Line data Source code
1 : /*
2 : * Copyright © 2014 Intel Corporation
3 : *
4 : * Permission is hereby granted, free of charge, to any person obtaining a
5 : * copy of this software and associated documentation files (the "Software"),
6 : * to deal in the Software without restriction, including without limitation
7 : * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 : * and/or sell copies of the Software, and to permit persons to whom the
9 : * Software is furnished to do so, subject to the following conditions:
10 : *
11 : * The above copyright notice and this permission notice (including the next
12 : * paragraph) shall be included in all copies or substantial portions of the
13 : * Software.
14 : *
15 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 : * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 : * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 : * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 : * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 : * IN THE SOFTWARE.
22 : *
23 : * Authors:
24 : * Ben Widawsky <ben@bwidawsk.net>
25 : * Michel Thierry <michel.thierry@intel.com>
26 : * Thomas Daniel <thomas.daniel@intel.com>
27 : * Oscar Mateo <oscar.mateo@intel.com>
28 : *
29 : */
30 :
31 : /**
32 : * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 : *
34 : * Motivation:
35 : * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 : * These expanded contexts enable a number of new abilities, especially
37 : * "Execlists" (also implemented in this file).
38 : *
39 : * One of the main differences with the legacy HW contexts is that logical
40 : * ring contexts incorporate many more things to the context's state, like
41 : * PDPs or ringbuffer control registers:
42 : *
43 : * The reason why PDPs are included in the context is straightforward: as
44 : * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 : * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 : * instead, the GPU will do it for you on the context switch.
47 : *
48 : * But, what about the ringbuffer control registers (head, tail, etc..)?
49 : * shouldn't we just need a set of those per engine command streamer? This is
50 : * where the name "Logical Rings" starts to make sense: by virtualizing the
51 : * rings, the engine cs shifts to a new "ring buffer" with every context
52 : * switch. When you want to submit a workload to the GPU you: A) choose your
53 : * context, B) find its appropriate virtualized ring, C) write commands to it
54 : * and then, finally, D) tell the GPU to switch to that context.
55 : *
56 : * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 : * to a contexts is via a context execution list, ergo "Execlists".
58 : *
59 : * LRC implementation:
60 : * Regarding the creation of contexts, we have:
61 : *
62 : * - One global default context.
63 : * - One local default context for each opened fd.
64 : * - One local extra context for each context create ioctl call.
65 : *
66 : * Now that ringbuffers belong per-context (and not per-engine, like before)
67 : * and that contexts are uniquely tied to a given engine (and not reusable,
68 : * like before) we need:
69 : *
70 : * - One ringbuffer per-engine inside each context.
71 : * - One backing object per-engine inside each context.
72 : *
73 : * The global default context starts its life with these new objects fully
74 : * allocated and populated. The local default context for each opened fd is
75 : * more complex, because we don't know at creation time which engine is going
76 : * to use them. To handle this, we have implemented a deferred creation of LR
77 : * contexts:
78 : *
79 : * The local context starts its life as a hollow or blank holder, that only
80 : * gets populated for a given engine once we receive an execbuffer. If later
81 : * on we receive another execbuffer ioctl for the same context but a different
82 : * engine, we allocate/populate a new ringbuffer and context backing object and
83 : * so on.
84 : *
85 : * Finally, regarding local contexts created using the ioctl call: as they are
86 : * only allowed with the render ring, we can allocate & populate them right
87 : * away (no need to defer anything, at least for now).
88 : *
89 : * Execlists implementation:
90 : * Execlists are the new method by which, on gen8+ hardware, workloads are
91 : * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 : * This method works as follows:
93 : *
94 : * When a request is committed, its commands (the BB start and any leading or
95 : * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 : * for the appropriate context. The tail pointer in the hardware context is not
97 : * updated at this time, but instead, kept by the driver in the ringbuffer
98 : * structure. A structure representing this request is added to a request queue
99 : * for the appropriate engine: this structure contains a copy of the context's
100 : * tail after the request was written to the ring buffer and a pointer to the
101 : * context itself.
102 : *
103 : * If the engine's request queue was empty before the request was added, the
104 : * queue is processed immediately. Otherwise the queue will be processed during
105 : * a context switch interrupt. In any case, elements on the queue will get sent
106 : * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 : * globally unique 20-bits submission ID.
108 : *
109 : * When execution of a request completes, the GPU updates the context status
110 : * buffer with a context complete event and generates a context switch interrupt.
111 : * During the interrupt handling, the driver examines the events in the buffer:
112 : * for each context complete event, if the announced ID matches that on the head
113 : * of the request queue, then that request is retired and removed from the queue.
114 : *
115 : * After processing, if any requests were retired and the queue is not empty
116 : * then a new execution list can be submitted. The two requests at the front of
117 : * the queue are next to be submitted but since a context may not occur twice in
118 : * an execution list, if subsequent requests have the same ID as the first then
119 : * the two requests must be combined. This is done simply by discarding requests
120 : * at the head of the queue until either only one requests is left (in which case
121 : * we use a NULL second context) or the first two requests have unique IDs.
122 : *
123 : * By always executing the first two requests in the queue the driver ensures
124 : * that the GPU is kept as busy as possible. In the case where a single context
125 : * completes but a second context is still executing, the request for this second
126 : * context will be at the head of the queue when we remove the first one. This
127 : * request will then be resubmitted along with a new request for a different context,
128 : * which will cause the hardware to continue executing the second request and queue
129 : * the new request (the GPU detects the condition of a context getting preempted
130 : * with the same context and optimizes the context switch flow by not doing
131 : * preemption, but just sampling the new tail pointer).
132 : *
133 : */
134 :
135 : #include <dev/pci/drm/drmP.h>
136 : #include <dev/pci/drm/i915_drm.h>
137 : #include "i915_drv.h"
138 : #include "intel_mocs.h"
139 :
140 : #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 : #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 : #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143 :
144 : #define RING_EXECLIST_QFULL (1 << 0x2)
145 : #define RING_EXECLIST1_VALID (1 << 0x3)
146 : #define RING_EXECLIST0_VALID (1 << 0x4)
147 : #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 : #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 : #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150 :
151 : #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 : #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 : #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 : #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 : #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 : #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157 :
158 : #define CTX_LRI_HEADER_0 0x01
159 : #define CTX_CONTEXT_CONTROL 0x02
160 : #define CTX_RING_HEAD 0x04
161 : #define CTX_RING_TAIL 0x06
162 : #define CTX_RING_BUFFER_START 0x08
163 : #define CTX_RING_BUFFER_CONTROL 0x0a
164 : #define CTX_BB_HEAD_U 0x0c
165 : #define CTX_BB_HEAD_L 0x0e
166 : #define CTX_BB_STATE 0x10
167 : #define CTX_SECOND_BB_HEAD_U 0x12
168 : #define CTX_SECOND_BB_HEAD_L 0x14
169 : #define CTX_SECOND_BB_STATE 0x16
170 : #define CTX_BB_PER_CTX_PTR 0x18
171 : #define CTX_RCS_INDIRECT_CTX 0x1a
172 : #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 : #define CTX_LRI_HEADER_1 0x21
174 : #define CTX_CTX_TIMESTAMP 0x22
175 : #define CTX_PDP3_UDW 0x24
176 : #define CTX_PDP3_LDW 0x26
177 : #define CTX_PDP2_UDW 0x28
178 : #define CTX_PDP2_LDW 0x2a
179 : #define CTX_PDP1_UDW 0x2c
180 : #define CTX_PDP1_LDW 0x2e
181 : #define CTX_PDP0_UDW 0x30
182 : #define CTX_PDP0_LDW 0x32
183 : #define CTX_LRI_HEADER_2 0x41
184 : #define CTX_R_PWR_CLK_STATE 0x42
185 : #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186 :
187 : #define GEN8_CTX_VALID (1<<0)
188 : #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 : #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 : #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 : #define GEN8_CTX_PRIVILEGE (1<<8)
192 :
193 : #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194 : const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195 : reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 : reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 : }
198 :
199 : #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 : reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 : reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 : }
203 :
204 : enum {
205 : ADVANCED_CONTEXT = 0,
206 : LEGACY_32B_CONTEXT,
207 : ADVANCED_AD_CONTEXT,
208 : LEGACY_64B_CONTEXT
209 : };
210 : #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211 : #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
212 : LEGACY_64B_CONTEXT :\
213 : LEGACY_32B_CONTEXT)
214 : enum {
215 : FAULT_AND_HANG = 0,
216 : FAULT_AND_HALT, /* Debug only */
217 : FAULT_AND_STREAM,
218 : FAULT_AND_CONTINUE /* Unsupported */
219 : };
220 : #define GEN8_CTX_ID_SHIFT 32
221 : #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
222 :
223 : static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224 : static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
225 : struct drm_i915_gem_object *default_ctx_obj);
226 :
227 :
228 : /**
229 : * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
230 : * @dev: DRM device.
231 : * @enable_execlists: value of i915.enable_execlists module parameter.
232 : *
233 : * Only certain platforms support Execlists (the prerequisites being
234 : * support for Logical Ring Contexts and Aliasing PPGTT or better).
235 : *
236 : * Return: 1 if Execlists is supported and has to be enabled.
237 : */
238 0 : int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
239 : {
240 0 : WARN_ON(i915.enable_ppgtt == -1);
241 :
242 : /* On platforms with execlist available, vGPU will only
243 : * support execlist mode, no ring buffer mode.
244 : */
245 0 : if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
246 0 : return 1;
247 :
248 0 : if (INTEL_INFO(dev)->gen >= 9)
249 0 : return 1;
250 :
251 0 : if (enable_execlists == 0)
252 0 : return 0;
253 :
254 0 : if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
255 0 : i915.use_mmio_flip >= 0)
256 0 : return 1;
257 :
258 0 : return 0;
259 0 : }
260 :
261 : /**
262 : * intel_execlists_ctx_id() - get the Execlists Context ID
263 : * @ctx_obj: Logical Ring Context backing object.
264 : *
265 : * Do not confuse with ctx->id! Unfortunately we have a name overload
266 : * here: the old context ID we pass to userspace as a handler so that
267 : * they can refer to a context, and the new context ID we pass to the
268 : * ELSP so that the GPU can inform us of the context status via
269 : * interrupts.
270 : *
271 : * Return: 20-bits globally unique context ID.
