Line data Source code
1 : /*
2 : * Copyright © 2014 Intel Corporation
3 : *
4 : * Permission is hereby granted, free of charge, to any person obtaining a
5 : * copy of this software and associated documentation files (the "Software"),
6 : * to deal in the Software without restriction, including without limitation
7 : * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 : * and/or sell copies of the Software, and to permit persons to whom the
9 : * Software is furnished to do so, subject to the following conditions:
10 : *
11 : * The above copyright notice and this permission notice (including the next
12 : * paragraph) shall be included in all copies or substantial portions of the
13 : * Software.
14 : *
15 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 : * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 : * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 : * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 : * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 : * DEALINGS IN THE SOFTWARE.
22 : */
23 :
24 : /**
25 : * DOC: Panel Self Refresh (PSR/SRD)
26 : *
27 : * Since Haswell Display controller supports Panel Self-Refresh on display
28 : * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 : * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 : * when system is idle but display is on as it eliminates display refresh
31 : * request to DDR memory completely as long as the frame buffer for that
32 : * display is unchanged.
33 : *
34 : * Panel Self Refresh must be supported by both Hardware (source) and
35 : * Panel (sink).
36 : *
37 : * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 : * to power down the link and memory controller. For DSI panels the same idea
39 : * is called "manual mode".
40 : *
41 : * The implementation uses the hardware-based PSR support which automatically
42 : * enters/exits self-refresh mode. The hardware takes care of sending the
43 : * required DP aux message and could even retrain the link (that part isn't
44 : * enabled yet though). The hardware also keeps track of any frontbuffer
45 : * changes to know when to exit self-refresh mode again. Unfortunately that
46 : * part doesn't work too well, hence why the i915 PSR support uses the
47 : * software frontbuffer tracking to make sure it doesn't miss a screen
48 : * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 : * get called by the frontbuffer tracking code. Note that because of locking
50 : * issues the self-refresh re-enable code is done from a work queue, which
51 : * must be correctly synchronized/cancelled when shutting down the pipe."
52 : */
53 :
54 : #include <dev/pci/drm/drmP.h>
55 :
56 : #include "intel_drv.h"
57 : #include "i915_drv.h"
58 :
59 0 : static bool is_edp_psr(struct intel_dp *intel_dp)
60 : {
61 0 : return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 : }
63 :
64 0 : static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 : {
66 0 : struct drm_i915_private *dev_priv = dev->dev_private;
67 : uint32_t val;
68 :
69 0 : val = I915_READ(VLV_PSRSTAT(pipe)) &
70 : VLV_EDP_PSR_CURR_STATE_MASK;
71 0 : return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 0 : (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 : }
74 :
75 0 : static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 : const struct edp_vsc_psr *vsc_psr)
77 : {
78 0 : struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 0 : struct drm_device *dev = dig_port->base.base.dev;
80 0 : struct drm_i915_private *dev_priv = dev->dev_private;
81 0 : struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 0 : enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
83 0 : u32 ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
84 0 : uint32_t *data = (uint32_t *) vsc_psr;
85 : unsigned int i;
86 :
87 : /* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 : the video DIP being updated before program video DIP data buffer
89 : registers for DIP being updated. */
90 0 : I915_WRITE(ctl_reg, 0);
91 0 : POSTING_READ(ctl_reg);
92 :
93 0 : for (i = 0; i < sizeof(*vsc_psr); i += 4) {
94 0 : I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
95 : i >> 2), *data);
96 0 : data++;
97 : }
98 0 : for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
99 0 : I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
100 : i >> 2), 0);
101 :
102 0 : I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
103 0 : POSTING_READ(ctl_reg);
104 0 : }
105 :
106 0 : static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
107 : {
108 0 : struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109 0 : struct drm_device *dev = intel_dig_port->base.base.dev;
110 0 : struct drm_i915_private *dev_priv = dev->dev_private;
111 0 : struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
112 0 : enum pipe pipe = to_intel_crtc(crtc)->pipe;
113 : uint32_t val;
114 :
115 : /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
