Line data Source code
1 : /* $OpenBSD: if_iwn.c,v 1.203 2018/04/28 16:05:56 phessler Exp $ */
2 :
3 : /*-
4 : * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
5 : *
6 : * Permission to use, copy, modify, and distribute this software for any
7 : * purpose with or without fee is hereby granted, provided that the above
8 : * copyright notice and this permission notice appear in all copies.
9 : *
10 : * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 : * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 : * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 : * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 : * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 : * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 : * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 : */
18 :
19 : /*
20 : * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
21 : * adapters.
22 : */
23 :
24 : #include "bpfilter.h"
25 :
26 : #include <sys/param.h>
27 : #include <sys/sockio.h>
28 : #include <sys/mbuf.h>
29 : #include <sys/kernel.h>
30 : #include <sys/rwlock.h>
31 : #include <sys/socket.h>
32 : #include <sys/systm.h>
33 : #include <sys/malloc.h>
34 : #include <sys/conf.h>
35 : #include <sys/device.h>
36 : #include <sys/task.h>
37 : #include <sys/endian.h>
38 :
39 : #include <machine/bus.h>
40 : #include <machine/intr.h>
41 :
42 : #include <dev/pci/pcireg.h>
43 : #include <dev/pci/pcivar.h>
44 : #include <dev/pci/pcidevs.h>
45 :
46 : #if NBPFILTER > 0
47 : #include <net/bpf.h>
48 : #endif
49 : #include <net/if.h>
50 : #include <net/if_dl.h>
51 : #include <net/if_media.h>
52 :
53 : #include <netinet/in.h>
54 : #include <netinet/if_ether.h>
55 :
56 : #include <net80211/ieee80211_var.h>
57 : #include <net80211/ieee80211_amrr.h>
58 : #include <net80211/ieee80211_mira.h>
59 : #include <net80211/ieee80211_radiotap.h>
60 :
61 : #include <dev/pci/if_iwnreg.h>
62 : #include <dev/pci/if_iwnvar.h>
63 :
64 : static const struct pci_matchid iwn_devices[] = {
65 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_1 },
66 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_2 },
67 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_1 },
68 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_2 },
69 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_1 },
70 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_2 },
71 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_1 },
72 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_2 },
73 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_1 },
74 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_2 },
75 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_1 },
76 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_2 },
77 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_1 },
78 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_2 },
79 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_1 },
80 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_2 },
81 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_1 },
82 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_2 },
83 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_1 },
84 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_2 },
85 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_1 },
86 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_2 },
87 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_1 },
88 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_2 },
89 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_1 },
90 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_2 },
91 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_1 },
92 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_2 },
93 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_1 },
94 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_2 },
95 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_1 },
96 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_2 },
97 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_1 },
98 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_2 },
99 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_1 },
100 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_2 },
101 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_1 },
102 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_2 },
103 : };
104 :
105 : int iwn_match(struct device *, void *, void *);
106 : void iwn_attach(struct device *, struct device *, void *);
107 : int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
108 : int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
109 : #if NBPFILTER > 0
110 : void iwn_radiotap_attach(struct iwn_softc *);
111 : #endif
112 : int iwn_detach(struct device *, int);
113 : int iwn_activate(struct device *, int);
114 : void iwn_wakeup(struct iwn_softc *);
115 : void iwn_init_task(void *);
116 : int iwn_nic_lock(struct iwn_softc *);
117 : int iwn_eeprom_lock(struct iwn_softc *);
118 : int iwn_init_otprom(struct iwn_softc *);
119 : int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
120 : int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
121 : void **, bus_size_t, bus_size_t);
122 : void iwn_dma_contig_free(struct iwn_dma_info *);
123 : int iwn_alloc_sched(struct iwn_softc *);
124 : void iwn_free_sched(struct iwn_softc *);
125 : int iwn_alloc_kw(struct iwn_softc *);
126 : void iwn_free_kw(struct iwn_softc *);
127 : int iwn_alloc_ict(struct iwn_softc *);
128 : void iwn_free_ict(struct iwn_softc *);
129 : int iwn_alloc_fwmem(struct iwn_softc *);
130 : void iwn_free_fwmem(struct iwn_softc *);
131 : int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
132 : void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
133 : void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
134 : int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
135 : int);
136 : void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
137 : void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
138 : void iwn5000_ict_reset(struct iwn_softc *);
139 : int iwn_read_eeprom(struct iwn_softc *);
140 : void iwn4965_read_eeprom(struct iwn_softc *);
141 : void iwn4965_print_power_group(struct iwn_softc *, int);
142 : void iwn5000_read_eeprom(struct iwn_softc *);
143 : void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
144 : void iwn_read_eeprom_enhinfo(struct iwn_softc *);
145 : struct ieee80211_node *iwn_node_alloc(struct ieee80211com *);
146 : void iwn_newassoc(struct ieee80211com *, struct ieee80211_node *,
147 : int);
148 : int iwn_media_change(struct ifnet *);
149 : int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
150 : void iwn_iter_func(void *, struct ieee80211_node *);
151 : void iwn_calib_timeout(void *);
152 : int iwn_ccmp_decap(struct iwn_softc *, struct mbuf *,
153 : struct ieee80211_node *);
154 : void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
155 : struct iwn_rx_data *);
156 : void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
157 : struct iwn_rx_data *);
158 : void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
159 : struct iwn_rx_data *);
160 : void iwn5000_rx_calib_results(struct iwn_softc *,