272 : */
273 0 : u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
274 : {
275 0 : u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
276 : LRC_PPHWSP_PN * PAGE_SIZE;
277 :
278 : /* LRCA is required to be 4K aligned so the more significant 20 bits
279 : * are globally unique */
280 0 : return lrca >> 12;
281 : }
282 :
283 0 : static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
284 : {
285 0 : struct drm_device *dev = ring->dev;
286 :
287 0 : return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
288 0 : IS_BXT_REVID(dev, 0, BXT_REVID_A0)) &&
289 0 : (ring->id == VCS || ring->id == VCS2);
290 : }
291 :
292 0 : uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
293 : struct intel_engine_cs *ring)
294 : {
295 0 : struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
296 : uint64_t desc;
297 0 : uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
298 : LRC_PPHWSP_PN * PAGE_SIZE;
299 :
300 0 : WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
301 :
302 : desc = GEN8_CTX_VALID;
303 0 : desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
304 0 : if (IS_GEN8(ctx_obj->base.dev))
305 0 : desc |= GEN8_CTX_L3LLC_COHERENT;
306 0 : desc |= GEN8_CTX_PRIVILEGE;
307 0 : desc |= lrca;
308 0 : desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
309 :
310 : /* TODO: WaDisableLiteRestore when we start using semaphore
311 : * signalling between Command Streamers */
312 : /* desc |= GEN8_CTX_FORCE_RESTORE; */
313 :
314 : /* WaEnableForceRestoreInCtxtDescForVCS:skl */
315 : /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
316 0 : if (disable_lite_restore_wa(ring))
317 0 : desc |= GEN8_CTX_FORCE_RESTORE;
318 :
319 0 : return desc;
320 : }
321 :
322 0 : static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
323 : struct drm_i915_gem_request *rq1)
324 : {
325 :
326 0 : struct intel_engine_cs *ring = rq0->ring;
327 0 : struct drm_device *dev = ring->dev;
328 0 : struct drm_i915_private *dev_priv = dev->dev_private;
329 : uint64_t desc[2];
330 :
331 0 : if (rq1) {
332 0 : desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
333 0 : rq1->elsp_submitted++;
334 0 : } else {
335 : desc[1] = 0;
336 : }
337 :
338 0 : desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
339 0 : rq0->elsp_submitted++;
340 :
341 : /* You must always write both descriptors in the order below. */
342 0 : spin_lock(&dev_priv->uncore.lock);
343 0 : intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
344 0 : I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
345 0 : I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
346 :
347 0 : I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
348 : /* The context is automatically loaded after the following */
349 0 : I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
350 :
351 : /* ELSP is a wo register, use another nearby reg for posting */
352 0 : POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
353 0 : intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
354 0 : spin_unlock(&dev_priv->uncore.lock);
355 0 : }
356 :
357 0 : static int execlists_update_context(struct drm_i915_gem_request *rq)
358 : {
359 0 : struct intel_engine_cs *ring = rq->ring;
360 0 : struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361 0 : struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
362 0 : struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
363 : struct vm_page *page;
364 : uint32_t *reg_state;
365 :
366 0 : BUG_ON(!ctx_obj);
367 0 : WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
368 0 : WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
369 :
370 0 : page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
371 0 : reg_state = kmap_atomic(page);
372 :
373 0 : reg_state[CTX_RING_TAIL+1] = rq->tail;
374 0 : reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
375 :
376 0 : if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
377 : /* True 32b PPGTT with dynamic page allocation: update PDP
378 : * registers and point the unallocated PDPs to scratch page.
379 : * PML4 is allocated during ppgtt init, so this is not needed
380 : * in 48-bit mode.
381 : */
382 0 : ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
383 0 : ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
384 0 : ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
385 0 : ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
386 0 : }
387 :
388 0 : kunmap_atomic(reg_state);
389 :
390 0 : return 0;
391 : }
392 :
393 0 : static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
394 : struct drm_i915_gem_request *rq1)
395 : {
396 0 : execlists_update_context(rq0);
397 :
398 0 : if (rq1)
399 0 : execlists_update_context(rq1);
400 :
401 0 : execlists_elsp_write(rq0, rq1);
402 0 : }
403 :
404 0 : static void execlists_context_unqueue(struct intel_engine_cs *ring)
405 : {
406 : struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
407 : struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
408 :
409 0 : assert_spin_locked(&ring->execlist_lock);
410 :
411 : /*
412 : * If irqs are not active generate a warning as batches that finish
413 : * without the irqs may get lost and a GPU Hang may occur.
414 : */
415 0 : WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
416 :
417 0 : if (list_empty(&ring->execlist_queue))
418 0 : return;
419 :
420 : /* Try to read in pairs */
421 0 : list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
422 : execlist_link) {
423 0 : if (!req0) {
424 : req0 = cursor;
425 0 : } else if (req0->ctx == cursor->ctx) {
426 : /* Same ctx: ignore first request, as second request
427 : * will update tail past first request's workload */
428 0 : cursor->elsp_submitted = req0->elsp_submitted;
429 0 : list_del(&req0->execlist_link);
430 0 : list_add_tail(&req0->execlist_link,
431 0 : &ring->execlist_retired_req_list);
432 : req0 = cursor;
433 : } else {
434 : req1 = cursor;
435 0 : break;
436 : }
437 : }
438 :
439 0 : if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
440 : /*
441 : * WaIdleLiteRestore: make sure we never cause a lite
442 : * restore with HEAD==TAIL
443 : */
444 0 : if (req0->elsp_submitted) {
445 : /*
446 : * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
447 : * as we resubmit the request. See gen8_emit_request()
448 : * for where we prepare the padding after the end of the
449 : * request.
450 : */
451 : struct intel_ringbuffer *ringbuf;
452 :
453 0 : ringbuf = req0->ctx->engine[ring->id].ringbuf;
454 0 : req0->tail += 8;
455 0 : req0->tail &= ringbuf->size - 1;
456 0 : }
457 : }
458 :
459 0 : WARN_ON(req1 && req1->elsp_submitted);
460 :
461 0 : execlists_submit_requests(req0, req1);
462 0 : }
463 :
464 0 : static bool execlists_check_remove_request(struct intel_engine_cs *ring,
465 : u32 request_id)
466 : {
467 : struct drm_i915_gem_request *head_req;
468 :
469 0 : assert_spin_locked(&ring->execlist_lock);
470 :
471 0 : head_req = list_first_entry_or_null(&ring->execlist_queue,
472 : struct drm_i915_gem_request,
473 : execlist_link);
474 :
475 0 : if (head_req != NULL) {
476 : struct drm_i915_gem_object *ctx_obj =
477 0 : head_req->ctx->engine[ring->id].state;
478 0 : if (intel_execlists_ctx_id(ctx_obj) == request_id) {
479 0 : WARN(head_req->elsp_submitted == 0,
480 : "Never submitted head request\n");
481 :
482 0 : if (--head_req->elsp_submitted <= 0) {
483 0 : list_del(&head_req->execlist_link);
484 0 : list_add_tail(&head_req->execlist_link,
485 0 : &ring->execlist_retired_req_list);
486 0 : return true;
487 : }
488 : }
489 0 : }
490 :
491 0 : return false;
492 0 : }
493 :
494 : /**
495 : * intel_lrc_irq_handler() - handle Context Switch interrupts
496 : * @ring: Engine Command Streamer to handle.
497 : *
498 : * Check the unread Context Status Buffers and manage the submission of new
499 : * contexts to the ELSP accordingly.
500 : */
501 0 : void intel_lrc_irq_handler(struct intel_engine_cs *ring)
502 : {
503 0 : struct drm_i915_private *dev_priv = ring->dev->dev_private;
504 : u32 status_pointer;
505 : u8 read_pointer;
506 : u8 write_pointer;
507 : u32 status = 0;
508 : u32 status_id;
509 : u32 submit_contexts = 0;
510 :
511 0 : status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
512 :
513 0 : read_pointer = ring->next_context_status_buffer;
514 0 : write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
515 0 : if (read_pointer > write_pointer)
516 0 : write_pointer += GEN8_CSB_ENTRIES;
517 :
518 0 : spin_lock(&ring->execlist_lock);
519 :
520 0 : while (read_pointer < write_pointer) {
521 0 : read_pointer++;
522 0 : status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
523 0 : status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
524 :
525 0 : if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
526 0 : continue;
527 :
528 0 : if (status & GEN8_CTX_STATUS_PREEMPTED) {
529 0 : if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
530 0 : if (execlists_check_remove_request(ring, status_id))
531 0 : WARN(1, "Lite Restored request removed from queue\n");
532 : } else
533 0 : WARN(1, "Preemption without Lite Restore\n");
534 : }
535 :
536 0 : if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
537 0 : (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
538 0 : if (execlists_check_remove_request(ring, status_id))
539 0 : submit_contexts++;
540 : }
541 : }
542 :
543 0 : if (disable_lite_restore_wa(ring)) {
544 : /* Prevent a ctx to preempt itself */
545 0 : if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
546 0 : (submit_contexts != 0))
547 0 : execlists_context_unqueue(ring);
548 0 : } else if (submit_contexts != 0) {
549 0 : execlists_context_unqueue(ring);
550 0 : }
551 :
552 0 : spin_unlock(&ring->execlist_lock);
553 :
554 0 : WARN(submit_contexts > 2, "More than two context complete events?\n");
555 0 : ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
556 :
557 0 : I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
558 : _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
559 : ((u32)ring->next_context_status_buffer &
560 : GEN8_CSB_PTR_MASK) << 8));
561 0 : }
562 :
563 0 : static int execlists_context_queue(struct drm_i915_gem_request *request)
564 : {
565 0 : struct intel_engine_cs *ring = request->ring;
566 : struct drm_i915_gem_request *cursor;
567 : int num_elements = 0;
568 :
569 0 : if (request->ctx != ring->default_context)
570 0 : intel_lr_context_pin(request);
571 :
572 0 : i915_gem_request_reference(request);
573 :
574 0 : spin_lock_irq(&ring->execlist_lock);
575 :
576 0 : list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
577 0 : if (++num_elements > 2)
578 : break;
579 :
580 0 : if (num_elements > 2) {
581 : struct drm_i915_gem_request *tail_req;
582 :
583 0 : tail_req = list_last_entry(&ring->execlist_queue,
584 : struct drm_i915_gem_request,
585 : execlist_link);
586 :
587 0 : if (request->ctx == tail_req->ctx) {
588 0 : WARN(tail_req->elsp_submitted != 0,
589 : "More than 2 already-submitted reqs queued\n");
590 0 : list_del(&tail_req->execlist_link);
591 0 : list_add_tail(&tail_req->execlist_link,
592 0 : &ring->execlist_retired_req_list);
593 0 : }
594 0 : }
595 :
596 0 : list_add_tail(&request->execlist_link, &ring->execlist_queue);
597 0 : if (num_elements == 0)
598 0 : execlists_context_unqueue(ring);
599 :
600 0 : spin_unlock_irq(&ring->execlist_lock);
601 :
602 0 : return 0;
603 : }
604 :
605 0 : static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
606 : {
607 0 : struct intel_engine_cs *ring = req->ring;
608 : uint32_t flush_domains;
609 : int ret;
610 :
611 : flush_domains = 0;
612 0 : if (ring->gpu_caches_dirty)
613 : flush_domains = I915_GEM_GPU_DOMAINS;
614 :
615 0 : ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
616 0 : if (ret)
617 0 : return ret;
618 :
619 0 : ring->gpu_caches_dirty = false;
620 0 : return 0;
621 0 : }
622 :
623 0 : static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
624 : struct list_head *vmas)
625 : {
626 0 : const unsigned other_rings = ~intel_ring_flag(req->ring);
627 : struct i915_vma *vma;
628 : uint32_t flush_domains = 0;
629 : bool flush_chipset = false;
630 : int ret;
631 :
632 0 : list_for_each_entry(vma, vmas, exec_list) {
633 0 : struct drm_i915_gem_object *obj = vma->obj;
634 :
635 0 : if (obj->active & other_rings) {
636 0 : ret = i915_gem_object_sync(obj, req->ring, &req);
637 0 : if (ret)
638 0 : return ret;
639 : }
640 :
641 0 : if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
642 0 : flush_chipset |= i915_gem_clflush_object(obj, false);
643 :
644 0 : flush_domains |= obj->base.write_domain;
645 0 : }
646 :
647 0 : if (flush_domains & I915_GEM_DOMAIN_GTT)
648 0 : wmb();
649 :
650 : /* Unconditionally invalidate gpu caches and ensure that we do flush
651 : * any residual writes from the previous batch.