116 0 : val = I915_READ(VLV_VSCSDP(pipe));
117 0 : val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
118 0 : val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
119 0 : I915_WRITE(VLV_VSCSDP(pipe), val);
120 0 : }
121 :
122 0 : static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
123 : {
124 0 : struct edp_vsc_psr psr_vsc;
125 :
126 : /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
127 0 : memset(&psr_vsc, 0, sizeof(psr_vsc));
128 0 : psr_vsc.sdp_header.HB0 = 0;
129 0 : psr_vsc.sdp_header.HB1 = 0x7;
130 0 : psr_vsc.sdp_header.HB2 = 0x3;
131 0 : psr_vsc.sdp_header.HB3 = 0xb;
132 0 : intel_psr_write_vsc(intel_dp, &psr_vsc);
133 0 : }
134 :
135 0 : static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
136 : {
137 0 : struct edp_vsc_psr psr_vsc;
138 :
139 : /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
140 0 : memset(&psr_vsc, 0, sizeof(psr_vsc));
141 0 : psr_vsc.sdp_header.HB0 = 0;
142 0 : psr_vsc.sdp_header.HB1 = 0x7;
143 0 : psr_vsc.sdp_header.HB2 = 0x2;
144 0 : psr_vsc.sdp_header.HB3 = 0x8;
145 0 : intel_psr_write_vsc(intel_dp, &psr_vsc);
146 0 : }
147 :
148 0 : static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
149 : {
150 0 : drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
151 : DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
152 0 : }
153 :
154 0 : static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
155 : {
156 0 : struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
157 0 : struct drm_device *dev = dig_port->base.base.dev;
158 0 : struct drm_i915_private *dev_priv = dev->dev_private;
159 : uint32_t aux_clock_divider;
160 : uint32_t aux_data_reg, aux_ctl_reg;
161 : int precharge = 0x3;
162 : static const uint8_t aux_msg[] = {
163 : [0] = DP_AUX_NATIVE_WRITE << 4,
164 : [1] = DP_SET_POWER >> 8,
165 : [2] = DP_SET_POWER & 0xff,
166 : [3] = 1 - 1,
167 : [4] = DP_SET_POWER_D0,
168 : };
169 : int i;
170 :
171 : BUILD_BUG_ON(sizeof(aux_msg) > 20);
172 :
173 0 : aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
174 :
175 0 : drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
176 : DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
177 :
178 : /* Enable AUX frame sync at sink */
179 0 : if (dev_priv->psr.aux_frame_sync)
180 0 : drm_dp_dpcd_writeb(&intel_dp->aux,
181 : DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
182 : DP_AUX_FRAME_SYNC_ENABLE);
183 :
184 0 : aux_data_reg = (INTEL_INFO(dev)->gen >= 9) ?
185 0 : DPA_AUX_CH_DATA1 : EDP_PSR_AUX_DATA1(dev);
186 0 : aux_ctl_reg = (INTEL_INFO(dev)->gen >= 9) ?
187 0 : DPA_AUX_CH_CTL : EDP_PSR_AUX_CTL(dev);
188 :
189 : /* Setup AUX registers */
190 0 : for (i = 0; i < sizeof(aux_msg); i += 4)
191 0 : I915_WRITE(aux_data_reg + i,
192 : intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
193 :
194 0 : if (INTEL_INFO(dev)->gen >= 9) {
195 : uint32_t val;
196 :
197 0 : val = I915_READ(aux_ctl_reg);
198 0 : val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
199 0 : val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
200 0 : val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
201 0 : val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
202 : /* Use hardcoded data values for PSR, frame sync and GTC */
203 0 : val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
204 0 : val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL;
205 0 : val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL;
206 0 : I915_WRITE(aux_ctl_reg, val);
207 0 : } else {
208 0 : I915_WRITE(aux_ctl_reg,
209 : DP_AUX_CH_CTL_TIME_OUT_400us |
210 : (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
211 : (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
212 : (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
213 : }
214 :
215 0 : drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE);
216 0 : }
217 :
218 0 : static void vlv_psr_enable_source(struct intel_dp *intel_dp)
219 : {
220 0 : struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
221 0 : struct drm_device *dev = dig_port->base.base.dev;
222 0 : struct drm_i915_private *dev_priv = dev->dev_private;
223 0 : struct drm_crtc *crtc = dig_port->base.base.crtc;
224 0 : enum pipe pipe = to_intel_crtc(crtc)->pipe;
225 :
226 : /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
227 0 : I915_WRITE(VLV_PSRCTL(pipe),
228 : VLV_EDP_PSR_MODE_SW_TIMER |
229 : VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
230 : VLV_EDP_PSR_ENABLE);
231 0 : }
232 :
233 0 : static void vlv_psr_activate(struct intel_dp *intel_dp)
234 : {
235 0 : struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
236 0 : struct drm_device *dev = dig_port->base.base.dev;
237 0 : struct drm_i915_private *dev_priv = dev->dev_private;
238 0 : struct drm_crtc *crtc = dig_port->base.base.crtc;
239 0 : enum pipe pipe = to_intel_crtc(crtc)->pipe;
240 :
241 : /* Let's do the transition from PSR_state 1 to PSR_state 2
242 : * that is PSR transition to active - static frame transmission.