161 : struct iwn_rx_desc *, struct iwn_rx_data *);
162 : void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
163 : struct iwn_rx_data *);
164 : void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
165 : struct iwn_rx_data *);
166 : void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
167 : struct iwn_rx_data *);
168 : void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
169 : uint8_t, uint8_t, uint8_t, uint16_t);
170 : void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
171 : void iwn_notif_intr(struct iwn_softc *);
172 : void iwn_wakeup_intr(struct iwn_softc *);
173 : void iwn_fatal_intr(struct iwn_softc *);
174 : int iwn_intr(void *);
175 : void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
176 : uint16_t);
177 : void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
178 : uint16_t);
179 : void iwn5000_reset_sched(struct iwn_softc *, int, int);
180 : int iwn_tx(struct iwn_softc *, struct mbuf *,
181 : struct ieee80211_node *);
182 : int iwn_rval2ridx(int);
183 : void iwn_start(struct ifnet *);
184 : void iwn_watchdog(struct ifnet *);
185 : int iwn_ioctl(struct ifnet *, u_long, caddr_t);
186 : int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
187 : int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
188 : int);
189 : int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
190 : int);
191 : int iwn_set_link_quality(struct iwn_softc *,
192 : struct ieee80211_node *);
193 : int iwn_add_broadcast_node(struct iwn_softc *, int, int);
194 : void iwn_updateedca(struct ieee80211com *);
195 : void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
196 : int iwn_set_critical_temp(struct iwn_softc *);
197 : int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
198 : void iwn4965_power_calibration(struct iwn_softc *, int);
199 : int iwn4965_set_txpower(struct iwn_softc *, int);
200 : int iwn5000_set_txpower(struct iwn_softc *, int);
201 : int iwn4965_get_rssi(const struct iwn_rx_stat *);
202 : int iwn5000_get_rssi(const struct iwn_rx_stat *);
203 : int iwn_get_noise(const struct iwn_rx_general_stats *);
204 : int iwn4965_get_temperature(struct iwn_softc *);
205 : int iwn5000_get_temperature(struct iwn_softc *);
206 : int iwn_init_sensitivity(struct iwn_softc *);
207 : void iwn_collect_noise(struct iwn_softc *,
208 : const struct iwn_rx_general_stats *);
209 : int iwn4965_init_gains(struct iwn_softc *);
210 : int iwn5000_init_gains(struct iwn_softc *);
211 : int iwn4965_set_gains(struct iwn_softc *);
212 : int iwn5000_set_gains(struct iwn_softc *);
213 : void iwn_tune_sensitivity(struct iwn_softc *,
214 : const struct iwn_rx_stats *);
215 : int iwn_send_sensitivity(struct iwn_softc *);
216 : int iwn_set_pslevel(struct iwn_softc *, int, int, int);
217 : int iwn_send_temperature_offset(struct iwn_softc *);
218 : int iwn_send_btcoex(struct iwn_softc *);
219 : int iwn_send_advanced_btcoex(struct iwn_softc *);
220 : int iwn5000_runtime_calib(struct iwn_softc *);
221 : int iwn_config(struct iwn_softc *);
222 : uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, uint8_t);
223 : uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
224 : uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
225 : int iwn_scan(struct iwn_softc *, uint16_t, int);
226 : void iwn_scan_abort(struct iwn_softc *);
227 : int iwn_bgscan(struct ieee80211com *);
228 : int iwn_auth(struct iwn_softc *, int);
229 : int iwn_run(struct iwn_softc *);
230 : int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
231 : struct ieee80211_key *);
232 : void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
233 : struct ieee80211_key *);
234 : void iwn_update_htprot(struct ieee80211com *,
235 : struct ieee80211_node *);
236 : int iwn_ampdu_rx_start(struct ieee80211com *,
237 : struct ieee80211_node *, uint8_t);
238 : void iwn_ampdu_rx_stop(struct ieee80211com *,
239 : struct ieee80211_node *, uint8_t);
240 : int iwn_ampdu_tx_start(struct ieee80211com *,
241 : struct ieee80211_node *, uint8_t);
242 : void iwn_ampdu_tx_stop(struct ieee80211com *,
243 : struct ieee80211_node *, uint8_t);
244 : void iwn4965_ampdu_tx_start(struct iwn_softc *,
245 : struct ieee80211_node *, uint8_t, uint16_t);
246 : void iwn4965_ampdu_tx_stop(struct iwn_softc *,
247 : uint8_t, uint16_t);
248 : void iwn5000_ampdu_tx_start(struct iwn_softc *,
249 : struct ieee80211_node *, uint8_t, uint16_t);
250 : void iwn5000_ampdu_tx_stop(struct iwn_softc *,
251 : uint8_t, uint16_t);
252 : int iwn5000_query_calibration(struct iwn_softc *);
253 : int iwn5000_send_calibration(struct iwn_softc *);
254 : int iwn5000_send_wimax_coex(struct iwn_softc *);
255 : int iwn5000_crystal_calib(struct iwn_softc *);
256 : int iwn6000_temp_offset_calib(struct iwn_softc *);
257 : int iwn2000_temp_offset_calib(struct iwn_softc *);
258 : int iwn4965_post_alive(struct iwn_softc *);
259 : int iwn5000_post_alive(struct iwn_softc *);
260 : int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
261 : int);
262 : int iwn4965_load_firmware(struct iwn_softc *);
263 : int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
264 : const uint8_t *, int);
265 : int iwn5000_load_firmware(struct iwn_softc *);
266 : int iwn_read_firmware_leg(struct iwn_softc *,
267 : struct iwn_fw_info *);
268 : int iwn_read_firmware_tlv(struct iwn_softc *,
269 : struct iwn_fw_info *, uint16_t);
270 : int iwn_read_firmware(struct iwn_softc *);
271 : int iwn_clock_wait(struct iwn_softc *);
272 : int iwn_apm_init(struct iwn_softc *);
273 : void iwn_apm_stop_master(struct iwn_softc *);
274 : void iwn_apm_stop(struct iwn_softc *);
275 : int iwn4965_nic_config(struct iwn_softc *);
276 : int iwn5000_nic_config(struct iwn_softc *);
277 : int iwn_hw_prepare(struct iwn_softc *);
278 : int iwn_hw_init(struct iwn_softc *);
279 : void iwn_hw_stop(struct iwn_softc *);
280 : int iwn_init(struct ifnet *);
281 : void iwn_stop(struct ifnet *, int);
282 :
283 : #ifdef IWN_DEBUG
284 : #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
285 : #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
286 : int iwn_debug = 1;
287 : #else
288 : #define DPRINTF(x)
289 : #define DPRINTFN(n, x)
290 : #endif
291 :
292 : struct cfdriver iwn_cd = {
293 : NULL, "iwn", DV_IFNET
294 : };
295 :
296 : struct cfattach iwn_ca = {
297 : sizeof (struct iwn_softc), iwn_match, iwn_attach, iwn_detach,
298 : iwn_activate
299 : };
300 :
301 : int
302 0 : iwn_match(struct device *parent, void *match, void *aux)
303 : {
304 0 : return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices,
305 : nitems(iwn_devices));
306 : }
307 :
308 : void
309 0 : iwn_attach(struct device *parent, struct device *self, void *aux)
310 : {
311 0 : struct iwn_softc *sc = (struct iwn_softc *)self;
312 0 : struct ieee80211com *ic = &sc->sc_ic;
313 0 : struct ifnet *ifp = &ic->ic_if;
314 0 : struct pci_attach_args *pa = aux;
315 : const char *intrstr;
316 0 : pci_intr_handle_t ih;
317 : pcireg_t memtype, reg;
318 : int i, error;
319 :
320 0 : sc->sc_pct = pa->pa_pc;
321 0 : sc->sc_pcitag = pa->pa_tag;
322 0 : sc->sc_dmat = pa->pa_dmat;
323 :
324 : /*
325 : * Get the offset of the PCI Express Capability Structure in PCI
326 : * Configuration Space.