652 : */
653 0 : return logical_ring_invalidate_all_caches(req);
654 0 : }
655 :
656 0 : int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
657 : {
658 : int ret;
659 :
660 0 : request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
661 :
662 0 : if (request->ctx != request->ring->default_context) {
663 0 : ret = intel_lr_context_pin(request);
664 0 : if (ret)
665 0 : return ret;
666 : }
667 :
668 0 : return 0;
669 0 : }
670 :
671 0 : static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
672 : int bytes)
673 : {
674 0 : struct intel_ringbuffer *ringbuf = req->ringbuf;
675 0 : struct intel_engine_cs *ring = req->ring;
676 : struct drm_i915_gem_request *target;
677 : unsigned space;
678 : int ret;
679 :
680 0 : if (intel_ring_space(ringbuf) >= bytes)
681 0 : return 0;
682 :
683 : /* The whole point of reserving space is to not wait! */
684 0 : WARN_ON(ringbuf->reserved_in_use);
685 :
686 0 : list_for_each_entry(target, &ring->request_list, list) {
687 : /*
688 : * The request queue is per-engine, so can contain requests
689 : * from multiple ringbuffers. Here, we must ignore any that
690 : * aren't from the ringbuffer we're considering.
691 : */
692 0 : if (target->ringbuf != ringbuf)
693 : continue;
694 :
695 : /* Would completion of this request free enough space? */
696 0 : space = __intel_ring_space(target->postfix, ringbuf->tail,
697 0 : ringbuf->size);
698 0 : if (space >= bytes)
699 : break;
700 : }
701 :
702 0 : if (WARN_ON(&target->list == &ring->request_list))
703 0 : return -ENOSPC;
704 :
705 0 : ret = i915_wait_request(target);
706 0 : if (ret)
707 0 : return ret;
708 :
709 0 : ringbuf->space = space;
710 0 : return 0;
711 0 : }
712 :
713 : /*
714 : * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
715 : * @request: Request to advance the logical ringbuffer of.
716 : *
717 : * The tail is updated in our logical ringbuffer struct, not in the actual context. What
718 : * really happens during submission is that the context and current tail will be placed
719 : * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
720 : * point, the tail *inside* the context is updated and the ELSP written to.
721 : */
722 : static void
723 0 : intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
724 : {
725 0 : struct intel_engine_cs *ring = request->ring;
726 0 : struct drm_i915_private *dev_priv = request->i915;
727 :
728 0 : intel_logical_ring_advance(request->ringbuf);
729 :
730 0 : request->tail = request->ringbuf->tail;
731 :
732 0 : if (intel_ring_stopped(ring))
733 0 : return;
734 :
735 0 : if (dev_priv->guc.execbuf_client)
736 0 : i915_guc_submit(dev_priv->guc.execbuf_client, request);
737 : else
738 0 : execlists_context_queue(request);
739 0 : }
740 :
741 0 : static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
742 : {
743 : uint32_t __iomem *virt;
744 0 : int rem = ringbuf->size - ringbuf->tail;
745 :
746 0 : virt = ringbuf->virtual_start + ringbuf->tail;
747 0 : rem /= 4;
748 0 : while (rem--)
749 0 : iowrite32(MI_NOOP, virt++);
750 :
751 0 : ringbuf->tail = 0;
752 0 : intel_ring_update_space(ringbuf);
753 0 : }
754 :
755 0 : static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
756 : {
757 0 : struct intel_ringbuffer *ringbuf = req->ringbuf;
758 0 : int remain_usable = ringbuf->effective_size - ringbuf->tail;
759 0 : int remain_actual = ringbuf->size - ringbuf->tail;
760 : int ret, total_bytes, wait_bytes = 0;
761 : bool need_wrap = false;
762 :
763 0 : if (ringbuf->reserved_in_use)
764 0 : total_bytes = bytes;
765 : else
766 0 : total_bytes = bytes + ringbuf->reserved_size;
767 :
768 0 : if (unlikely(bytes > remain_usable)) {
769 : /*
770 : * Not enough space for the basic request. So need to flush
771 : * out the remainder and then wait for base + reserved.
772 : */
773 0 : wait_bytes = remain_actual + total_bytes;
774 : need_wrap = true;
775 0 : } else {
776 0 : if (unlikely(total_bytes > remain_usable)) {
777 : /*
778 : * The base request will fit but the reserved space
779 : * falls off the end. So don't need an immediate wrap
780 : * and only need to effectively wait for the reserved
781 : * size space from the start of ringbuffer.
782 : */
783 0 : wait_bytes = remain_actual + ringbuf->reserved_size;
784 0 : } else if (total_bytes > ringbuf->space) {
785 : /* No wrapping required, just waiting. */
786 : wait_bytes = total_bytes;
787 0 : }
788 : }
789 :
790 0 : if (wait_bytes) {
791 0 : ret = logical_ring_wait_for_space(req, wait_bytes);
792 0 : if (unlikely(ret))
793 0 : return ret;
794 :
795 0 : if (need_wrap)
796 0 : __wrap_ring_buffer(ringbuf);
797 : }
798 :
799 0 : return 0;
800 0 : }
801 :
802 : /**
803 : * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
804 : *
805 : * @req: The request to start some new work for
806 : * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
807 : *
808 : * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
809 : * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
810 : * and also preallocates a request (every workload submission is still mediated through
811 : * requests, same as it did with legacy ringbuffer submission).
812 : *
813 : * Return: non-zero if the ringbuffer is not ready to be written to.
814 : */
815 0 : int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
816 : {
817 : struct drm_i915_private *dev_priv;
818 : int ret;
819 :
820 0 : WARN_ON(req == NULL);
821 0 : dev_priv = req->ring->dev->dev_private;
822 :
823 0 : ret = i915_gem_check_wedge(&dev_priv->gpu_error,
824 0 : dev_priv->mm.interruptible);
825 0 : if (ret)
826 0 : return ret;
827 :
828 0 : ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
829 0 : if (ret)
830 0 : return ret;
831 :
832 0 : req->ringbuf->space -= num_dwords * sizeof(uint32_t);
833 0 : return 0;
834 0 : }
835 :
836 0 : int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
837 : {
838 : /*
839 : * The first call merely notes the reserve request and is common for
840 : * all back ends. The subsequent localised _begin() call actually
841 : * ensures that the reservation is available. Without the begin, if
842 : * the request creator immediately submitted the request without
843 : * adding any commands to it then there might not actually be
844 : * sufficient room for the submission commands.
845 : */
846 0 : intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
847 :
848 0 : return intel_logical_ring_begin(request, 0);
849 : }
850 :
851 : /**
852 : * execlists_submission() - submit a batchbuffer for execution, Execlists style
853 : * @dev: DRM device.
854 : * @file: DRM file.
855 : * @ring: Engine Command Streamer to submit to.
856 : * @ctx: Context to employ for this submission.
857 : * @args: execbuffer call arguments.
858 : * @vmas: list of vmas.
859 : * @batch_obj: the batchbuffer to submit.
860 : * @exec_start: batchbuffer start virtual address pointer.
861 : * @dispatch_flags: translated execbuffer call flags.
862 : *
863 : * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
864 : * away the submission details of the execbuffer ioctl call.
865 : *
866 : * Return: non-zero if the submission fails.
867 : */
868 0 : int intel_execlists_submission(struct i915_execbuffer_params *params,
869 : struct drm_i915_gem_execbuffer2 *args,
870 : struct list_head *vmas)
871 : {
872 0 : struct drm_device *dev = params->dev;
873 0 : struct intel_engine_cs *ring = params->ring;
874 0 : struct drm_i915_private *dev_priv = dev->dev_private;
875 0 : struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
876 : u64 exec_start;
877 : int instp_mode;
878 : u32 instp_mask;
879 : int ret;
880 :
881 0 : instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
882 : instp_mask = I915_EXEC_CONSTANTS_MASK;
883 0 : switch (instp_mode) {
884 : case I915_EXEC_CONSTANTS_REL_GENERAL:
885 : case I915_EXEC_CONSTANTS_ABSOLUTE:
886 : case I915_EXEC_CONSTANTS_REL_SURFACE:
887 0 : if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
888 : DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
889 0 : return -EINVAL;
890 : }
891 :
892 0 : if (instp_mode != dev_priv->relative_constants_mode) {
893 0 : if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
894 : DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
895 0 : return -EINVAL;
896 : }
897 :
898 : /* The HW changed the meaning on this bit on gen6 */
899 : instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
900 0 : }
901 : break;
902 : default:
903 : DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
904 0 : return -EINVAL;
905 : }
906 :
907 0 : if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
908 : DRM_DEBUG("sol reset is gen7 only\n");
909 0 : return -EINVAL;
910 : }
911 :
912 0 : ret = execlists_move_to_gpu(params->request, vmas);
913 0 : if (ret)
914 0 : return ret;
915 :
916 0 : if (ring == &dev_priv->ring[RCS] &&
917 0 : instp_mode != dev_priv->relative_constants_mode) {
918 0 : ret = intel_logical_ring_begin(params->request, 4);
919 0 : if (ret)
920 0 : return ret;
921 :
922 0 : intel_logical_ring_emit(ringbuf, MI_NOOP);
923 0 : intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
924 0 : intel_logical_ring_emit(ringbuf, INSTPM);
925 0 : intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
926 0 : intel_logical_ring_advance(ringbuf);
927 :
928 0 : dev_priv->relative_constants_mode = instp_mode;
929 0 : }
930 :
931 0 : exec_start = params->batch_obj_vm_offset +
932 0 : args->batch_start_offset;
933 :
934 0 : ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
935 0 : if (ret)
936 0 : return ret;
937 :
938 0 : trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
939 :
940 0 : i915_gem_execbuffer_move_to_active(vmas, params->request);
941 0 : i915_gem_execbuffer_retire_commands(params);
942 :
943 0 : return 0;
944 0 : }
945 :
946 0 : void intel_execlists_retire_requests(struct intel_engine_cs *ring)
947 : {
948 : struct drm_i915_gem_request *req, *tmp;
949 0 : struct list_head retired_list;
950 :
951 0 : WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
952 0 : if (list_empty(&ring->execlist_retired_req_list))
953 0 : return;
954 :
955 0 : INIT_LIST_HEAD(&retired_list);
956 0 : spin_lock_irq(&ring->execlist_lock);
957 0 : list_replace_init(&ring->execlist_retired_req_list, &retired_list);
958 0 : spin_unlock_irq(&ring->execlist_lock);
959 :
960 0 : list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
961 0 : struct intel_context *ctx = req->ctx;
962 : struct drm_i915_gem_object *ctx_obj =
963 0 : ctx->engine[ring->id].state;
964 :
965 0 : if (ctx_obj && (ctx != ring->default_context))
966 0 : intel_lr_context_unpin(req);
967 0 : list_del(&req->execlist_link);
968 0 : i915_gem_request_unreference(req);
969 : }
970 0 : }
971 :
972 0 : void intel_logical_ring_stop(struct intel_engine_cs *ring)
973 : {
974 0 : struct drm_i915_private *dev_priv = ring->dev->dev_private;
975 : int ret;
976 :
977 0 : if (!intel_ring_initialized(ring))
978 0 : return;
979 :
980 0 : ret = intel_ring_idle(ring);
981 0 : if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
982 0 : DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
983 : ring->name, ret);
984 :
985 : /* TODO: Is this correct with Execlists enabled? */
986 0 : I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
987 0 : if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
