 0 : }
2155 :
2156 : /*
2157 : * Report current media status.
2158 : */
2159 : void
2160 0 : ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2161 : {
2162 : struct ti_softc *sc;
2163 : u_int32_t media = 0;
2164 :
2165 0 : sc = ifp->if_softc;
2166 :
2167 0 : ifmr->ifm_status = IFM_AVALID;
2168 0 : ifmr->ifm_active = IFM_ETHER;
2169 :
2170 0 : if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
2171 0 : ifmr->ifm_active |= IFM_NONE;
2172 0 : return;
2173 : }
2174 :
2175 0 : ifmr->ifm_status |= IFM_ACTIVE;
2176 :
2177 0 : if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2178 0 : media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2179 0 : if (sc->ti_copper)
2180 0 : ifmr->ifm_active |= IFM_1000_T;
2181 : else
2182 0 : ifmr->ifm_active |= IFM_1000_SX;
2183 0 : if (media & TI_GLNK_FULL_DUPLEX)
2184 0 : ifmr->ifm_active |= IFM_FDX;
2185 : else
2186 0 : ifmr->ifm_active |= IFM_HDX;
2187 0 : } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2188 0 : media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2189 0 : if (sc->ti_copper) {
2190 0 : if (media & TI_LNK_100MB)
2191 0 : ifmr->ifm_active |= IFM_100_TX;
2192 0 : if (media & TI_LNK_10MB)
2193 0 : ifmr->ifm_active |= IFM_10_T;
2194 : } else {
2195 0 : if (media & TI_LNK_100MB)
2196 0 : ifmr->ifm_active |= IFM_100_FX;
2197 0 : if (media & TI_LNK_10MB)
2198 0 : ifmr->ifm_active |= IFM_10_FL;
2199 : }
2200 0 : if (media & TI_LNK_FULL_DUPLEX)
2201 0 : ifmr->ifm_active |= IFM_FDX;
2202 0 : if (media & TI_LNK_HALF_DUPLEX)
2203 0 : ifmr->ifm_active |= IFM_HDX;
2204 : }
2205 0 : }
2206 :
2207 : int
2208 0 : ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2209 : {
2210 0 : struct ti_softc *sc = ifp->if_softc;
2211 0 : struct ifreq *ifr = (struct ifreq *)data;
2212 : int s, error = 0;
2213 :
2214 0 : s = splnet();
2215 :
2216 0 : switch(command) {
2217 : case SIOCSIFADDR:
2218 0 : ifp->if_flags |= IFF_UP;
2219 0 : if ((ifp->if_flags & IFF_RUNNING) == 0)
2220 0 : ti_init(sc);
2221 : break;
2222 :
2223 : case SIOCSIFFLAGS:
2224 0 : if (ifp->if_flags & IFF_UP) {
2225 0 : if (ifp->if_flags & IFF_RUNNING)
2226 0 : error = ENETRESET;
2227 : else
2228 0 : ti_init(sc);
2229 : } else {
2230 0 : if (ifp->if_flags & IFF_RUNNING)
2231 0 : ti_stop(sc);
2232 : }
2233 : break;
2234 :
2235 : case SIOCSIFMEDIA:
2236 : case SIOCGIFMEDIA:
2237 0 : error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2238 0 : break;
2239 :
2240 : default:
2241 0 : error = ether_ioctl(ifp, &sc->arpcom, command, data);
2242 0 : }
2243 :
2244 0 : if (error == ENETRESET) {
2245 0 : if (ifp->if_flags & IFF_RUNNING)
2246 0 : ti_iff(sc);
2247 : error = 0;
2248 0 : }
2249 :
2250 0 : splx(s);
2251 0 : return (error);
2252 : }
2253 :
2254 : void
2255 0 : ti_watchdog(struct ifnet *ifp)
2256 : {
2257 : struct ti_softc *sc;
2258 :
2259 0 : sc = ifp->if_softc;
2260 :
2261 0 : printf("%s: watchdog timeout -- resetting\n", sc->sc_dv.dv_xname);
2262 0 : ti_stop(sc);
2263 0 : ti_init(sc);
2264 :
2265 0 : ifp->if_oerrors++;
2266 0 : }
2267 :
2268 : /*
2269 : * Stop the adapter and free any mbufs allocated to the
2270 : * RX and TX lists.
2271 : */
2272 : void
2273 0 : ti_stop(struct ti_softc *sc)
2274 : {
2275 : struct ifnet *ifp;
2276 0 : struct ti_cmd_desc cmd;
2277 :
2278 0 : ifp = &sc->arpcom.ac_if;
2279 :
2280 0 : ifp->if_flags &= ~IFF_RUNNING;
2281 0 : ifq_clr_oactive(&ifp->if_snd);
2282 :
2283 : /* Disable host interrupts. */
2284 0 : CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2285 : /*
2286 : * Tell firmware we're shutting down.
2287 : */
2288 0 : TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2289 :
2290 : /* Halt and reinitialize. */
2291 0 : ti_chipinit(sc);
2292 0 : ti_mem_set(sc, 0x2000, 0x100000 - 0x2000);
2293 0 : ti_chipinit(sc);
2294 :
2295 : /* Free the RX lists. */
2296 0 : ti_free_rx_ring_std(sc);
2297 :
2298 : /* Free jumbo RX list. */
2299 0 : ti_free_rx_ring_jumbo(sc);
2300 :
2301 : /* Free mini RX list. */
2302 0 : ti_free_rx_ring_mini(sc);
2303 :
2304 : /* Free TX buffers. */
2305 0 : ti_free_tx_ring(sc);
2306 :
2307 0 : sc->ti_ev_prodidx.ti_idx = 0;
2308 0 : sc->ti_return_prodidx.ti_idx = 0;
2309 0 : sc->ti_tx_considx.ti_idx = 0;
2310 0 : sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2311 0 : }
|