327 : */
328 0 : error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
329 0 : PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
330 0 : if (error == 0) {
331 0 : printf(": PCIe capability structure not found!\n");
332 0 : return;
333 : }
334 :
335 : /* Clear device-specific "PCI retry timeout" register (41h). */
336 0 : reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
337 0 : if (reg & 0xff00)
338 0 : pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
339 :
340 : /* Hardware bug workaround. */
341 0 : reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
342 0 : if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
343 : DPRINTF(("PCIe INTx Disable set\n"));
344 0 : reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
345 0 : pci_conf_write(sc->sc_pct, sc->sc_pcitag,
346 : PCI_COMMAND_STATUS_REG, reg);
347 0 : }
348 :
349 0 : memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
350 0 : error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
351 0 : &sc->sc_sh, NULL, &sc->sc_sz, 0);
352 0 : if (error != 0) {
353 0 : printf(": can't map mem space\n");
354 0 : return;
355 : }
356 :
357 : /* Install interrupt handler. */
358 0 : if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
359 0 : printf(": can't map interrupt\n");
360 0 : return;
361 : }
362 0 : intrstr = pci_intr_string(sc->sc_pct, ih);
363 0 : sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc,
364 0 : sc->sc_dev.dv_xname);
365 0 : if (sc->sc_ih == NULL) {
366 0 : printf(": can't establish interrupt");
367 0 : if (intrstr != NULL)
368 0 : printf(" at %s", intrstr);
369 0 : printf("\n");
370 0 : return;
371 : }
372 0 : printf(": %s", intrstr);
373 :
374 : /* Read hardware revision and attach. */
375 0 : sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0x1f;
376 0 : if (sc->hw_type == IWN_HW_REV_TYPE_4965)
377 0 : error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
378 : else
379 0 : error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
380 0 : if (error != 0) {
381 0 : printf(": could not attach device\n");
382 0 : return;
383 : }
384 :
385 0 : if ((error = iwn_hw_prepare(sc)) != 0) {
386 0 : printf(": hardware not ready\n");
387 0 : return;
388 : }
389 :
390 : /* Read MAC address, channels, etc from EEPROM. */
391 0 : if ((error = iwn_read_eeprom(sc)) != 0) {
392 0 : printf(": could not read EEPROM\n");
393 0 : return;
394 : }
395 :
396 : /* Allocate DMA memory for firmware transfers. */
397 0 : if ((error = iwn_alloc_fwmem(sc)) != 0) {
398 0 : printf(": could not allocate memory for firmware\n");
399 0 : return;
400 : }
401 :
402 : /* Allocate "Keep Warm" page. */
403 0 : if ((error = iwn_alloc_kw(sc)) != 0) {
404 0 : printf(": could not allocate keep warm page\n");
405 0 : goto fail1;
406 : }
407 :
408 : /* Allocate ICT table for 5000 Series. */
409 0 : if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
410 0 : (error = iwn_alloc_ict(sc)) != 0) {
411 0 : printf(": could not allocate ICT table\n");
412 0 : goto fail2;
413 : }
414 :
415 : /* Allocate TX scheduler "rings". */
416 0 : if ((error = iwn_alloc_sched(sc)) != 0) {
417 0 : printf(": could not allocate TX scheduler rings\n");
418 0 : goto fail3;
419 : }
420 :
421 : /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
422 0 : for (i = 0; i < sc->ntxqs; i++) {
423 0 : if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
424 0 : printf(": could not allocate TX ring %d\n", i);
425 0 : goto fail4;
426 : }
427 : }
428 :
429 : /* Allocate RX ring. */
430 0 : if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
431 0 : printf(": could not allocate RX ring\n");
432 0 : goto fail4;
433 : }
434 :
435 : /* Clear pending interrupts. */
436 0 : IWN_WRITE(sc, IWN_INT, 0xffffffff);
437 :
438 : /* Count the number of available chains. */
439 0 : sc->ntxchains =
440 0 : ((sc->txchainmask >> 2) & 1) +
441 0 : ((sc->txchainmask >> 1) & 1) +
442 0 : ((sc->txchainmask >> 0) & 1);
443 0 : sc->nrxchains =
444 0 : ((sc->rxchainmask >> 2) & 1) +
445 0 : ((sc->rxchainmask >> 1) & 1) +
446 0 : ((sc->rxchainmask >> 0) & 1);
447 0 : printf(", MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains,
448 0 : sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr));
449 :
450 0 : ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
451 0 : ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
452 0 : ic->ic_state = IEEE80211_S_INIT;
453 :
454 : /* Set device capabilities. */
455 0 : ic->ic_caps =
456 : IEEE80211_C_WEP | /* WEP */
457 : IEEE80211_C_RSN | /* WPA/RSN */
458 : IEEE80211_C_SCANALL | /* device scans all channels at once */
459 : IEEE80211_C_SCANALLBAND | /* driver scans all bands at once */
460 : IEEE80211_C_MONITOR | /* monitor mode supported */
461 : IEEE80211_C_SHSLOT | /* short slot time supported */
462 : IEEE80211_C_SHPREAMBLE | /* short preamble supported */
463 : IEEE80211_C_PMGT; /* power saving supported */
464 :
465 : /* No optional HT features supported for now, */
466 0 : ic->ic_htcaps = 0;
467 0 : ic->ic_htxcaps = 0;
468 0 : ic->ic_txbfcaps = 0;
469 0 : ic->ic_aselcaps = 0;
470 0 : ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */);
471 0 : if (sc->sc_flags & IWN_FLAG_HAS_11N) {
472 : /* Set HT capabilities. */
473 0 : ic->ic_htcaps = IEEE80211_HTCAP_SGI20;
474 : #ifdef notyet
475 : ic->ic_htcaps |=
476 : #if IWN_RBUF_SIZE == 8192
477 : IEEE80211_HTCAP_AMSDU7935 |
478 : #endif
479 : IEEE80211_HTCAP_CBW20_40 |
480 : IEEE80211_HTCAP_SGI40;
481 : if (sc->hw_type != IWN_HW_REV_TYPE_4965)
482 : ic->ic_htcaps |= IEEE80211_HTCAP_GF;
483 : if (sc->hw_type == IWN_HW_REV_TYPE_6050)
484 : ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
485 : else
486 : ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
487 : #endif /* notyet */
488 0 : }
489 :
490 : /* Set supported legacy rates. */
491 0 : ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
492 0 : ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
493 0 : if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
494 0 : ic->ic_sup_rates[IEEE80211_MODE_11A] =
495 0 : ieee80211_std_rateset_11a;
496 0 : }
497 0 : if (sc->sc_flags & IWN_FLAG_HAS_11N) {
498 : /* Set supported HT rates. */
499 0 : ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
500 : #ifdef notyet
501 : if (sc->nrxchains > 1)
502 : ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */
503 : if (sc->nrxchains > 2)
504 : ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
505 : #endif
506 0 : }
507 :
508 : /* IBSS channel undefined for now. */
509 0 : ic->ic_ibss_chan = &ic->ic_channels[0];
510 :
511 0 : ifp->if_softc = sc;
512 0 : ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
513 0 : ifp->if_ioctl = iwn_ioctl;
514 0 : ifp->if_start = iwn_start;
515 0 : ifp->if_watchdog = iwn_watchdog;
516 0 : memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