988 0 : DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
989 0 : return;
990 : }
991 0 : I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
992 0 : }
993 :
994 0 : int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
995 : {
996 0 : struct intel_engine_cs *ring = req->ring;
997 : int ret;
998 :
999 0 : if (!ring->gpu_caches_dirty)
1000 0 : return 0;
1001 :
1002 0 : ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1003 0 : if (ret)
1004 0 : return ret;
1005 :
1006 0 : ring->gpu_caches_dirty = false;
1007 0 : return 0;
1008 0 : }
1009 :
1010 0 : static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1011 : struct drm_i915_gem_object *ctx_obj,
1012 : struct intel_ringbuffer *ringbuf)
1013 : {
1014 0 : struct drm_device *dev = ring->dev;
1015 0 : struct drm_i915_private *dev_priv = dev->dev_private;
1016 : int ret = 0;
1017 :
1018 0 : WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1019 0 : ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1020 : PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1021 0 : if (ret)
1022 0 : return ret;
1023 :
1024 0 : ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1025 0 : if (ret)
1026 : goto unpin_ctx_obj;
1027 :
1028 0 : ctx_obj->dirty = true;
1029 :
1030 : /* Invalidate GuC TLB. */
1031 0 : if (i915.enable_guc_submission)
1032 0 : I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1033 :
1034 0 : return ret;
1035 :
1036 : unpin_ctx_obj:
1037 0 : i915_gem_object_ggtt_unpin(ctx_obj);
1038 :
1039 0 : return ret;
1040 0 : }
1041 :
1042 0 : static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1043 : {
1044 : int ret = 0;
1045 0 : struct intel_engine_cs *ring = rq->ring;
1046 0 : struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1047 0 : struct intel_ringbuffer *ringbuf = rq->ringbuf;
1048 :
1049 0 : if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1050 0 : ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1051 0 : if (ret)
1052 : goto reset_pin_count;
1053 : }
1054 0 : return ret;
1055 :
1056 : reset_pin_count:
1057 0 : rq->ctx->engine[ring->id].pin_count = 0;
1058 0 : return ret;
1059 0 : }
1060 :
1061 0 : void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1062 : {
1063 0 : struct intel_engine_cs *ring = rq->ring;
1064 0 : struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1065 0 : struct intel_ringbuffer *ringbuf = rq->ringbuf;
1066 :
1067 0 : if (ctx_obj) {
1068 0 : WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1069 0 : if (--rq->ctx->engine[ring->id].pin_count == 0) {
1070 0 : intel_unpin_ringbuffer_obj(ringbuf);
1071 0 : i915_gem_object_ggtt_unpin(ctx_obj);
1072 0 : }
1073 : }
1074 0 : }
1075 :
1076 0 : static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1077 : {
1078 : int ret, i;
1079 0 : struct intel_engine_cs *ring = req->ring;
1080 0 : struct intel_ringbuffer *ringbuf = req->ringbuf;
1081 0 : struct drm_device *dev = ring->dev;
1082 0 : struct drm_i915_private *dev_priv = dev->dev_private;
1083 0 : struct i915_workarounds *w = &dev_priv->workarounds;
1084 :
1085 0 : if (WARN_ON_ONCE(w->count == 0))
1086 0 : return 0;
1087 :
1088 0 : ring->gpu_caches_dirty = true;
1089 0 : ret = logical_ring_flush_all_caches(req);
1090 0 : if (ret)
1091 0 : return ret;
1092 :
1093 0 : ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1094 0 : if (ret)
1095 0 : return ret;
1096 :
1097 0 : intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1098 0 : for (i = 0; i < w->count; i++) {
1099 0 : intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1100 0 : intel_logical_ring_emit(ringbuf, w->reg[i].value);
1101 : }
1102 0 : intel_logical_ring_emit(ringbuf, MI_NOOP);
1103 :
1104 0 : intel_logical_ring_advance(ringbuf);
1105 :
1106 0 : ring->gpu_caches_dirty = true;
1107 0 : ret = logical_ring_flush_all_caches(req);
1108 0 : if (ret)
1109 0 : return ret;
1110 :
1111 0 : return 0;
1112 0 : }
1113 :
1114 : #define wa_ctx_emit(batch, index, cmd) \
1115 : do { \
1116 : int __index = (index)++; \
1117 : if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1118 : return -ENOSPC; \
1119 : } \
1120 : batch[__index] = (cmd); \
1121 : } while (0)
1122 :
1123 :
1124 : /*
1125 : * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1126 : * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1127 : * but there is a slight complication as this is applied in WA batch where the
1128 : * values are only initialized once so we cannot take register value at the
1129 : * beginning and reuse it further; hence we save its value to memory, upload a
1130 : * constant value with bit21 set and then we restore it back with the saved value.
1131 : * To simplify the WA, a constant value is formed by using the default value
1132 : * of this register. This shouldn't be a problem because we are only modifying
1133 : * it for a short period and this batch in non-premptible. We can ofcourse
1134 : * use additional instructions that read the actual value of the register
1135 : * at that time and set our bit of interest but it makes the WA complicated.
1136 : *
1137 : * This WA is also required for Gen9 so extracting as a function avoids
1138 : * code duplication.
1139 : */
1140 0 : static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1141 : uint32_t *const batch,
1142 : uint32_t index)
1143 : {
1144 : uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1145 :
1146 : /*
1147 : * WaDisableLSQCROPERFforOCL:skl,kbl
1148 : * This WA is implemented in skl_init_clock_gating() but since
1149 : * this batch updates GEN8_L3SQCREG4 with default value we need to
1150 : * set this bit here to retain the WA during flush.
1151 : */
1152 0 : if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0) ||
1153 0 : IS_KBL_REVID(ring->dev, 0, KBL_REVID_E0))
1154 0 : l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1155 :
1156 0 : wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1157 : MI_SRM_LRM_GLOBAL_GTT));
1158 0 : wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1159 0 : wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1160 0 : wa_ctx_emit(batch, index, 0);
1161 :
1162 0 : wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1163 0 : wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1164 0 : wa_ctx_emit(batch, index, l3sqc4_flush);
1165 :
1166 0 : wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1167 0 : wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1168 : PIPE_CONTROL_DC_FLUSH_ENABLE));
1169 0 : wa_ctx_emit(batch, index, 0);
1170 0 : wa_ctx_emit(batch, index, 0);
1171 0 : wa_ctx_emit(batch, index, 0);
1172 0 : wa_ctx_emit(batch, index, 0);
1173 :
1174 0 : wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1175 : MI_SRM_LRM_GLOBAL_GTT));
1176 0 : wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1177 0 : wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1178 0 : wa_ctx_emit(batch, index, 0);
1179 :
1180 0 : return index;
1181 0 : }
1182 :
1183 0 : static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1184 : uint32_t offset,
1185 : uint32_t start_alignment)
1186 : {
1187 0 : return wa_ctx->offset = roundup2(offset, start_alignment);
1188 : }
1189 :
1190 0 : static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1191 : uint32_t offset,
1192 : uint32_t size_alignment)
1193 : {
1194 0 : wa_ctx->size = offset - wa_ctx->offset;
1195 :
1196 0 : WARN(wa_ctx->size % size_alignment,
1197 : "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1198 : wa_ctx->size, size_alignment);
1199 0 : return 0;
1200 : }
1201 :
1202 : /**
1203 : * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1204 : *
1205 : * @ring: only applicable for RCS
1206 : * @wa_ctx: structure representing wa_ctx
1207 : * offset: specifies start of the batch, should be cache-aligned. This is updated
1208 : * with the offset value received as input.
1209 : * size: size of the batch in DWORDS but HW expects in terms of cachelines
1210 : * @batch: page in which WA are loaded
1211 : * @offset: This field specifies the start of the batch, it should be
1212 : * cache-aligned otherwise it is adjusted accordingly.
1213 : * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1214 : * initialized at the beginning and shared across all contexts but this field
1215 : * helps us to have multiple batches at different offsets and select them based
1216 : * on a criteria. At the moment this batch always start at the beginning of the page
1217 : * and at this point we don't have multiple wa_ctx batch buffers.
1218 : *
1219 : * The number of WA applied are not known at the beginning; we use this field
1220 : * to return the no of DWORDS written.
1221 : *
1222 : * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1223 : * so it adds NOOPs as padding to make it cacheline aligned.
1224 : * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1225 : * makes a complete batch buffer.
1226 : *
1227 : * Return: non-zero if we exceed the PAGE_SIZE limit.
1228 : */
1229 :
1230 0 : static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1231 : struct i915_wa_ctx_bb *wa_ctx,
1232 : uint32_t *const batch,
1233 : uint32_t *offset)
1234 : {
1235 : uint32_t scratch_addr;
1236 0 : uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1237 :
1238 : /* WaDisableCtxRestoreArbitration:bdw,chv */
1239 0 : wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1240 :
1241 : /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1242 0 : if (IS_BROADWELL(ring->dev)) {
1243 0 : int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1244 0 : if (rc < 0)
1245 0 : return rc;
1246 : index = rc;
1247 0 : }
1248 :
1249 : /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1250 : /* Actual scratch location is at 128 bytes offset */
1251 0 : scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1252 :
1253 0 : wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1254 0 : wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1255 : PIPE_CONTROL_GLOBAL_GTT_IVB |
1256 : PIPE_CONTROL_CS_STALL |
1257 : PIPE_CONTROL_QW_WRITE));
1258 0 : wa_ctx_emit(batch, index, scratch_addr);
1259 0 : wa_ctx_emit(batch, index, 0);
1260 0 : wa_ctx_emit(batch, index, 0);
1261 0 : wa_ctx_emit(batch, index, 0);
1262 :
1263 : /* Pad to end of cacheline */
1264 0 : while (index % CACHELINE_DWORDS)
1265 0 : wa_ctx_emit(batch, index, MI_NOOP);
1266 :
1267 : /*
1268 : * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1269 : * execution depends on the length specified in terms of cache lines
1270 : * in the register CTX_RCS_INDIRECT_CTX
1271 : */
1272 :
1273 0 : return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1274 0 : }
1275 :
1276 : /**
1277 : * gen8_init_perctx_bb() - initialize per ctx batch with WA
1278 : *
1279 : * @ring: only applicable for RCS
1280 : * @wa_ctx: structure representing wa_ctx
1281 : * offset: specifies start of the batch, should be cache-aligned.
1282 : * size: size of the batch in DWORDS but HW expects in terms of cachelines
1283 : * @batch: page in which WA are loaded
1284 : * @offset: This field specifies the start of this batch.
1285 : * This batch is started immediately after indirect_ctx batch. Since we ensure
1286 : * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1287 : *
1288 : * The number of DWORDS written are returned using this field.