243 : * Then Hardware is responsible for the transition to PSR_state 3
244 : * that is PSR active - no Remote Frame Buffer (RFB) update.
245 : */
246 0 : I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
247 : VLV_EDP_PSR_ACTIVE_ENTRY);
248 0 : }
249 :
250 0 : static void hsw_psr_enable_source(struct intel_dp *intel_dp)
251 : {
252 0 : struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
253 0 : struct drm_device *dev = dig_port->base.base.dev;
254 0 : struct drm_i915_private *dev_priv = dev->dev_private;
255 :
256 : uint32_t max_sleep_time = 0x1f;
257 : /* Lately it was identified that depending on panel idle frame count
258 : * calculated at HW can be off by 1. So let's use what came
259 : * from VBT + 1.
260 : * There are also other cases where panel demands at least 4
261 : * but VBT is not being set. To cover these 2 cases lets use
262 : * at least 5 when VBT isn't set to be on the safest side.
263 : */
264 0 : uint32_t idle_frames = dev_priv->vbt.psr.idle_frames ?
265 0 : dev_priv->vbt.psr.idle_frames + 1 : 5;
266 : uint32_t val = 0x0;
267 : const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
268 :
269 0 : if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
270 : /* It doesn't mean we shouldn't send TPS patters, so let's
271 : send the minimal TP1 possible and skip TP2. */
272 : val |= EDP_PSR_TP1_TIME_100us;
273 : val |= EDP_PSR_TP2_TP3_TIME_0us;
274 : val |= EDP_PSR_SKIP_AUX_EXIT;
275 : /* Sink should be able to train with the 5 or 6 idle patterns */
276 0 : idle_frames += 4;
277 0 : }
278 :
279 0 : I915_WRITE(EDP_PSR_CTL(dev), val |
280 : (IS_BROADWELL(dev) ? 0 : link_entry_time) |
281 : max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
282 : idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
283 : EDP_PSR_ENABLE);
284 :
285 0 : if (dev_priv->psr.psr2_support)
286 0 : I915_WRITE(EDP_PSR2_CTL, EDP_PSR2_ENABLE |
287 : EDP_SU_TRACK_ENABLE | EDP_PSR2_TP2_TIME_100);
288 0 : }
289 :
290 0 : static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
291 : {
292 0 : struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
293 0 : struct drm_device *dev = dig_port->base.base.dev;
294 0 : struct drm_i915_private *dev_priv = dev->dev_private;
295 0 : struct drm_crtc *crtc = dig_port->base.base.crtc;
296 0 : struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
297 :
298 0 : lockdep_assert_held(&dev_priv->psr.lock);
299 0 : WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
300 0 : WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
301 :
302 0 : dev_priv->psr.source_ok = false;
303 :
304 0 : if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
305 : DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
306 0 : return false;
307 : }
308 :
309 0 : if (!i915.enable_psr) {
310 : DRM_DEBUG_KMS("PSR disable by flag\n");
311 0 : return false;
312 : }
313 :
314 0 : if (IS_HASWELL(dev) &&
315 0 : I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
316 : S3D_ENABLE) {
317 : DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
318 0 : return false;
319 : }
320 :
321 0 : if (IS_HASWELL(dev) &&
322 0 : intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
323 : DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
324 0 : return false;
325 : }
326 :
327 0 : if (!IS_VALLEYVIEW(dev) && ((dev_priv->vbt.psr.full_link) ||