517 :
518 0 : if_attach(ifp);
519 0 : ieee80211_ifattach(ifp);
520 0 : ic->ic_node_alloc = iwn_node_alloc;
521 0 : ic->ic_bgscan_start = iwn_bgscan;
522 0 : ic->ic_newassoc = iwn_newassoc;
523 0 : ic->ic_updateedca = iwn_updateedca;
524 0 : ic->ic_set_key = iwn_set_key;
525 0 : ic->ic_delete_key = iwn_delete_key;
526 0 : ic->ic_update_htprot = iwn_update_htprot;
527 0 : ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
528 0 : ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
529 : #ifdef notyet
530 : ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
531 : ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
532 : #endif
533 :
534 : /* Override 802.11 state transition machine. */
535 0 : sc->sc_newstate = ic->ic_newstate;
536 0 : ic->ic_newstate = iwn_newstate;
537 0 : ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status);
538 :
539 0 : sc->amrr.amrr_min_success_threshold = 1;
540 0 : sc->amrr.amrr_max_success_threshold = 15;
541 :
542 : #if NBPFILTER > 0
543 0 : iwn_radiotap_attach(sc);
544 : #endif
545 0 : timeout_set(&sc->calib_to, iwn_calib_timeout, sc);
546 0 : rw_init(&sc->sc_rwlock, "iwnlock");
547 0 : task_set(&sc->init_task, iwn_init_task, sc);
548 0 : return;
549 :
550 : /* Free allocated memory if something failed during attachment. */
551 0 : fail4: while (--i >= 0)
552 0 : iwn_free_tx_ring(sc, &sc->txq[i]);
553 0 : iwn_free_sched(sc);
554 0 : fail3: if (sc->ict != NULL)
555 0 : iwn_free_ict(sc);
556 0 : fail2: iwn_free_kw(sc);
557 0 : fail1: iwn_free_fwmem(sc);
558 0 : }
559 :
560 : int
561 0 : iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
562 : {
563 0 : struct iwn_ops *ops = &sc->ops;
564 :
565 0 : ops->load_firmware = iwn4965_load_firmware;
566 0 : ops->read_eeprom = iwn4965_read_eeprom;
567 0 : ops->post_alive = iwn4965_post_alive;
568 0 : ops->nic_config = iwn4965_nic_config;
569 0 : ops->update_sched = iwn4965_update_sched;
570 0 : ops->get_temperature = iwn4965_get_temperature;
571 0 : ops->get_rssi = iwn4965_get_rssi;
572 0 : ops->set_txpower = iwn4965_set_txpower;
573 0 : ops->init_gains = iwn4965_init_gains;
574 0 : ops->set_gains = iwn4965_set_gains;
575 0 : ops->add_node = iwn4965_add_node;
576 0 : ops->tx_done = iwn4965_tx_done;
577 0 : ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
578 0 : ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
579 0 : sc->ntxqs = IWN4965_NTXQUEUES;
580 0 : sc->ndmachnls = IWN4965_NDMACHNLS;
581 0 : sc->broadcast_id = IWN4965_ID_BROADCAST;
582 0 : sc->rxonsz = IWN4965_RXONSZ;
583 0 : sc->schedsz = IWN4965_SCHEDSZ;
584 0 : sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
585 0 : sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
586 0 : sc->fwsz = IWN4965_FWSZ;
587 0 : sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
588 0 : sc->limits = &iwn4965_sensitivity_limits;
589 0 : sc->fwname = "iwn-4965";
590 : /* Override chains masks, ROM is known to be broken. */
591 0 : sc->txchainmask = IWN_ANT_AB;
592 0 : sc->rxchainmask = IWN_ANT_ABC;
593 :
594 0 : return 0;
595 : }
596 :
597 : int
598 0 : iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
599 : {
600 0 : struct iwn_ops *ops = &sc->ops;
601 :
602 0 : ops->load_firmware = iwn5000_load_firmware;
603 0 : ops->read_eeprom = iwn5000_read_eeprom;
604 0 : ops->post_alive = iwn5000_post_alive;
605 0 : ops->nic_config = iwn5000_nic_config;
606 0 : ops->update_sched = iwn5000_update_sched;
607 0 : ops->get_temperature = iwn5000_get_temperature;
608 0 : ops->get_rssi = iwn5000_get_rssi;
609 0 : ops->set_txpower = iwn5000_set_txpower;
610 0 : ops->init_gains = iwn5000_init_gains;
611 0 : ops->set_gains = iwn5000_set_gains;
612 0 : ops->add_node = iwn5000_add_node;
613 0 : ops->tx_done = iwn5000_tx_done;
614 0 : ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
615 0 : ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
616 0 : sc->ntxqs = IWN5000_NTXQUEUES;
617 0 : sc->ndmachnls = IWN5000_NDMACHNLS;
618 0 : sc->broadcast_id = IWN5000_ID_BROADCAST;
619 0 : sc->rxonsz = IWN5000_RXONSZ;
620 0 : sc->schedsz = IWN5000_SCHEDSZ;
621 0 : sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
622 0 : sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
623 0 : sc->fwsz = IWN5000_FWSZ;
624 0 : sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
625 :
626 0 : switch (sc->hw_type) {
627 : case IWN_HW_REV_TYPE_5100:
628 0 : sc->limits = &iwn5000_sensitivity_limits;
629 0 : sc->fwname = "iwn-5000";
630 : /* Override chains masks, ROM is known to be broken. */
631 0 : sc->txchainmask = IWN_ANT_B;
632 0 : sc->rxchainmask = IWN_ANT_AB;
633 0 : break;
634 : case IWN_HW_REV_TYPE_5150:
635 0 : sc->limits = &iwn5150_sensitivity_limits;
636 0 : sc->fwname = "iwn-5150";
637 0 : break;
638 : case IWN_HW_REV_TYPE_5300:
639 : case IWN_HW_REV_TYPE_5350:
640 0 : sc->limits = &iwn5000_sensitivity_limits;
641 0 : sc->fwname = "iwn-5000";
642 0 : break;
643 : case IWN_HW_REV_TYPE_1000:
644 0 : sc->limits = &iwn1000_sensitivity_limits;
645 0 : sc->fwname = "iwn-1000";
646 0 : break;
647 : case IWN_HW_REV_TYPE_6000:
648 0 : sc->limits = &iwn6000_sensitivity_limits;
649 0 : sc->fwname = "iwn-6000";
650 0 : if (pid == PCI_PRODUCT_INTEL_WL_6200_1 ||
651 0 : pid == PCI_PRODUCT_INTEL_WL_6200_2) {
652 0 : sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
653 : /* Override chains masks, ROM is known to be broken. */
654 0 : sc->txchainmask = IWN_ANT_BC;
655 0 : sc->rxchainmask = IWN_ANT_BC;
656 0 : }
657 : break;
658 : case IWN_HW_REV_TYPE_6050:
659 0 : sc->limits = &iwn6000_sensitivity_limits;
660 0 : sc->fwname = "iwn-6050";
661 0 : break;
662 : case IWN_HW_REV_TYPE_6005:
663 0 : sc->limits = &iwn6000_sensitivity_limits;
664 0 : if (pid != PCI_PRODUCT_INTEL_WL_6005_1 &&
665 0 : pid != PCI_PRODUCT_INTEL_WL_6005_2) {
666 0 : sc->fwname = "iwn-6030";
667 0 : sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
668 0 : } else
669 0 : sc->fwname = "iwn-6005";
670 : break;
671 : case IWN_HW_REV_TYPE_2030:
672 0 : sc->limits = &iwn2000_sensitivity_limits;
673 0 : sc->fwname = "iwn-2030";
674 0 : sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
675 0 : break;
676 : case IWN_HW_REV_TYPE_2000:
677 0 : sc->limits = &iwn2000_sensitivity_limits;
678 0 : sc->fwname = "iwn-2000";
679 0 : break;
680 : case IWN_HW_REV_TYPE_135:
681 0 : sc->limits = &iwn2000_sensitivity_limits;
682 0 : sc->fwname = "iwn-135";
683 0 : sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
684 0 : break;
685 : case IWN_HW_REV_TYPE_105:
686 0 : sc->limits = &iwn2000_sensitivity_limits;
687 0 : sc->fwname = "iwn-105";
688 0 : break;
689 : default:
690 0 : printf(": adapter type %d not supported\n", sc->hw_type);
691 0 : return ENOTSUP;
692 : }
693 0 : return 0;
694 0 : }
695 :
696 : #if NBPFILTER > 0
697 : /*
698 : * Attach the interface to 802.11 radiotap.