1289 : *
1290 : * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1291 : * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1292 : */
1293 0 : static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1294 : struct i915_wa_ctx_bb *wa_ctx,
1295 : uint32_t *const batch,
1296 : uint32_t *offset)
1297 : {
1298 0 : uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1299 :
1300 : /* WaDisableCtxRestoreArbitration:bdw,chv */
1301 0 : wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1302 :
1303 0 : wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1304 :
1305 0 : return wa_ctx_end(wa_ctx, *offset = index, 1);
1306 0 : }
1307 :
1308 0 : static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1309 : struct i915_wa_ctx_bb *wa_ctx,
1310 : uint32_t *const batch,
1311 : uint32_t *offset)
1312 : {
1313 : int ret;
1314 0 : struct drm_device *dev = ring->dev;
1315 0 : uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1316 :
1317 : /* WaDisableCtxRestoreArbitration:skl,bxt */
1318 0 : if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1319 0 : IS_BXT_REVID(dev, 0, BXT_REVID_A0))
1320 0 : wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1321 :
1322 : /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1323 0 : ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1324 0 : if (ret < 0)
1325 0 : return ret;
1326 : index = ret;
1327 :
1328 : /* Pad to end of cacheline */
1329 0 : while (index % CACHELINE_DWORDS)
1330 0 : wa_ctx_emit(batch, index, MI_NOOP);
1331 :
1332 0 : return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1333 0 : }
1334 :
1335 0 : static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1336 : struct i915_wa_ctx_bb *wa_ctx,
1337 : uint32_t *const batch,
1338 : uint32_t *offset)
1339 : {
1340 0 : struct drm_device *dev = ring->dev;
1341 0 : uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1342 :
1343 : /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1344 0 : if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1345 0 : IS_BXT_REVID(dev, 0, BXT_REVID_A0)) {
1346 0 : wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1347 0 : wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1348 0 : wa_ctx_emit(batch, index,
1349 : _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1350 0 : wa_ctx_emit(batch, index, MI_NOOP);
1351 : }
1352 :
1353 : /* WaDisableCtxRestoreArbitration:skl,bxt */
1354 0 : if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1355 0 : IS_BXT_REVID(dev, 0, BXT_REVID_A0))
1356 0 : wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1357 :
1358 0 : wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1359 :
1360 0 : return wa_ctx_end(wa_ctx, *offset = index, 1);
1361 0 : }
1362 :
1363 0 : static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1364 : {
1365 : int ret;
1366 :
1367 0 : ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1368 0 : if (!ring->wa_ctx.obj) {
1369 : DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1370 0 : return -ENOMEM;
1371 : }
1372 :
1373 0 : ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1374 0 : if (ret) {
1375 : DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1376 : ret);
1377 0 : drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1378 0 : return ret;
1379 : }
1380 :
1381 0 : return 0;
1382 0 : }
1383 :
1384 0 : static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1385 : {
1386 0 : if (ring->wa_ctx.obj) {
1387 0 : i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1388 0 : drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1389 0 : ring->wa_ctx.obj = NULL;
1390 0 : }
1391 0 : }
1392 :
1393 0 : static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1394 : {
1395 : int ret;
1396 : uint32_t *batch;
1397 0 : uint32_t offset;
1398 : struct vm_page *page;
1399 0 : struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1400 :
1401 0 : WARN_ON(ring->id != RCS);
1402 :
1403 : /* update this when WA for higher Gen are added */
1404 0 : if (INTEL_INFO(ring->dev)->gen > 9) {
1405 0 : DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1406 : INTEL_INFO(ring->dev)->gen);
1407 0 : return 0;
1408 : }
1409 :
1410 : /* some WA perform writes to scratch page, ensure it is valid */
1411 0 : if (ring->scratch.obj == NULL) {
1412 0 : DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1413 0 : return -EINVAL;
1414 : }
1415 :
1416 0 : ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1417 0 : if (ret) {
1418 : DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1419 0 : return ret;
1420 : }
1421 :
1422 0 : page = i915_gem_object_get_page(wa_ctx->obj, 0);
1423 0 : batch = kmap_atomic(page);
1424 0 : offset = 0;
1425 :
1426 0 : if (INTEL_INFO(ring->dev)->gen == 8) {
1427 0 : ret = gen8_init_indirectctx_bb(ring,
1428 0 : &wa_ctx->indirect_ctx,
1429 : batch,
1430 : &offset);
1431 0 : if (ret)
1432 : goto out;
1433 :
1434 0 : ret = gen8_init_perctx_bb(ring,
1435 0 : &wa_ctx->per_ctx,
1436 : batch,
1437 : &offset);
1438 0 : if (ret)
1439 : goto out;
1440 0 : } else if (INTEL_INFO(ring->dev)->gen == 9) {
1441 0 : ret = gen9_init_indirectctx_bb(ring,
1442 0 : &wa_ctx->indirect_ctx,
1443 : batch,
1444 : &offset);
1445 0 : if (ret)
1446 : goto out;
1447 :
1448 0 : ret = gen9_init_perctx_bb(ring,
1449 0 : &wa_ctx->per_ctx,
1450 : batch,
1451 : &offset);
1452 0 : if (ret)
1453 : goto out;
1454 : }
1455 :
1456 : out:
1457 0 : kunmap_atomic(batch);
1458 0 : if (ret)
1459 0 : lrc_destroy_wa_ctx_obj(ring);
1460 :
1461 0 : return ret;
1462 0 : }
1463 :
1464 0 : static int gen8_init_common_ring(struct intel_engine_cs *ring)
1465 : {
1466 0 : struct drm_device *dev = ring->dev;
1467 0 : struct drm_i915_private *dev_priv = dev->dev_private;
1468 : u8 next_context_status_buffer_hw;
1469 :
1470 0 : lrc_setup_hardware_status_page(ring,
1471 0 : ring->default_context->engine[ring->id].state);
1472 :
1473 0 : I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1474 0 : I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1475 :
1476 0 : if (ring->status_page.obj) {
1477 0 : I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1478 : (u32)ring->status_page.gfx_addr);
1479 0 : POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1480 0 : }
1481 :
1482 0 : I915_WRITE(RING_MODE_GEN7(ring),
1483 : _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1484 : _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1485 0 : POSTING_READ(RING_MODE_GEN7(ring));
1486 :
1487 : /*
1488 : * Instead of resetting the Context Status Buffer (CSB) read pointer to
1489 : * zero, we need to read the write pointer from hardware and use its
1490 : * value because "this register is power context save restored".
1491 : * Effectively, these states have been observed:
1492 : *
1493 : * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1494 : * BDW | CSB regs not reset | CSB regs reset |
1495 : * CHT | CSB regs not reset | CSB regs not reset |
1496 : */
1497 0 : next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1498 0 : & GEN8_CSB_PTR_MASK);
1499 :
1500 : /*
1501 : * When the CSB registers are reset (also after power-up / gpu reset),
1502 : * CSB write pointer is set to all 1's, which is not valid, use '5' in
1503 : * this special case, so the first element read is CSB[0].
1504 : */
1505 0 : if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1506 : next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1507 :
1508 0 : ring->next_context_status_buffer = next_context_status_buffer_hw;
1509 : DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1510 :
1511 0 : memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1512 :
1513 0 : return 0;
1514 : }
1515 :
1516 0 : static int gen8_init_render_ring(struct intel_engine_cs *ring)
1517 : {
1518 0 : struct drm_device *dev = ring->dev;
1519 0 : struct drm_i915_private *dev_priv = dev->dev_private;
1520 : int ret;
1521 :
1522 0 : ret = gen8_init_common_ring(ring);
1523 0 : if (ret)
1524 0 : return ret;
1525 :
1526 : /* We need to disable the AsyncFlip performance optimisations in order
1527 : * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1528 : * programmed to '1' on all products.
1529 : *
1530 : * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1531 : */
1532 0 : I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1533 :
1534 0 : I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1535 :
1536 0 : return init_workarounds_ring(ring);
1537 0 : }
1538 :
1539 0 : static int gen9_init_render_ring(struct intel_engine_cs *ring)
1540 : {
1541 : int ret;
1542 :
1543 0 : ret = gen8_init_common_ring(ring);
1544 0 : if (ret)
1545 0 : return ret;
1546 :
1547 0 : return init_workarounds_ring(ring);
1548 0 : }
1549 :
1550 0 : static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1551 : {
1552 0 : struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1553 0 : struct intel_engine_cs *ring = req->ring;
1554 0 : struct intel_ringbuffer *ringbuf = req->ringbuf;
1555 : const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1556 : int i, ret;
1557 :
1558 0 : ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1559 0 : if (ret)
1560 0 : return ret;
1561 :
1562 0 : intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1563 0 : for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1564 0 : const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1565 :
1566 0 : intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1567 0 : intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1568 0 : intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1569 0 : intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1570 : }
1571 :
1572 0 : intel_logical_ring_emit(ringbuf, MI_NOOP);
1573 0 : intel_logical_ring_advance(ringbuf);
1574 :
1575 0 : return 0;
1576 0 : }
1577 :
1578 0 : static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1579 : u64 offset, unsigned dispatch_flags)
1580 : {
1581 0 : struct intel_ringbuffer *ringbuf = req->ringbuf;
1582 0 : bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1583 : int ret;
1584 :
1585 : /* Don't rely in hw updating PDPs, specially in lite-restore.
1586 : * Ideally, we should set Force PD Restore in ctx descriptor,
1587 : * but we can't. Force Restore would be a second option, but
1588 : * it is unsafe in case of lite-restore (because the ctx is
1589 : * not idle). PML4 is allocated during ppgtt init so this is
1590 : * not needed in 48-bit.*/
1591 0 : if (req->ctx->ppgtt &&
1592 0 : (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1593 0 : if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1594 0 : !intel_vgpu_active(req->i915->dev)) {
1595 0 : ret = intel_logical_ring_emit_pdps(req);
1596 0 : if (ret)
1597 0 : return ret;
1598 : }
1599 :
1600 0 : req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1601 0 : }
1602 :
1603 0 : ret = intel_logical_ring_begin(req, 4);
1604 0 : if (ret)
1605 0 : return ret;
1606 :
1607 : /* FIXME(BDW): Address space and security selectors. */
1608 0 : intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1609 0 : (ppgtt<<8) |
1610 0 : (dispatch_flags & I915_DISPATCH_RS ?