328 0 : (dig_port->port != PORT_A))) {
329 : DRM_DEBUG_KMS("PSR condition failed: Link Standby requested/needed but not supported on this platform\n");
330 0 : return false;
331 : }
332 :
333 0 : dev_priv->psr.source_ok = true;
334 0 : return true;
335 0 : }
336 :
337 0 : static void intel_psr_activate(struct intel_dp *intel_dp)
338 : {
339 0 : struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
340 0 : struct drm_device *dev = intel_dig_port->base.base.dev;
341 0 : struct drm_i915_private *dev_priv = dev->dev_private;
342 :
343 0 : WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
344 0 : WARN_ON(dev_priv->psr.active);
345 : lockdep_assert_held(&dev_priv->psr.lock);
346 :
347 : /* Enable/Re-enable PSR on the host */
348 0 : if (HAS_DDI(dev))
349 : /* On HSW+ after we enable PSR on source it will activate it
350 : * as soon as it match configure idle_frame count. So
351 : * we just actually enable it here on activation time.
352 : */
353 0 : hsw_psr_enable_source(intel_dp);
354 : else
355 0 : vlv_psr_activate(intel_dp);
356 :
357 0 : dev_priv->psr.active = true;
358 0 : }
359 :
360 : /**
361 : * intel_psr_enable - Enable PSR
362 : * @intel_dp: Intel DP
363 : *
364 : * This function can only be called after the pipe is fully trained and enabled.
365 : */
366 0 : void intel_psr_enable(struct intel_dp *intel_dp)
367 : {
368 0 : struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
369 0 : struct drm_device *dev = intel_dig_port->base.base.dev;
370 0 : struct drm_i915_private *dev_priv = dev->dev_private;
371 0 : struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
372 :
373 0 : if (!HAS_PSR(dev)) {
374 : DRM_DEBUG_KMS("PSR not supported on this platform\n");
375 0 : return;
376 : }
377 :
378 0 : if (!is_edp_psr(intel_dp)) {
379 : DRM_DEBUG_KMS("PSR not supported by this panel\n");
380 0 : return;
381 : }
382 :
383 0 : mutex_lock(&dev_priv->psr.lock);
384 0 : if (dev_priv->psr.enabled) {
385 : DRM_DEBUG_KMS("PSR already in use\n");
386 : goto unlock;
387 : }
388 :
389 0 : if (!intel_psr_match_conditions(intel_dp))
390 : goto unlock;
391 :
392 0 : dev_priv->psr.busy_frontbuffer_bits = 0;
393 :
394 0 : if (HAS_DDI(dev)) {
395 0 : hsw_psr_setup_vsc(intel_dp);
396 :
397 0 : if (dev_priv->psr.psr2_support) {
398 : /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
399 0 : if (crtc->config->pipe_src_w > 3200 ||
400 0 : crtc->config->pipe_src_h > 2000)
401 0 : dev_priv->psr.psr2_support = false;
402 : else
403 0 : skl_psr_setup_su_vsc(intel_dp);
404 : }
405 :
406 : /* Avoid continuous PSR exit by masking memup and hpd */
407 0 : I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
408 : EDP_PSR_DEBUG_MASK_HPD);
409 :
410 : /* Enable PSR on the panel */
411 0 : hsw_psr_enable_sink(intel_dp);
412 :
413 0 : if (INTEL_INFO(dev)->gen >= 9)
414 0 : intel_psr_activate(intel_dp);
415 : } else {
416 0 : vlv_psr_setup_vsc(intel_dp);
417 :
418 : /* Enable PSR on the panel */
419 0 : vlv_psr_enable_sink(intel_dp);
420 :
421 : /* On HSW+ enable_source also means go to PSR entry/active
422 : * state as soon as idle_frame achieved and here would be
423 : * to soon. However on VLV enable_source just enable PSR
424 : * but let it on inactive state. So we might do this prior
425 : * to active transition, i.e. here.