699 : */
700 : void
701 0 : iwn_radiotap_attach(struct iwn_softc *sc)
702 : {
703 0 : bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
704 : sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
705 :
706 0 : sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
707 0 : sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
708 0 : sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
709 :
710 0 : sc->sc_txtap_len = sizeof sc->sc_txtapu;
711 0 : sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
712 0 : sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
713 0 : }
714 : #endif
715 :
716 : int
717 0 : iwn_detach(struct device *self, int flags)
718 : {
719 0 : struct iwn_softc *sc = (struct iwn_softc *)self;
720 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
721 : int qid;
722 :
723 0 : timeout_del(&sc->calib_to);
724 0 : task_del(systq, &sc->init_task);
725 :
726 : /* Uninstall interrupt handler. */
727 0 : if (sc->sc_ih != NULL)
728 0 : pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
729 :
730 : /* Free DMA resources. */
731 0 : iwn_free_rx_ring(sc, &sc->rxq);
732 0 : for (qid = 0; qid < sc->ntxqs; qid++)
733 0 : iwn_free_tx_ring(sc, &sc->txq[qid]);
734 0 : iwn_free_sched(sc);
735 0 : iwn_free_kw(sc);
736 0 : if (sc->ict != NULL)
737 0 : iwn_free_ict(sc);
738 0 : iwn_free_fwmem(sc);
739 :
740 0 : bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
741 :
742 0 : ieee80211_ifdetach(ifp);
743 0 : if_detach(ifp);
744 :
745 0 : return 0;
746 : }
747 :
748 : int
749 0 : iwn_activate(struct device *self, int act)
750 : {
751 0 : struct iwn_softc *sc = (struct iwn_softc *)self;
752 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
753 :
754 0 : switch (act) {
755 : case DVACT_SUSPEND:
756 0 : if (ifp->if_flags & IFF_RUNNING)
757 0 : iwn_stop(ifp, 0);
758 : break;
759 : case DVACT_WAKEUP:
760 0 : iwn_wakeup(sc);
761 0 : break;
762 : }
763 :
764 0 : return 0;
765 : }
766 :
767 : void
768 0 : iwn_wakeup(struct iwn_softc *sc)
769 : {
770 : pcireg_t reg;
771 :
772 : /* Clear device-specific "PCI retry timeout" register (41h). */
773 0 : reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
774 0 : if (reg & 0xff00)
775 0 : pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
776 0 : iwn_init_task(sc);
777 0 : }
778 :
779 : void
780 0 : iwn_init_task(void *arg1)
781 : {
782 0 : struct iwn_softc *sc = arg1;
783 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
784 : int s;
785 :
786 0 : rw_enter_write(&sc->sc_rwlock);
787 0 : s = splnet();
788 :
789 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
790 0 : iwn_init(ifp);
791 :
792 0 : splx(s);
793 0 : rw_exit_write(&sc->sc_rwlock);
794 0 : }
795 :
796 : int
797 0 : iwn_nic_lock(struct iwn_softc *sc)
798 : {
799 : int ntries;
800 :
801 : /* Request exclusive access to NIC. */
802 0 : IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
803 :
804 : /* Spin until we actually get the lock. */
805 0 : for (ntries = 0; ntries < 1000; ntries++) {
806 0 : if ((IWN_READ(sc, IWN_GP_CNTRL) &
807 0 : (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
808 : IWN_GP_CNTRL_MAC_ACCESS_ENA)
809 0 : return 0;
810 0 : DELAY(10);
811 : }
812 0 : return ETIMEDOUT;
813 0 : }
814 :
815 : static __inline void
816 0 : iwn_nic_unlock(struct iwn_softc *sc)
817 : {
818 0 : IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
819 0 : }
820 :
821 : static __inline uint32_t
822 0 : iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
823 : {
824 0 : IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
825 0 : IWN_BARRIER_READ_WRITE(sc);
826 0 : return IWN_READ(sc, IWN_PRPH_RDATA);
827 : }
828 :
829 : static __inline void
830 0 : iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
831 : {
832 0 : IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
833 0 : IWN_BARRIER_WRITE(sc);
834 0 : IWN_WRITE(sc, IWN_PRPH_WDATA, data);
835 0 : }
836 :
837 : static __inline void
838 0 : iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
839 : {
840 0 : iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
841 0 : }
842 :
843 : static __inline void
844 0 : iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
845 : {
846 0 : iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
847 0 : }
848 :
849 : static __inline void
850 0 : iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
851 : const uint32_t *data, int count)
852 : {
853 0 : for (; count > 0; count--, data++, addr += 4)
854 0 : iwn_prph_write(sc, addr, *data);
855 0 : }
856 :
857 : static __inline uint32_t
858 0 : iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
859 : {
860 0 : IWN_WRITE(sc, IWN_MEM_RADDR, addr);
861 0 : IWN_BARRIER_READ_WRITE(sc);
862 0 : return IWN_READ(sc, IWN_MEM_RDATA);
863 : }
864 :
865 : static __inline void
866 0 : iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
867 : {
868 0 : IWN_WRITE(sc, IWN_MEM_WADDR, addr);
869 0 : IWN_BARRIER_WRITE(sc);
870 0 : IWN_WRITE(sc, IWN_MEM_WDATA, data);
871 0 : }
872 :
873 : static __inline void
874 0 : iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
875 : {
876 : uint32_t tmp;
877 :
878 0 : tmp = iwn_mem_read(sc, addr & ~3);
879 0 : if (addr & 3)
880 0 : tmp = (tmp & 0x0000ffff) | data << 16;
881 : else
882 0 : tmp = (tmp & 0xffff0000) | data;
883 0 : iwn_mem_write(sc, addr & ~3, tmp);
884 0 : }
885 :
886 : #ifdef IWN_DEBUG
887 :
888 : static __inline void
889 : iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
890 : int count)
891 : {
892 : for (; count > 0; count--, addr += 4)
893 : *data++ = iwn_mem_read(sc, addr);
894 : }
895 :
896 : #endif
897 :
898 : static __inline void
899 0 : iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
900 : int count)
901 : {
902 0 : for (; count > 0; count--, addr += 4)
903 0 : iwn_mem_write(sc, addr, val);
904 0 : }
905 :
906 : int
907 0 : iwn_eeprom_lock(struct iwn_softc *sc)
908 : {
909 : int i, ntries;
910 :
911 0 : for (i = 0; i < 100; i++) {
912 : /* Request exclusive access to EEPROM. */
913 0 : IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
914 : IWN_HW_IF_CONFIG_EEPROM_LOCKED);
915 :
916 : /* Spin until we actually get the lock. */
917 0 : for (ntries = 0; ntries < 100; ntries++) {
918 0 : if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
919 : IWN_HW_IF_CONFIG_EEPROM_LOCKED)
920 0 : return 0;
921 0 : DELAY(10);
922 : }
923 : }
924 0 : return ETIMEDOUT;
925 0 : }
926 :
927 : static __inline void
928 0 : iwn_eeprom_unlock(struct iwn_softc *sc)
929 : {
930 0 : IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
931 0 : }
932 :
933 : /*
934 : * Initialize access by host to One Time Programmable ROM.
935 : * NB: This kind of ROM can be found on 1000 or 6000 Series only.
936 : */
937 : int
938 0 : iwn_init_otprom(struct iwn_softc *sc)
939 : {
940 0 : uint16_t prev, base, next;
941 : int count, error;
942 :
943 : /* Wait for clock stabilization before accessing prph. */
944 0 : if ((error = iwn_clock_wait(sc)) != 0)
945 0 : return error;
946 :
947 0 : if ((error = iwn_nic_lock(sc)) != 0)
948 0 : return error;
949 0 : iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
950 0 : DELAY(5);
951 0 : iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
952 0 : iwn_nic_unlock(sc);
953 :
954 : /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
955 0 : if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
956 0 : IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
957 : IWN_RESET_LINK_PWR_MGMT_DIS);
958 0 : }
959 0 : IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
960 : /* Clear ECC status. */
961 0 : IWN_SETBITS(sc, IWN_OTP_GP,
962 : IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
963 :
964 : /*
965 : * Find the block before last block (contains the EEPROM image)
966 : * for HW without OTP shadow RAM.