1611 : MI_BATCH_RESOURCE_STREAMER : 0));
1612 0 : intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1613 0 : intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1614 0 : intel_logical_ring_emit(ringbuf, MI_NOOP);
1615 0 : intel_logical_ring_advance(ringbuf);
1616 :
1617 0 : return 0;
1618 0 : }
1619 :
1620 0 : static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1621 : {
1622 0 : struct drm_device *dev = ring->dev;
1623 0 : struct drm_i915_private *dev_priv = dev->dev_private;
1624 : unsigned long flags;
1625 :
1626 0 : if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1627 0 : return false;
1628 :
1629 0 : spin_lock_irqsave(&dev_priv->irq_lock, flags);
1630 0 : if (ring->irq_refcount++ == 0) {
1631 0 : I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1632 0 : POSTING_READ(RING_IMR(ring->mmio_base));
1633 0 : }
1634 0 : spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1635 :
1636 0 : return true;
1637 0 : }
1638 :
1639 0 : static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1640 : {
1641 0 : struct drm_device *dev = ring->dev;
1642 0 : struct drm_i915_private *dev_priv = dev->dev_private;
1643 : unsigned long flags;
1644 :
1645 0 : spin_lock_irqsave(&dev_priv->irq_lock, flags);
1646 0 : if (--ring->irq_refcount == 0) {
1647 0 : I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1648 0 : POSTING_READ(RING_IMR(ring->mmio_base));
1649 0 : }
1650 0 : spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1651 0 : }
1652 :
1653 0 : static int gen8_emit_flush(struct drm_i915_gem_request *request,
1654 : u32 invalidate_domains,
1655 : u32 unused)
1656 : {
1657 0 : struct intel_ringbuffer *ringbuf = request->ringbuf;
1658 0 : struct intel_engine_cs *ring = ringbuf->ring;
1659 0 : struct drm_device *dev = ring->dev;
1660 0 : struct drm_i915_private *dev_priv = dev->dev_private;
1661 : uint32_t cmd;
1662 : int ret;
1663 :
1664 0 : ret = intel_logical_ring_begin(request, 4);
1665 0 : if (ret)
1666 0 : return ret;
1667 :
1668 : cmd = MI_FLUSH_DW + 1;
1669 :
1670 : /* We always require a command barrier so that subsequent
1671 : * commands, such as breadcrumb interrupts, are strictly ordered
1672 : * wrt the contents of the write cache being flushed to memory
1673 : * (and thus being coherent from the CPU).
1674 : */
1675 : cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1676 :
1677 0 : if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1678 : cmd |= MI_INVALIDATE_TLB;
1679 0 : if (ring == &dev_priv->ring[VCS])
1680 0 : cmd |= MI_INVALIDATE_BSD;
1681 : }
1682 :
1683 0 : intel_logical_ring_emit(ringbuf, cmd);
1684 0 : intel_logical_ring_emit(ringbuf,
1685 : I915_GEM_HWS_SCRATCH_ADDR |
1686 : MI_FLUSH_DW_USE_GTT);
1687 0 : intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1688 0 : intel_logical_ring_emit(ringbuf, 0); /* value */
1689 0 : intel_logical_ring_advance(ringbuf);
1690 :
1691 0 : return 0;
1692 0 : }
1693 :
1694 0 : static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1695 : u32 invalidate_domains,
1696 : u32 flush_domains)
1697 : {
1698 0 : struct intel_ringbuffer *ringbuf = request->ringbuf;
1699 0 : struct intel_engine_cs *ring = ringbuf->ring;
1700 0 : u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1701 : bool vf_flush_wa;
1702 : u32 flags = 0;
1703 : int ret;
1704 :
1705 : flags |= PIPE_CONTROL_CS_STALL;
1706 :
1707 0 : if (flush_domains) {
1708 : flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1709 : flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1710 : flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1711 : flags |= PIPE_CONTROL_FLUSH_ENABLE;
1712 0 : }
1713 :
1714 0 : if (invalidate_domains) {
1715 0 : flags |= PIPE_CONTROL_TLB_INVALIDATE;
1716 0 : flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1717 0 : flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1718 0 : flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1719 0 : flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1720 0 : flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1721 0 : flags |= PIPE_CONTROL_QW_WRITE;
1722 0 : flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1723 0 : }
1724 :
1725 : /*
1726 : * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1727 : * control.
1728 : */
1729 0 : vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1730 0 : flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1731 :
1732 0 : ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1733 0 : if (ret)
1734 0 : return ret;
1735 :
1736 0 : if (vf_flush_wa) {
1737 0 : intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1738 0 : intel_logical_ring_emit(ringbuf, 0);
1739 0 : intel_logical_ring_emit(ringbuf, 0);
1740 0 : intel_logical_ring_emit(ringbuf, 0);
1741 0 : intel_logical_ring_emit(ringbuf, 0);
1742 0 : intel_logical_ring_emit(ringbuf, 0);
1743 0 : }
1744 :
1745 0 : intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1746 0 : intel_logical_ring_emit(ringbuf, flags);
1747 0 : intel_logical_ring_emit(ringbuf, scratch_addr);
1748 0 : intel_logical_ring_emit(ringbuf, 0);
1749 0 : intel_logical_ring_emit(ringbuf, 0);
1750 0 : intel_logical_ring_emit(ringbuf, 0);
1751 0 : intel_logical_ring_advance(ringbuf);
1752 :
1753 0 : return 0;
1754 0 : }
1755 :
1756 0 : static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1757 : {
1758 0 : return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1759 : }
1760 :
1761 0 : static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1762 : {
1763 0 : intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1764 0 : }
1765 :
1766 0 : static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1767 : {
1768 :
1769 : /*
1770 : * On BXT A steppings there is a HW coherency issue whereby the
1771 : * MI_STORE_DATA_IMM storing the completed request's seqno
1772 : * occasionally doesn't invalidate the CPU cache. Work around this by
1773 : * clflushing the corresponding cacheline whenever the caller wants
1774 : * the coherency to be guaranteed. Note that this cacheline is known
1775 : * to be clean at this point, since we only write it in
1776 : * bxt_a_set_seqno(), where we also do a clflush after the write. So
1777 : * this clflush in practice becomes an invalidate operation.
1778 : */
1779 :
1780 0 : if (!lazy_coherency)
1781 0 : intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1782 :
1783 0 : return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1784 : }
1785 :
1786 0 : static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1787 : {
1788 0 : intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1789 :
1790 : /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1791 0 : intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1792 0 : }
1793 :
1794 0 : static int gen8_emit_request(struct drm_i915_gem_request *request)
1795 : {
1796 0 : struct intel_ringbuffer *ringbuf = request->ringbuf;
1797 0 : struct intel_engine_cs *ring = ringbuf->ring;
1798 : u32 cmd;
1799 : int ret;
1800 :
1801 : /*
1802 : * Reserve space for 2 NOOPs at the end of each request to be
1803 : * used as a workaround for not being allowed to do lite
1804 : * restore with HEAD==TAIL (WaIdleLiteRestore).
1805 : */
1806 0 : ret = intel_logical_ring_begin(request, 8);
1807 0 : if (ret)
1808 0 : return ret;
1809 :
1810 : cmd = MI_STORE_DWORD_IMM_GEN4;
1811 : cmd |= MI_GLOBAL_GTT;
1812 :
1813 0 : intel_logical_ring_emit(ringbuf, cmd);
1814 0 : intel_logical_ring_emit(ringbuf,
1815 0 : (ring->status_page.gfx_addr +
1816 : (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1817 0 : intel_logical_ring_emit(ringbuf, 0);
1818 0 : intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1819 0 : intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1820 0 : intel_logical_ring_emit(ringbuf, MI_NOOP);
1821 0 : intel_logical_ring_advance_and_submit(request);
1822 :
1823 : /*
1824 : * Here we add two extra NOOPs as padding to avoid
1825 : * lite restore of a context with HEAD==TAIL.
1826 : */
1827 0 : intel_logical_ring_emit(ringbuf, MI_NOOP);
1828 0 : intel_logical_ring_emit(ringbuf, MI_NOOP);
1829 0 : intel_logical_ring_advance(ringbuf);
1830 :
1831 0 : return 0;
1832 0 : }
1833 :
1834 0 : static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1835 : {
1836 0 : struct render_state so;
1837 : int ret;
1838 :
1839 0 : ret = i915_gem_render_state_prepare(req->ring, &so);
1840 0 : if (ret)
1841 0 : return ret;
1842 :
1843 0 : if (so.rodata == NULL)
1844 0 : return 0;
1845 :
1846 0 : ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1847 : I915_DISPATCH_SECURE);
1848 0 : if (ret)
1849 : goto out;
1850 :
1851 0 : ret = req->ring->emit_bb_start(req,
1852 0 : (so.ggtt_offset + so.aux_batch_offset),
1853 : I915_DISPATCH_SECURE);
1854 0 : if (ret)
1855 : goto out;
1856 :
1857 0 : i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1858 :
1859 : out:
1860 0 : i915_gem_render_state_fini(&so);
1861 0 : return ret;
1862 0 : }
1863 :
1864 0 : static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1865 : {
1866 : int ret;
1867 :
1868 0 : ret = intel_logical_ring_workarounds_emit(req);
1869 0 : if (ret)
1870 0 : return ret;
1871 :
1872 0 : ret = intel_rcs_context_init_mocs(req);
1873 : /*
1874 : * Failing to program the MOCS is non-fatal.The system will not
1875 : * run at peak performance. So generate an error and carry on.
1876 : */
1877 0 : if (ret)
1878 0 : DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1879 :
1880 0 : return intel_lr_context_render_state_init(req);
1881 0 : }
1882 :
1883 : /**
1884 : * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1885 : *
1886 : * @ring: Engine Command Streamer.