426 : */
427 0 : vlv_psr_enable_source(intel_dp);
428 : }
429 :
430 0 : dev_priv->psr.enabled = intel_dp;
431 : unlock:
432 0 : mutex_unlock(&dev_priv->psr.lock);
433 0 : }
434 :
435 0 : static void vlv_psr_disable(struct intel_dp *intel_dp)
436 : {
437 0 : struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
438 0 : struct drm_device *dev = intel_dig_port->base.base.dev;
439 0 : struct drm_i915_private *dev_priv = dev->dev_private;
440 : struct intel_crtc *intel_crtc =
441 0 : to_intel_crtc(intel_dig_port->base.base.crtc);
442 : uint32_t val;
443 :
444 0 : if (dev_priv->psr.active) {
445 : /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
446 0 : if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
447 : VLV_EDP_PSR_IN_TRANS) == 0, 1))
448 0 : WARN(1, "PSR transition took longer than expected\n");
449 :
450 0 : val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
451 0 : val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
452 0 : val &= ~VLV_EDP_PSR_ENABLE;
453 0 : val &= ~VLV_EDP_PSR_MODE_MASK;
454 0 : I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
455 :
456 0 : dev_priv->psr.active = false;
457 0 : } else {
458 0 : WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
459 : }
460 0 : }
461 :
462 0 : static void hsw_psr_disable(struct intel_dp *intel_dp)
463 : {
464 0 : struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
465 0 : struct drm_device *dev = intel_dig_port->base.base.dev;
466 0 : struct drm_i915_private *dev_priv = dev->dev_private;
467 :
468 0 : if (dev_priv->psr.active) {
469 0 : I915_WRITE(EDP_PSR_CTL(dev),
470 : I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
471 :
472 : /* Wait till PSR is idle */
473 0 : if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
474 : EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
475 0 : DRM_ERROR("Timed out waiting for PSR Idle State\n");
476 :
477 0 : dev_priv->psr.active = false;
478 0 : } else {
479 0 : WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
480 : }
481 0 : }
482 :
483 : /**
484 : * intel_psr_disable - Disable PSR
485 : * @intel_dp: Intel DP
486 : *
487 : * This function needs to be called before disabling pipe.
488 : */
489 0 : void intel_psr_disable(struct intel_dp *intel_dp)
490 : {
491 0 : struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
492 0 : struct drm_device *dev = intel_dig_port->base.base.dev;
493 0 : struct drm_i915_private *dev_priv = dev->dev_private;
494 :
495 0 : mutex_lock(&dev_priv->psr.lock);
496 0 : if (!dev_priv->psr.enabled) {
497 0 : mutex_unlock(&dev_priv->psr.lock);
498 0 : return;
499 : }
500 :
501 0 : if (HAS_DDI(dev))
502 0 : hsw_psr_disable(intel_dp);
503 : else
504 0 : vlv_psr_disable(intel_dp);
505 :
506 0 : dev_priv->psr.enabled = NULL;
507 0 : mutex_unlock(&dev_priv->psr.lock);
508 :
509 0 : cancel_delayed_work_sync(&dev_priv->psr.work);
510 0 : }
511 :
512 0 : static void intel_psr_work(struct work_struct *work)
513 : {
514 : struct drm_i915_private *dev_priv =
515 0 : container_of(work, typeof(*dev_priv), psr.work.work);
516 0 : struct intel_dp *intel_dp = dev_priv->psr.enabled;
517 0 : struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
518 0 : enum pipe pipe = to_intel_crtc(crtc)->pipe;
519 :
520 : /* We have to make sure PSR is ready for re-enable
521 : * otherwise it keeps disabled until next full enable/disable cycle.
522 : * PSR might take some time to get fully disabled
523 : * and be ready for re-enable.
524 : */
525 0 : if (HAS_DDI(dev_priv->dev)) {
526 0 : if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
527 : EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
528 0 : DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
529 0 : return;
530 : }
531 : } else {
532 0 : if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
533 : VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
534 0 : DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
535 0 : return;
536 : }
537 : }
538 0 : mutex_lock(&dev_priv->psr.lock);
539 0 : intel_dp = dev_priv->psr.enabled;
540 :
541 0 : if (!intel_dp)
542 : goto unlock;
543 :
544 : /*
545 : * The delayed work can race with an invalidate hence we need to
546 : * recheck. Since psr_flush first clears this and then reschedules we
547 : * won't ever miss a flush when bailing out here.