967 : */
968 0 : if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
969 : /* Switch to absolute addressing mode. */
970 0 : IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
971 : base = 0;
972 0 : for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
973 0 : error = iwn_read_prom_data(sc, base, &next, 2);
974 0 : if (error != 0)
975 0 : return error;
976 0 : if (next == 0) /* End of linked-list. */
977 : break;
978 : prev = base;
979 : base = letoh16(next);
980 : }
981 0 : if (count == 0 || count == IWN1000_OTP_NBLOCKS)
982 0 : return EIO;
983 : /* Skip "next" word. */
984 0 : sc->prom_base = prev + 1;
985 0 : }
986 0 : return 0;
987 0 : }
988 :
989 : int
990 0 : iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
991 : {
992 : uint8_t *out = data;
993 : uint32_t val, tmp;
994 : int ntries;
995 :
996 0 : addr += sc->prom_base;
997 0 : for (; count > 0; count -= 2, addr++) {
998 0 : IWN_WRITE(sc, IWN_EEPROM, addr << 2);
999 0 : for (ntries = 0; ntries < 10; ntries++) {
1000 0 : val = IWN_READ(sc, IWN_EEPROM);
1001 0 : if (val & IWN_EEPROM_READ_VALID)
1002 : break;
1003 0 : DELAY(5);
1004 : }
1005 0 : if (ntries == 10) {
1006 0 : printf("%s: timeout reading ROM at 0x%x\n",
1007 0 : sc->sc_dev.dv_xname, addr);
1008 0 : return ETIMEDOUT;
1009 : }
1010 0 : if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1011 : /* OTPROM, check for ECC errors. */
1012 0 : tmp = IWN_READ(sc, IWN_OTP_GP);
1013 0 : if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1014 0 : printf("%s: OTPROM ECC error at 0x%x\n",
1015 0 : sc->sc_dev.dv_xname, addr);
1016 0 : return EIO;
1017 : }
1018 0 : if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1019 : /* Correctable ECC error, clear bit. */
1020 0 : IWN_SETBITS(sc, IWN_OTP_GP,
1021 : IWN_OTP_GP_ECC_CORR_STTS);
1022 0 : }
1023 : }
1024 0 : *out++ = val >> 16;
1025 0 : if (count > 1)
1026 0 : *out++ = val >> 24;
1027 : }
1028 0 : return 0;
1029 0 : }
1030 :
1031 : int
1032 0 : iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1033 : bus_size_t size, bus_size_t alignment)
1034 : {
1035 0 : int nsegs, error;
1036 :
1037 0 : dma->tag = tag;
1038 0 : dma->size = size;
1039 :
1040 0 : error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1041 : &dma->map);
1042 0 : if (error != 0)
1043 : goto fail;
1044 :
1045 0 : error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1046 : BUS_DMA_NOWAIT | BUS_DMA_ZERO);
1047 0 : if (error != 0)
1048 : goto fail;
1049 :
1050 0 : error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1051 : BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
1052 0 : if (error != 0)
1053 : goto fail;
1054 :
1055 0 : error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
1056 : BUS_DMA_NOWAIT);
1057 0 : if (error != 0)
1058 : goto fail;
1059 :
1060 0 : bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1061 :
1062 0 : dma->paddr = dma->map->dm_segs[0].ds_addr;
1063 0 : if (kvap != NULL)
1064 0 : *kvap = dma->vaddr;
1065 :
1066 0 : return 0;
1067 :
1068 0 : fail: iwn_dma_contig_free(dma);
1069 0 : return error;
1070 0 : }
1071 :
1072 : void
1073 0 : iwn_dma_contig_free(struct iwn_dma_info *dma)
1074 : {
1075 0 : if (dma->map != NULL) {
1076 0 : if (dma->vaddr != NULL) {
1077 0 : bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1078 : BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1079 0 : bus_dmamap_unload(dma->tag, dma->map);
1080 0 : bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1081 0 : bus_dmamem_free(dma->tag, &dma->seg, 1);
1082 0 : dma->vaddr = NULL;
1083 0 : }
1084 0 : bus_dmamap_destroy(dma->tag, dma->map);
1085 0 : dma->map = NULL;
1086 0 : }
1087 0 : }
1088 :
1089 : int
1090 0 : iwn_alloc_sched(struct iwn_softc *sc)
1091 : {
1092 : /* TX scheduler rings must be aligned on a 1KB boundary. */
1093 0 : return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1094 0 : (void **)&sc->sched, sc->schedsz, 1024);
1095 : }
1096 :
1097 : void
1098 0 : iwn_free_sched(struct iwn_softc *sc)
1099 : {
1100 0 : iwn_dma_contig_free(&sc->sched_dma);
1101 0 : }
1102 :
1103 : int
1104 0 : iwn_alloc_kw(struct iwn_softc *sc)
1105 : {
1106 : /* "Keep Warm" page must be aligned on a 4KB boundary. */
1107 0 : return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1108 : 4096);
1109 : }
1110 :
1111 : void
1112 0 : iwn_free_kw(struct iwn_softc *sc)
1113 : {
1114 0 : iwn_dma_contig_free(&sc->kw_dma);
1115 0 : }
1116 :
1117 : int
1118 0 : iwn_alloc_ict(struct iwn_softc *sc)
1119 : {
1120 : /* ICT table must be aligned on a 4KB boundary. */
1121 0 : return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1122 0 : (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1123 : }
1124 :
1125 : void
1126 0 : iwn_free_ict(struct iwn_softc *sc)
1127 : {
1128 0 : iwn_dma_contig_free(&sc->ict_dma);
1129 0 : }
1130 :
1131 : int
1132 0 : iwn_alloc_fwmem(struct iwn_softc *sc)
1133 : {
1134 : /* Must be aligned on a 16-byte boundary. */
1135 0 : return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1136 0 : sc->fwsz, 16);
1137 : }
1138 :
1139 : void
1140 0 : iwn_free_fwmem(struct iwn_softc *sc)
1141 : {
1142 0 : iwn_dma_contig_free(&sc->fw_dma);
1143 0 : }
1144 :
1145 : int
1146 0 : iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1147 : {
1148 : bus_size_t size;
1149 : int i, error;
1150 :
1151 0 : ring->cur = 0;
1152 :
1153 : /* Allocate RX descriptors (256-byte aligned). */
1154 : size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1155 0 : error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1156 0 : (void **)&ring->desc, size, 256);
1157 0 : if (error != 0) {
1158 0 : printf("%s: could not allocate RX ring DMA memory\n",
1159 0 : sc->sc_dev.dv_xname);
1160 0 : goto fail;
1161 : }
1162 :
1163 : /* Allocate RX status area (16-byte aligned). */
1164 0 : error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1165 0 : (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1166 0 : if (error != 0) {
1167 0 : printf("%s: could not allocate RX status DMA memory\n",
1168 0 : sc->sc_dev.dv_xname);
1169 0 : goto fail;
1170 : }
1171 :
1172 : /*
1173 : * Allocate and map RX buffers.
1174 : */
1175 0 : for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1176 0 : struct iwn_rx_data *data = &ring->data[i];
1177 :
1178 0 : error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1179 : IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1180 : &data->map);
1181 0 : if (error != 0) {
1182 0 : printf("%s: could not create RX buf DMA map\n",
1183 0 : sc->sc_dev.dv_xname);
1184 0 : goto fail;
1185 : }
1186 :
1187 0 : data->m = MCLGETI(NULL, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1188 0 : if (data->m == NULL) {
1189 0 : printf("%s: could not allocate RX mbuf\n",
1190 0 : sc->sc_dev.dv_xname);
1191 : error = ENOBUFS;
1192 0 : goto fail;
1193 : }
1194 :
1195 0 : error = bus_dmamap_load(sc->sc_dmat, data->map,
1196 : mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1197 : BUS_DMA_NOWAIT | BUS_DMA_READ);
1198 0 : if (error != 0) {
1199 0 : printf("%s: can't map mbuf (error %d)\n",
1200 0 : sc->sc_dev.dv_xname, error);
1201 0 : goto fail;
1202 : }
1203 :
1204 : /* Set physical address of RX buffer (256-byte aligned). */
1205 0 : ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1206 0 : }
1207 :
1208 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1209 : BUS_DMASYNC_PREWRITE);
1210 :
1211 0 : return 0;
1212 :
1213 0 : fail: iwn_free_rx_ring(sc, ring);
1214 0 : return error;
1215 0 : }
1216 :
1217 : void
1218 0 : iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1219 : {
1220 : int ntries;
1221 :
1222 0 : if (iwn_nic_lock(sc) == 0) {
1223 0 : IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1224 0 : for (ntries = 0; ntries < 1000; ntries++) {
1225 0 : if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1226 : IWN_FH_RX_STATUS_IDLE)
1227 : break;
1228 0 : DELAY(10);
1229 : }
1230 0 : iwn_nic_unlock(sc);
1231 0 : }
1232 0 : ring->cur = 0;
1233 0 : sc->last_rx_valid = 0;
1234 0 : }
1235 :
1236 : void
1237 0 : iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1238 : {
1239 : int i;
1240 :
1241 0 : iwn_dma_contig_free(&ring->desc_dma);
1242 0 : iwn_dma_contig_free(&ring->stat_dma);
1243 :
1244 0 : for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1245 0 : struct iwn_rx_data *data = &ring->data[i];
1246 :
1247 0 : if (data->m != NULL) {
1248 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1249 : data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1250 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
1251 0 : m_freem(data->m);
1252 0 : }
1253 0 : if (data->map != NULL)
1254 0 : bus_dmamap_destroy(sc->sc_dmat, data->map);
1255 : }
1256 0 : }
1257 :
1258 : int
1259 0 : iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1260 : {
1261 : bus_addr_t paddr;
1262 : bus_size_t size;
1263 : int i, error;
1264 :
1265 0 : ring->qid = qid;
1266 0 : ring->queued = 0;
1267 0 : ring->cur = 0;
1268 :
1269 : /* Allocate TX descriptors (256-byte aligned). */
1270 : size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1271 0 : error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1272 0 : (void **)&ring->desc, size, 256);
1273 0 : if (error != 0) {
1274 0 : printf("%s: could not allocate TX ring DMA memory\n",
1275 0 : sc->sc_dev.dv_xname);
1276 0 : goto fail;
1277 : }
1278 : /*
1279 : * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1280 : * to allocate commands space for other rings.