1887 : *
1888 : */
1889 0 : void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1890 : {
1891 : struct drm_i915_private *dev_priv;
1892 :
1893 0 : if (!intel_ring_initialized(ring))
1894 0 : return;
1895 :
1896 0 : dev_priv = ring->dev->dev_private;
1897 :
1898 0 : intel_logical_ring_stop(ring);
1899 0 : WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1900 :
1901 0 : if (ring->cleanup)
1902 0 : ring->cleanup(ring);
1903 :
1904 0 : i915_cmd_parser_fini_ring(ring);
1905 0 : i915_gem_batch_pool_fini(&ring->batch_pool);
1906 :
1907 0 : if (ring->status_page.obj) {
1908 0 : kunmap(sg_page(ring->status_page.obj->pages->sgl));
1909 0 : ring->status_page.obj = NULL;
1910 0 : }
1911 :
1912 0 : lrc_destroy_wa_ctx_obj(ring);
1913 0 : }
1914 :
1915 0 : static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1916 : {
1917 : int ret;
1918 :
1919 : /* Intentionally left blank. */
1920 0 : ring->buffer = NULL;
1921 :
1922 0 : ring->dev = dev;
1923 0 : INIT_LIST_HEAD(&ring->active_list);
1924 0 : INIT_LIST_HEAD(&ring->request_list);
1925 0 : i915_gem_batch_pool_init(dev, &ring->batch_pool);
1926 0 : init_waitqueue_head(&ring->irq_queue);
1927 :
1928 0 : INIT_LIST_HEAD(&ring->execlist_queue);
1929 0 : INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1930 0 : mtx_init(&ring->execlist_lock, IPL_TTY);
1931 :
1932 0 : ret = i915_cmd_parser_init_ring(ring);
1933 0 : if (ret)
1934 0 : return ret;
1935 :
1936 0 : ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1937 0 : if (ret)
1938 0 : return ret;
1939 :
1940 : /* As this is the default context, always pin it */
1941 0 : ret = intel_lr_context_do_pin(
1942 : ring,
1943 0 : ring->default_context->engine[ring->id].state,
1944 0 : ring->default_context->engine[ring->id].ringbuf);
1945 0 : if (ret) {
1946 0 : DRM_ERROR(
1947 : "Failed to pin and map ringbuffer %s: %d\n",
1948 : ring->name, ret);
1949 0 : return ret;
1950 : }
1951 :
1952 0 : return ret;
1953 0 : }
1954 :
1955 0 : static int logical_render_ring_init(struct drm_device *dev)
1956 : {
1957 0 : struct drm_i915_private *dev_priv = dev->dev_private;
1958 0 : struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1959 : int ret;
1960 :
1961 0 : ring->name = "render ring";
1962 0 : ring->id = RCS;
1963 0 : ring->mmio_base = RENDER_RING_BASE;
1964 0 : ring->irq_enable_mask =
1965 : GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1966 0 : ring->irq_keep_mask =
1967 : GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1968 0 : if (HAS_L3_DPF(dev))
1969 0 : ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1970 :
1971 0 : if (INTEL_INFO(dev)->gen >= 9)
1972 0 : ring->init_hw = gen9_init_render_ring;
1973 : else
1974 0 : ring->init_hw = gen8_init_render_ring;
1975 0 : ring->init_context = gen8_init_rcs_context;
1976 0 : ring->cleanup = intel_fini_pipe_control;
1977 0 : if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1978 0 : ring->get_seqno = bxt_a_get_seqno;
1979 0 : ring->set_seqno = bxt_a_set_seqno;
1980 0 : } else {
1981 0 : ring->get_seqno = gen8_get_seqno;
1982 0 : ring->set_seqno = gen8_set_seqno;
1983 : }
1984 0 : ring->emit_request = gen8_emit_request;
1985 0 : ring->emit_flush = gen8_emit_flush_render;
1986 0 : ring->irq_get = gen8_logical_ring_get_irq;
1987 0 : ring->irq_put = gen8_logical_ring_put_irq;
1988 0 : ring->emit_bb_start = gen8_emit_bb_start;
1989 :
1990 0 : ring->dev = dev;
1991 :
1992 0 : ret = intel_init_pipe_control(ring);
1993 0 : if (ret)
1994 0 : return ret;
1995 :
1996 0 : ret = intel_init_workaround_bb(ring);
1997 0 : if (ret) {
1998 : /*
1999 : * We continue even if we fail to initialize WA batch
2000 : * because we only expect rare glitches but nothing
2001 : * critical to prevent us from using GPU
2002 : */
2003 0 : DRM_ERROR("WA batch buffer initialization failed: %d\n",
2004 : ret);
2005 0 : }
2006 :
2007 0 : ret = logical_ring_init(dev, ring);
2008 0 : if (ret) {
2009 0 : lrc_destroy_wa_ctx_obj(ring);
2010 0 : }
2011 :
2012 0 : return ret;
2013 0 : }
2014 :
2015 0 : static int logical_bsd_ring_init(struct drm_device *dev)
2016 : {
2017 0 : struct drm_i915_private *dev_priv = dev->dev_private;
2018 0 : struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2019 :
2020 0 : ring->name = "bsd ring";
2021 0 : ring->id = VCS;
2022 0 : ring->mmio_base = GEN6_BSD_RING_BASE;
2023 0 : ring->irq_enable_mask =
2024 : GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2025 0 : ring->irq_keep_mask =
2026 : GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2027 :
2028 0 : ring->init_hw = gen8_init_common_ring;
2029 0 : if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2030 0 : ring->get_seqno = bxt_a_get_seqno;
2031 0 : ring->set_seqno = bxt_a_set_seqno;
2032 0 : } else {
2033 0 : ring->get_seqno = gen8_get_seqno;
2034 0 : ring->set_seqno = gen8_set_seqno;
2035 : }
2036 0 : ring->emit_request = gen8_emit_request;
2037 0 : ring->emit_flush = gen8_emit_flush;
2038 0 : ring->irq_get = gen8_logical_ring_get_irq;
2039 0 : ring->irq_put = gen8_logical_ring_put_irq;
2040 0 : ring->emit_bb_start = gen8_emit_bb_start;
2041 :
2042 0 : return logical_ring_init(dev, ring);
2043 : }
2044 :
2045 0 : static int logical_bsd2_ring_init(struct drm_device *dev)
2046 : {
2047 0 : struct drm_i915_private *dev_priv = dev->dev_private;
2048 0 : struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2049 :
2050 0 : ring->name = "bds2 ring";
2051 0 : ring->id = VCS2;
2052 0 : ring->mmio_base = GEN8_BSD2_RING_BASE;
2053 0 : ring->irq_enable_mask =
2054 : GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2055 0 : ring->irq_keep_mask =
2056 : GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2057 :
2058 0 : ring->init_hw = gen8_init_common_ring;
2059 0 : ring->get_seqno = gen8_get_seqno;
2060 0 : ring->set_seqno = gen8_set_seqno;
2061 0 : ring->emit_request = gen8_emit_request;
2062 0 : ring->emit_flush = gen8_emit_flush;
2063 0 : ring->irq_get = gen8_logical_ring_get_irq;
2064 0 : ring->irq_put = gen8_logical_ring_put_irq;
2065 0 : ring->emit_bb_start = gen8_emit_bb_start;
2066 :
2067 0 : return logical_ring_init(dev, ring);
2068 : }
2069 :
2070 0 : static int logical_blt_ring_init(struct drm_device *dev)
2071 : {
2072 0 : struct drm_i915_private *dev_priv = dev->dev_private;
2073 0 : struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2074 :
2075 0 : ring->name = "blitter ring";
2076 0 : ring->id = BCS;
2077 0 : ring->mmio_base = BLT_RING_BASE;
2078 0 : ring->irq_enable_mask =
2079 : GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2080 0 : ring->irq_keep_mask =
2081 : GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2082 :
2083 0 : ring->init_hw = gen8_init_common_ring;
2084 0 : if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2085 0 : ring->get_seqno = bxt_a_get_seqno;
2086 0 : ring->set_seqno = bxt_a_set_seqno;
2087 0 : } else {
2088 0 : ring->get_seqno = gen8_get_seqno;
2089 0 : ring->set_seqno = gen8_set_seqno;
2090 : }
2091 0 : ring->emit_request = gen8_emit_request;
2092 0 : ring->emit_flush = gen8_emit_flush;
2093 0 : ring->irq_get = gen8_logical_ring_get_irq;
2094 0 : ring->irq_put = gen8_logical_ring_put_irq;
2095 0 : ring->emit_bb_start = gen8_emit_bb_start;
2096 :
2097 0 : return logical_ring_init(dev, ring);
2098 : }
2099 :
2100 0 : static int logical_vebox_ring_init(struct drm_device *dev)
2101 : {
2102 0 : struct drm_i915_private *dev_priv = dev->dev_private;
2103 0 : struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2104 :
2105 0 : ring->name = "video enhancement ring";
2106 0 : ring->id = VECS;
2107 0 : ring->mmio_base = VEBOX_RING_BASE;
2108 0 : ring->irq_enable_mask =
2109 : GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2110 0 : ring->irq_keep_mask =
2111 : GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2112 :
2113 0 : ring->init_hw = gen8_init_common_ring;
2114 0 : if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2115 0 : ring->get_seqno = bxt_a_get_seqno;
2116 0 : ring->set_seqno = bxt_a_set_seqno;
2117 0 : } else {
2118 0 : ring->get_seqno = gen8_get_seqno;
2119 0 : ring->set_seqno = gen8_set_seqno;
2120 : }
2121 0 : ring->emit_request = gen8_emit_request;
2122 0 : ring->emit_flush = gen8_emit_flush;
2123 0 : ring->irq_get = gen8_logical_ring_get_irq;
2124 0 : ring->irq_put = gen8_logical_ring_put_irq;
2125 0 : ring->emit_bb_start = gen8_emit_bb_start;
2126 :
2127 0 : return logical_ring_init(dev, ring);
2128 : }
2129 :
2130 : /**
2131 : * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2132 : * @dev: DRM device.
2133 : *
2134 : * This function inits the engines for an Execlists submission style (the equivalent in the
2135 : * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2136 : * those engines that are present in the hardware.
2137 : *
2138 : * Return: non-zero if the initialization failed.
2139 : */
2140 0 : int intel_logical_rings_init(struct drm_device *dev)
2141 : {
2142 0 : struct drm_i915_private *dev_priv = dev->dev_private;
2143 : int ret;
2144 :
2145 0 : ret = logical_render_ring_init(dev);
2146 0 : if (ret)
2147 0 : return ret;
2148 :
2149 0 : if (HAS_BSD(dev)) {
2150 0 : ret = logical_bsd_ring_init(dev);
2151 0 : if (ret)
2152 : goto cleanup_render_ring;
2153 : }
2154 :
2155 0 : if (HAS_BLT(dev)) {
2156 0 : ret = logical_blt_ring_init(dev);
2157 0 : if (ret)
2158 : goto cleanup_bsd_ring;
2159 : }
2160 :
2161 0 : if (HAS_VEBOX(dev)) {
2162 0 : ret = logical_vebox_ring_init(dev);
2163 0 : if (ret)
2164 : goto cleanup_blt_ring;
2165 : }
2166 :
2167 0 : if (HAS_BSD2(dev)) {
2168 0 : ret = logical_bsd2_ring_init(dev);
2169 0 : if (ret)
2170 : goto cleanup_vebox_ring;
2171 : }
2172 :
2173 0 : return 0;
2174 :
2175 : cleanup_vebox_ring:
2176 0 : intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2177 : cleanup_blt_ring:
2178 0 : intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2179 : cleanup_bsd_ring:
2180 0 : intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2181 : cleanup_render_ring:
2182 0 : intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2183 :
2184 0 : return ret;
2185 0 : }
2186 :
2187 : static u32
2188 0 : make_rpcs(struct drm_device *dev)
2189 : {
2190 : u32 rpcs = 0;
2191 :
2192 : /*
2193 : * No explicit RPCS request is needed to ensure full
2194 : * slice/subslice/EU enablement prior to Gen9.
2195 : */
2196 0 : if (INTEL_INFO(dev)->gen < 9)
2197 0 : return 0;
2198 :
2199 : /*
2200 : * Starting in Gen9, render power gating can leave
2201 : * slice/subslice/EU in a partially enabled state. We
2202 : * must make an explicit request through RPCS for full
2203 : * enablement.