548 : */
549 0 : if (dev_priv->psr.busy_frontbuffer_bits)
550 : goto unlock;
551 :
552 0 : intel_psr_activate(intel_dp);
553 : unlock:
554 0 : mutex_unlock(&dev_priv->psr.lock);
555 0 : }
556 :
557 0 : static void intel_psr_exit(struct drm_device *dev)
558 : {
559 0 : struct drm_i915_private *dev_priv = dev->dev_private;
560 0 : struct intel_dp *intel_dp = dev_priv->psr.enabled;
561 0 : struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
562 0 : enum pipe pipe = to_intel_crtc(crtc)->pipe;
563 : u32 val;
564 :
565 0 : if (!dev_priv->psr.active)
566 0 : return;
567 :
568 0 : if (HAS_DDI(dev)) {
569 0 : val = I915_READ(EDP_PSR_CTL(dev));
570 :
571 0 : WARN_ON(!(val & EDP_PSR_ENABLE));
572 :
573 0 : I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
574 0 : } else {
575 0 : val = I915_READ(VLV_PSRCTL(pipe));
576 :
577 : /* Here we do the transition from PSR_state 3 to PSR_state 5
578 : * directly once PSR State 4 that is active with single frame
579 : * update can be skipped. PSR_state 5 that is PSR exit then
580 : * Hardware is responsible to transition back to PSR_state 1
581 : * that is PSR inactive. Same state after
582 : * vlv_edp_psr_enable_source.
583 : */
584 0 : val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
585 0 : I915_WRITE(VLV_PSRCTL(pipe), val);
586 :
587 : /* Send AUX wake up - Spec says after transitioning to PSR
588 : * active we have to send AUX wake up by writing 01h in DPCD
589 : * 600h of sink device.
590 : * XXX: This might slow down the transition, but without this
591 : * HW doesn't complete the transition to PSR_state 1 and we
592 : * never get the screen updated.
593 : */
594 0 : drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
595 : DP_SET_POWER_D0);
596 : }
597 :
598 0 : dev_priv->psr.active = false;
599 0 : }
600 :
601 : /**
602 : * intel_psr_single_frame_update - Single Frame Update
603 : * @dev: DRM device
604 : * @frontbuffer_bits: frontbuffer plane tracking bits
605 : *
606 : * Some platforms support a single frame update feature that is used to
607 : * send and update only one frame on Remote Frame Buffer.
608 : * So far it is only implemented for Valleyview and Cherryview because
609 : * hardware requires this to be done before a page flip.
610 : */
611 0 : void intel_psr_single_frame_update(struct drm_device *dev,
612 : unsigned frontbuffer_bits)
613 : {
614 0 : struct drm_i915_private *dev_priv = dev->dev_private;
615 : struct drm_crtc *crtc;
616 : enum pipe pipe;
617 : u32 val;
618 :
619 : /*
620 : * Single frame update is already supported on BDW+ but it requires
621 : * many W/A and it isn't really needed.
622 : */
623 0 : if (!IS_VALLEYVIEW(dev))
624 0 : return;
625 :
626 0 : mutex_lock(&dev_priv->psr.lock);
627 0 : if (!dev_priv->psr.enabled) {
628 0 : mutex_unlock(&dev_priv->psr.lock);
629 0 : return;
630 : }
631 :
632 0 : crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
633 0 : pipe = to_intel_crtc(crtc)->pipe;
634 :
635 0 : if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
636 0 : val = I915_READ(VLV_PSRCTL(pipe));
637 :
638 : /*
639 : * We need to set this bit before writing registers for a flip.
640 : * This bit will be self-clear when it gets to the PSR active state.