1281 : * XXX Do we really need to allocate descriptors for other rings?
1282 : */
1283 0 : if (qid > 4)
1284 0 : return 0;
1285 :
1286 : size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1287 0 : error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1288 0 : (void **)&ring->cmd, size, 4);
1289 0 : if (error != 0) {
1290 0 : printf("%s: could not allocate TX cmd DMA memory\n",
1291 0 : sc->sc_dev.dv_xname);
1292 0 : goto fail;
1293 : }
1294 :
1295 0 : paddr = ring->cmd_dma.paddr;
1296 0 : for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1297 0 : struct iwn_tx_data *data = &ring->data[i];
1298 :
1299 0 : data->cmd_paddr = paddr;
1300 0 : data->scratch_paddr = paddr + 12;
1301 0 : paddr += sizeof (struct iwn_tx_cmd);
1302 :
1303 0 : error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1304 : IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1305 : &data->map);
1306 0 : if (error != 0) {
1307 0 : printf("%s: could not create TX buf DMA map\n",
1308 0 : sc->sc_dev.dv_xname);
1309 0 : goto fail;
1310 : }
1311 0 : }
1312 0 : return 0;
1313 :
1314 0 : fail: iwn_free_tx_ring(sc, ring);
1315 0 : return error;
1316 0 : }
1317 :
1318 : void
1319 0 : iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1320 : {
1321 : int i;
1322 :
1323 0 : for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1324 0 : struct iwn_tx_data *data = &ring->data[i];
1325 :
1326 0 : if (data->m != NULL) {
1327 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1328 : data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1329 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
1330 0 : m_freem(data->m);
1331 0 : data->m = NULL;
1332 0 : }
1333 : }
1334 : /* Clear TX descriptors. */
1335 0 : memset(ring->desc, 0, ring->desc_dma.size);
1336 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1337 : ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1338 0 : sc->qfullmsk &= ~(1 << ring->qid);
1339 0 : ring->queued = 0;
1340 0 : ring->cur = 0;
1341 0 : }
1342 :
1343 : void
1344 0 : iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1345 : {
1346 : int i;
1347 :
1348 0 : iwn_dma_contig_free(&ring->desc_dma);
1349 0 : iwn_dma_contig_free(&ring->cmd_dma);
1350 :
1351 0 : for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1352 0 : struct iwn_tx_data *data = &ring->data[i];
1353 :
1354 0 : if (data->m != NULL) {
1355 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1356 : data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1357 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
1358 0 : m_freem(data->m);
1359 0 : }
1360 0 : if (data->map != NULL)
1361 0 : bus_dmamap_destroy(sc->sc_dmat, data->map);
1362 : }
1363 0 : }
1364 :
1365 : void
1366 0 : iwn5000_ict_reset(struct iwn_softc *sc)
1367 : {
1368 : /* Disable interrupts. */
1369 0 : IWN_WRITE(sc, IWN_INT_MASK, 0);
1370 :
1371 : /* Reset ICT table. */
1372 0 : memset(sc->ict, 0, IWN_ICT_SIZE);
1373 0 : sc->ict_cur = 0;
1374 :
1375 : /* Set physical address of ICT table (4KB aligned). */
1376 : DPRINTF(("enabling ICT\n"));
1377 0 : IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1378 : IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1379 :
1380 : /* Enable periodic RX interrupt. */
1381 0 : sc->int_mask |= IWN_INT_RX_PERIODIC;
1382 : /* Switch to ICT interrupt mode in driver. */
1383 0 : sc->sc_flags |= IWN_FLAG_USE_ICT;
1384 :
1385 : /* Re-enable interrupts. */
1386 0 : IWN_WRITE(sc, IWN_INT, 0xffffffff);
1387 0 : IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1388 0 : }
1389 :
1390 : int
1391 0 : iwn_read_eeprom(struct iwn_softc *sc)
1392 : {
1393 0 : struct iwn_ops *ops = &sc->ops;
1394 0 : struct ieee80211com *ic = &sc->sc_ic;
1395 0 : uint16_t val;
1396 : int error;
1397 :
1398 : /* Check whether adapter has an EEPROM or an OTPROM. */
1399 0 : if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1400 0 : (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1401 0 : sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1402 : DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1403 : "OTPROM" : "EEPROM"));
1404 :
1405 : /* Adapter has to be powered on for EEPROM access to work. */
1406 0 : if ((error = iwn_apm_init(sc)) != 0) {
1407 0 : printf("%s: could not power ON adapter\n",
1408 0 : sc->sc_dev.dv_xname);
1409 0 : return error;
1410 : }
1411 :
1412 0 : if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1413 0 : printf("%s: bad ROM signature\n", sc->sc_dev.dv_xname);
1414 0 : return EIO;
1415 : }
1416 0 : if ((error = iwn_eeprom_lock(sc)) != 0) {
1417 0 : printf("%s: could not lock ROM (error=%d)\n",
1418 0 : sc->sc_dev.dv_xname, error);
1419 0 : return error;
1420 : }
1421 0 : if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1422 0 : if ((error = iwn_init_otprom(sc)) != 0) {
1423 0 : printf("%s: could not initialize OTPROM\n",
1424 0 : sc->sc_dev.dv_xname);
1425 0 : return error;
1426 : }
1427 : }
1428 :
1429 0 : iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1430 : DPRINTF(("SKU capabilities=0x%04x\n", letoh16(val)));
1431 : /* Check if HT support is bonded out. */
1432 0 : if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1433 0 : sc->sc_flags |= IWN_FLAG_HAS_11N;
1434 :
1435 0 : iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1436 0 : sc->rfcfg = letoh16(val);
1437 : DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1438 : /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1439 0 : if (sc->txchainmask == 0)
1440 0 : sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1441 0 : if (sc->rxchainmask == 0)
1442 0 : sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1443 :
1444 : /* Read MAC address. */
1445 0 : iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1446 :
1447 : /* Read adapter-specific information from EEPROM. */
1448 0 : ops->read_eeprom(sc);
1449 :
1450 0 : iwn_apm_stop(sc); /* Power OFF adapter. */
1451 :
1452 0 : iwn_eeprom_unlock(sc);
1453 0 : return 0;
1454 0 : }
1455 :
1456 : void
1457 0 : iwn4965_read_eeprom(struct iwn_softc *sc)
1458 : {
1459 : uint32_t addr;
1460 0 : uint16_t val;
1461 : int i;
1462 :
1463 : /* Read regulatory domain (4 ASCII characters). */
1464 0 : iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1465 :
1466 : /* Read the list of authorized channels (20MHz ones only). */
1467 0 : for (i = 0; i < 5; i++) {
1468 0 : addr = iwn4965_regulatory_bands[i];
1469 0 : iwn_read_eeprom_channels(sc, i, addr);
1470 : }
1471 :
1472 : /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1473 0 : iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1474 0 : sc->maxpwr2GHz = val & 0xff;
1475 0 : sc->maxpwr5GHz = val >> 8;
1476 : /* Check that EEPROM values are within valid range. */
1477 0 : if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1478 0 : sc->maxpwr5GHz = 38;