2204 : */
2205 0 : if (INTEL_INFO(dev)->has_slice_pg) {
2206 : rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2207 0 : rpcs |= INTEL_INFO(dev)->slice_total <<
2208 : GEN8_RPCS_S_CNT_SHIFT;
2209 0 : rpcs |= GEN8_RPCS_ENABLE;
2210 0 : }
2211 :
2212 0 : if (INTEL_INFO(dev)->has_subslice_pg) {
2213 0 : rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2214 0 : rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2215 : GEN8_RPCS_SS_CNT_SHIFT;
2216 0 : rpcs |= GEN8_RPCS_ENABLE;
2217 0 : }
2218 :
2219 0 : if (INTEL_INFO(dev)->has_eu_pg) {
2220 0 : rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2221 : GEN8_RPCS_EU_MIN_SHIFT;
2222 0 : rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2223 : GEN8_RPCS_EU_MAX_SHIFT;
2224 0 : rpcs |= GEN8_RPCS_ENABLE;
2225 0 : }
2226 :
2227 0 : return rpcs;
2228 0 : }
2229 :
2230 : static int
2231 0 : populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2232 : struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2233 : {
2234 0 : struct drm_device *dev = ring->dev;
2235 0 : struct drm_i915_private *dev_priv = dev->dev_private;
2236 0 : struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2237 : struct vm_page *page;
2238 : uint32_t *reg_state;
2239 : int ret;
2240 :
2241 0 : if (!ppgtt)
2242 0 : ppgtt = dev_priv->mm.aliasing_ppgtt;
2243 :
2244 0 : ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2245 0 : if (ret) {
2246 : DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2247 0 : return ret;
2248 : }
2249 :
2250 0 : ret = i915_gem_object_get_pages(ctx_obj);
2251 0 : if (ret) {
2252 : DRM_DEBUG_DRIVER("Could not get object pages\n");
2253 0 : return ret;
2254 : }
2255 :
2256 0 : i915_gem_object_pin_pages(ctx_obj);
2257 :
2258 : /* The second page of the context object contains some fields which must
2259 : * be set up prior to the first execution. */
2260 0 : page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2261 0 : reg_state = kmap_atomic(page);
2262 :
2263 : /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2264 : * commands followed by (reg, value) pairs. The values we are setting here are
2265 : * only for the first context restore: on a subsequent save, the GPU will
2266 : * recreate this batchbuffer with new values (including all the missing
2267 : * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2268 0 : if (ring->id == RCS)
2269 0 : reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2270 : else
2271 0 : reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2272 0 : reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2273 0 : reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2274 0 : reg_state[CTX_CONTEXT_CONTROL+1] =
2275 : _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2276 : CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2277 : CTX_CTRL_RS_CTX_ENABLE);
2278 0 : reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2279 0 : reg_state[CTX_RING_HEAD+1] = 0;
2280 0 : reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2281 0 : reg_state[CTX_RING_TAIL+1] = 0;
2282 0 : reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2283 : /* Ring buffer start address is not known until the buffer is pinned.
2284 : * It is written to the context image in execlists_update_context()
2285 : */
2286 0 : reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2287 0 : reg_state[CTX_RING_BUFFER_CONTROL+1] =
2288 0 : ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2289 0 : reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2290 0 : reg_state[CTX_BB_HEAD_U+1] = 0;
2291 0 : reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2292 0 : reg_state[CTX_BB_HEAD_L+1] = 0;
2293 0 : reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2294 0 : reg_state[CTX_BB_STATE+1] = (1<<5);
2295 0 : reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2296 0 : reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2297 0 : reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2298 0 : reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2299 0 : reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2300 0 : reg_state[CTX_SECOND_BB_STATE+1] = 0;
2301 0 : if (ring->id == RCS) {
2302 0 : reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2303 0 : reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2304 0 : reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2305 0 : reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2306 0 : reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2307 0 : reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2308 0 : if (ring->wa_ctx.obj) {
2309 : struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2310 0 : uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2311 :
2312 0 : reg_state[CTX_RCS_INDIRECT_CTX+1] =
2313 0 : (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2314 0 : (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2315 :
2316 0 : reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2317 : CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2318 :
2319 0 : reg_state[CTX_BB_PER_CTX_PTR+1] =
2320 0 : (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2321 : 0x01;
2322 0 : }
2323 : }
2324 0 : reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2325 0 : reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2326 0 : reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2327 0 : reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2328 0 : reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2329 0 : reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2330 0 : reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2331 0 : reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2332 0 : reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2333 0 : reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2334 0 : reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2335 0 : reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2336 :
2337 0 : if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2338 : /* 64b PPGTT (48bit canonical)
2339 : * PDP0_DESCRIPTOR contains the base address to PML4 and
2340 : * other PDP Descriptors are ignored.
2341 : */
2342 0 : ASSIGN_CTX_PML4(ppgtt, reg_state);
2343 0 : } else {
2344 : /* 32b PPGTT
2345 : * PDP*_DESCRIPTOR contains the base address of space supported.
2346 : * With dynamic page allocation, PDPs may not be allocated at
2347 : * this point. Point the unallocated PDPs to the scratch page
2348 : */
2349 0 : ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2350 0 : ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2351 0 : ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2352 0 : ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2353 : }
2354 :
2355 0 : if (ring->id == RCS) {
2356 0 : reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2357 0 : reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2358 0 : reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2359 0 : }
2360 :
2361 0 : kunmap_atomic(reg_state);
2362 :
2363 0 : ctx_obj->dirty = 1;
2364 0 : set_page_dirty(page);
2365 0 : i915_gem_object_unpin_pages(ctx_obj);
2366 :
2367 0 : return 0;
2368 0 : }
2369 :
2370 : /**
2371 : * intel_lr_context_free() - free the LRC specific bits of a context
2372 : * @ctx: the LR context to free.
2373 : *
2374 : * The real context freeing is done in i915_gem_context_free: this only
2375 : * takes care of the bits that are LRC related: the per-engine backing
2376 : * objects and the logical ringbuffer.
2377 : */
2378 0 : void intel_lr_context_free(struct intel_context *ctx)
2379 : {
2380 : int i;
2381 :
2382 0 : for (i = 0; i < I915_NUM_RINGS; i++) {
2383 0 : struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2384 :
2385 0 : if (ctx_obj) {
2386 : struct intel_ringbuffer *ringbuf =
2387 0 : ctx->engine[i].ringbuf;
2388 0 : struct intel_engine_cs *ring = ringbuf->ring;
2389 :
2390 0 : if (ctx == ring->default_context) {
2391 0 : intel_unpin_ringbuffer_obj(ringbuf);
2392 0 : i915_gem_object_ggtt_unpin(ctx_obj);
2393 0 : }
2394 0 : WARN_ON(ctx->engine[ring->id].pin_count);
2395 0 : intel_ringbuffer_free(ringbuf);
2396 0 : drm_gem_object_unreference(&ctx_obj->base);
2397 0 : }
2398 : }
2399 0 : }
2400 :
2401 0 : static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2402 : {
2403 : int ret = 0;
2404 :
2405 0 : WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2406 :
2407 0 : switch (ring->id) {
2408 : case RCS:
2409 0 : if (INTEL_INFO(ring->dev)->gen >= 9)
2410 0 : ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2411 : else
2412 : ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2413 : break;
2414 : case VCS:
2415 : case BCS:
2416 : case VECS:
2417 : case VCS2:
2418 : ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2419 0 : break;
2420 : }
2421 :
2422 0 : return ret;
2423 : }
2424 :
2425 0 : static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2426 : struct drm_i915_gem_object *default_ctx_obj)
2427 : {
2428 0 : struct drm_i915_private *dev_priv = ring->dev->dev_private;
2429 : struct vm_page *page;
2430 :
2431 : /* The HWSP is part of the default context object in LRC mode. */
2432 0 : ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2433 0 : + LRC_PPHWSP_PN * PAGE_SIZE;
2434 0 : page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2435 0 : ring->status_page.page_addr = kmap(page);
2436 0 : ring->status_page.obj = default_ctx_obj;
2437 :
2438 0 : I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2439 : (u32)ring->status_page.gfx_addr);
2440 0 : POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2441 0 : }
2442 :
2443 : /**
2444 : * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2445 : * @ctx: LR context to create.
2446 : * @ring: engine to be used with the context.
2447 : *
2448 : * This function can be called more than once, with different engines, if we plan
2449 : * to use the context with them. The context backing objects and the ringbuffers
2450 : * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2451 : * the creation is a deferred call: it's better to make sure first that we need to use
2452 : * a given ring with the context.
2453 : *
2454 : * Return: non-zero on error.
2455 : */
2456 :
2457 0 : int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2458 : struct intel_engine_cs *ring)
2459 : {
2460 0 : struct drm_device *dev = ring->dev;
2461 : struct drm_i915_gem_object *ctx_obj;
2462 : uint32_t context_size;
2463 : struct intel_ringbuffer *ringbuf;
2464 : int ret;
2465 :
2466 0 : WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2467 0 : WARN_ON(ctx->engine[ring->id].state);
2468 :
2469 0 : context_size = round_up(get_lr_context_size(ring), 4096);
2470 :
2471 : /* One extra page as the sharing data between driver and GuC */
2472 0 : context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2473 :
2474 0 : ctx_obj = i915_gem_alloc_object(dev, context_size);
2475 0 : if (!ctx_obj) {
2476 : DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2477 0 : return -ENOMEM;
2478 : }
2479 :
2480 0 : ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2481 0 : if (IS_ERR(ringbuf)) {
2482 0 : ret = PTR_ERR(ringbuf);
2483 0 : goto error_deref_obj;
2484 : }
2485 :
2486 0 : ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2487 0 : if (ret) {
2488 : DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2489 : goto error_ringbuf;
2490 : }
2491 :
2492 0 : ctx->engine[ring->id].ringbuf = ringbuf;
2493 0 : ctx->engine[ring->id].state = ctx_obj;
2494 :
2495 0 : if (ctx != ring->default_context && ring->init_context) {
2496 0 : struct drm_i915_gem_request *req;
2497 :
2498 0 : ret = i915_gem_request_alloc(ring,
2499 : ctx, &req);
2500 0 : if (ret) {
2501 0 : DRM_ERROR("ring create req: %d\n",
2502 : ret);
2503 0 : goto error_ringbuf;
2504 : }
2505 :
2506 0 : ret = ring->init_context(req);
2507 0 : if (ret) {
2508 0 : DRM_ERROR("ring init context: %d\n",
2509 : ret);
2510 0 : i915_gem_request_cancel(req);
2511 0 : goto error_ringbuf;
2512 : }
2513 0 : i915_add_request_no_flush(req);
2514 0 : }
2515 0 : return 0;
2516 :
2517 : error_ringbuf:
2518 0 : intel_ringbuffer_free(ringbuf);
2519 : error_deref_obj:
2520 0 : drm_gem_object_unreference(&ctx_obj->base);
2521 0 : ctx->engine[ring->id].ringbuf = NULL;
2522 0 : ctx->engine[ring->id].state = NULL;
2523 0 : return ret;
2524 0 : }
2525 :
2526 0 : void intel_lr_context_reset(struct drm_device *dev,
2527 : struct intel_context *ctx)
2528 : {
2529 0 : struct drm_i915_private *dev_priv = dev->dev_private;
2530 : struct intel_engine_cs *ring;
2531 : int i;
2532 :
2533 0 : for_each_ring(ring, dev_priv, i) {
2534 : struct drm_i915_gem_object *ctx_obj =
2535 0 : ctx->engine[ring->id].state;
2536 : struct intel_ringbuffer *ringbuf =
2537 0 : ctx->engine[ring->id].ringbuf;
2538 : uint32_t *reg_state;
2539 : struct vm_page *page;
2540 :
2541 0 : if (!ctx_obj)
2542 0 : continue;
2543 :
2544 0 : if (i915_gem_object_get_pages(ctx_obj)) {
2545 0 : WARN(1, "Failed get_pages for context obj\n");
2546 0 : continue;
2547 : }
2548 0 : page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2549 0 : reg_state = kmap_atomic(page);
2550 :
2551 0 : reg_state[CTX_RING_HEAD+1] = 0;
2552 0 : reg_state[CTX_RING_TAIL+1] = 0;
2553 :
2554 0 : kunmap_atomic(reg_state);
2555 :
2556 0 : ringbuf->head = 0;
2557 0 : ringbuf->tail = 0;
2558 0 : }
2559 0 : }
|