641 : */
642 0 : I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
643 0 : }
644 0 : mutex_unlock(&dev_priv->psr.lock);
645 0 : }
646 :
647 : /**
648 : * intel_psr_invalidate - Invalidade PSR
649 : * @dev: DRM device
650 : * @frontbuffer_bits: frontbuffer plane tracking bits
651 : *
652 : * Since the hardware frontbuffer tracking has gaps we need to integrate
653 : * with the software frontbuffer tracking. This function gets called every
654 : * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
655 : * disabled if the frontbuffer mask contains a buffer relevant to PSR.
656 : *
657 : * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
658 : */
659 0 : void intel_psr_invalidate(struct drm_device *dev,
660 : unsigned frontbuffer_bits)
661 : {
662 0 : struct drm_i915_private *dev_priv = dev->dev_private;
663 : struct drm_crtc *crtc;
664 : enum pipe pipe;
665 :
666 0 : mutex_lock(&dev_priv->psr.lock);
667 0 : if (!dev_priv->psr.enabled) {
668 0 : mutex_unlock(&dev_priv->psr.lock);
669 0 : return;
670 : }
671 :
672 0 : crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
673 0 : pipe = to_intel_crtc(crtc)->pipe;
674 :
675 0 : frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
676 0 : dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
677 :
678 0 : if (frontbuffer_bits)
679 0 : intel_psr_exit(dev);
680 :
681 0 : mutex_unlock(&dev_priv->psr.lock);
682 0 : }
683 :
684 : /**
685 : * intel_psr_flush - Flush PSR
686 : * @dev: DRM device
687 : * @frontbuffer_bits: frontbuffer plane tracking bits
688 : * @origin: which operation caused the flush
689 : *
690 : * Since the hardware frontbuffer tracking has gaps we need to integrate
691 : * with the software frontbuffer tracking. This function gets called every
692 : * time frontbuffer rendering has completed and flushed out to memory. PSR
693 : * can be enabled again if no other frontbuffer relevant to PSR is dirty.
694 : *
695 : * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
696 : */
697 0 : void intel_psr_flush(struct drm_device *dev,
698 : unsigned frontbuffer_bits, enum fb_op_origin origin)
699 : {
700 0 : struct drm_i915_private *dev_priv = dev->dev_private;
701 : struct drm_crtc *crtc;
702 : enum pipe pipe;
703 0 : int delay_ms = HAS_DDI(dev) ? 100 : 500;
704 :
705 0 : mutex_lock(&dev_priv->psr.lock);
706 0 : if (!dev_priv->psr.enabled) {
707 0 : mutex_unlock(&dev_priv->psr.lock);
708 0 : return;
709 : }
710 :
711 0 : crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
712 0 : pipe = to_intel_crtc(crtc)->pipe;
713 :
714 0 : frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
715 0 : dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
716 :
717 0 : if (HAS_DDI(dev)) {
718 : /*
719 : * By definition every flush should mean invalidate + flush,
720 : * however on core platforms let's minimize the
721 : * disable/re-enable so we can avoid the invalidate when flip
722 : * originated the flush.
723 : */
724 0 : if (frontbuffer_bits && origin != ORIGIN_FLIP)
725 0 : intel_psr_exit(dev);
726 : } else {
727 : /*
728 : * On Valleyview and Cherryview we don't use hardware tracking
729 : * so any plane updates or cursor moves don't result in a PSR
730 : * invalidating. Which means we need to manually fake this in
731 : * software for all flushes.
732 : */
733 0 : if (frontbuffer_bits)
734 0 : intel_psr_exit(dev);
735 : }
736 :
737 0 : if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
738 0 : schedule_delayed_work(&dev_priv->psr.work,
739 0 : msecs_to_jiffies(delay_ms));
740 0 : mutex_unlock(&dev_priv->psr.lock);
741 0 : }
742 :
743 : /**
744 : * intel_psr_init - Init basic PSR work and mutex.
745 : * @dev: DRM device
746 : *
747 : * This function is called only once at driver load to initialize basic
748 : * PSR stuff.
749 : */
750 0 : void intel_psr_init(struct drm_device *dev)
751 : {
752 0 : struct drm_i915_private *dev_priv = dev->dev_private;
753 :
754 0 : INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
755 0 : rw_init(&dev_priv->psr.lock, "psrlk");
756 0 : }
|