1479 0 : if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1480 0 : sc->maxpwr2GHz = 38;
1481 : DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1482 :
1483 : /* Read samples for each TX power group. */
1484 0 : iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1485 : sizeof sc->bands);
1486 :
1487 : /* Read voltage at which samples were taken. */
1488 0 : iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1489 0 : sc->eeprom_voltage = (int16_t)letoh16(val);
1490 : DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1491 :
1492 : #ifdef IWN_DEBUG
1493 : /* Print samples. */
1494 : if (iwn_debug > 0) {
1495 : for (i = 0; i < IWN_NBANDS; i++)
1496 : iwn4965_print_power_group(sc, i);
1497 : }
1498 : #endif
1499 0 : }
1500 :
1501 : #ifdef IWN_DEBUG
1502 : void
1503 : iwn4965_print_power_group(struct iwn_softc *sc, int i)
1504 : {
1505 : struct iwn4965_eeprom_band *band = &sc->bands[i];
1506 : struct iwn4965_eeprom_chan_samples *chans = band->chans;
1507 : int j, c;
1508 :
1509 : printf("===band %d===\n", i);
1510 : printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1511 : printf("chan1 num=%d\n", chans[0].num);
1512 : for (c = 0; c < 2; c++) {
1513 : for (j = 0; j < IWN_NSAMPLES; j++) {
1514 : printf("chain %d, sample %d: temp=%d gain=%d "
1515 : "power=%d pa_det=%d\n", c, j,
1516 : chans[0].samples[c][j].temp,
1517 : chans[0].samples[c][j].gain,
1518 : chans[0].samples[c][j].power,
1519 : chans[0].samples[c][j].pa_det);
1520 : }
1521 : }
1522 : printf("chan2 num=%d\n", chans[1].num);
1523 : for (c = 0; c < 2; c++) {
1524 : for (j = 0; j < IWN_NSAMPLES; j++) {
1525 : printf("chain %d, sample %d: temp=%d gain=%d "
1526 : "power=%d pa_det=%d\n", c, j,
1527 : chans[1].samples[c][j].temp,
1528 : chans[1].samples[c][j].gain,
1529 : chans[1].samples[c][j].power,
1530 : chans[1].samples[c][j].pa_det);
1531 : }
1532 : }
1533 : }
1534 : #endif
1535 :
1536 : void
1537 0 : iwn5000_read_eeprom(struct iwn_softc *sc)
1538 : {
1539 0 : struct iwn5000_eeprom_calib_hdr hdr;
1540 : int32_t volt;
1541 : uint32_t base, addr;
1542 0 : uint16_t val;
1543 : int i;
1544 :
1545 : /* Read regulatory domain (4 ASCII characters). */
1546 0 : iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1547 0 : base = letoh16(val);
1548 0 : iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1549 0 : sc->eeprom_domain, 4);
1550 :
1551 : /* Read the list of authorized channels (20MHz ones only). */
1552 0 : for (i = 0; i < 5; i++) {
1553 0 : addr = base + iwn5000_regulatory_bands[i];
1554 0 : iwn_read_eeprom_channels(sc, i, addr);
1555 : }
1556 :
1557 : /* Read enhanced TX power information for 6000 Series. */
1558 0 : if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1559 0 : iwn_read_eeprom_enhinfo(sc);
1560 :
1561 0 : iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1562 0 : base = letoh16(val);
1563 0 : iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1564 : DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1565 : hdr.version, hdr.pa_type, letoh16(hdr.volt)));
1566 0 : sc->calib_ver = hdr.version;
1567 :
1568 0 : if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1569 0 : sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1570 0 : sc->hw_type == IWN_HW_REV_TYPE_135 ||
1571 0 : sc->hw_type == IWN_HW_REV_TYPE_105) {
1572 0 : sc->eeprom_voltage = letoh16(hdr.volt);
1573 0 : iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1574 0 : sc->eeprom_temp = letoh16(val);
1575 0 : iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1576 0 : sc->eeprom_rawtemp = letoh16(val);
1577 0 : }
1578 :
1579 0 : if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1580 : /* Compute temperature offset. */
1581 0 : iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1582 0 : sc->eeprom_temp = letoh16(val);
1583 0 : iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1584 0 : volt = letoh16(val);
1585 0 : sc->temp_off = sc->eeprom_temp - (volt / -5);
1586 : DPRINTF(("temp=%d volt=%d offset=%dK\n",
1587 : sc->eeprom_temp, volt, sc->temp_off));
1588 0 : } else {
1589 : /* Read crystal calibration. */
1590 0 : iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1591 0 : &sc->eeprom_crystal, sizeof (uint32_t));
1592 : DPRINTF(("crystal calibration 0x%08x\n",
1593 : letoh32(sc->eeprom_crystal)));
1594 : }
1595 0 : }
1596 :
1597 : void
1598 0 : iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1599 : {
1600 0 : struct ieee80211com *ic = &sc->sc_ic;
1601 0 : const struct iwn_chan_band *band = &iwn_bands[n];
1602 0 : struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1603 : uint8_t chan;
1604 : int i;
1605 :
1606 0 : iwn_read_prom_data(sc, addr, channels,
1607 0 : band->nchan * sizeof (struct iwn_eeprom_chan));
1608 :
1609 0 : for (i = 0; i < band->nchan; i++) {
1610 0 : if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1611 : continue;
1612 :
1613 0 : chan = band->chan[i];
1614 :
1615 0 : if (n == 0) { /* 2GHz band */
1616 0 : ic->ic_channels[chan].ic_freq =
1617 0 : ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1618 0 : ic->ic_channels[chan].ic_flags =
1619 : IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1620 : IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1621 :
1622 0 : } else { /* 5GHz band */
1623 : /*
1624 : * Some adapters support channels 7, 8, 11 and 12
1625 : * both in the 2GHz and 4.9GHz bands.
1626 : * Because of limitations in our net80211 layer,
1627 : * we don't support them in the 4.9GHz band.
1628 : */
1629 0 : if (chan <= 14)
1630 : continue;
1631 :
1632 0 : ic->ic_channels[chan].ic_freq =
1633 0 : ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1634 0 : ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1635 : /* We have at least one valid 5GHz channel. */
1636 0 : sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1637 : }
1638 :
1639 : /* Is active scan allowed on this channel? */
1640 0 : if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1641 0 : ic->ic_channels[chan].ic_flags |=
1642 : IEEE80211_CHAN_PASSIVE;
1643 0 : }
1644 :
1645 : /* Save maximum allowed TX power for this channel. */
1646 0 : sc->maxpwr[chan] = channels[i].maxpwr;
1647 :
1648 0 : if (sc->sc_flags & IWN_FLAG_HAS_11N)
1649 0 : ic->ic_channels[chan].ic_flags |= IEEE80211_CHAN_HT;
1650 :
1651 : DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1652 : chan, channels[i].flags, sc->maxpwr[chan]));
1653 : }
1654 0 : }
1655 :
1656 : void
1657 0 : iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1658 : {
1659 0 : struct iwn_eeprom_enhinfo enhinfo[35];
1660 0 : uint16_t val, base;
1661 : int8_t maxpwr;
1662 : int i;
1663 :
1664 0 : iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1665 0 : base = letoh16(val);
1666 0 : iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1667 0 : enhinfo, sizeof enhinfo);
1668 :
1669 0 : memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1670 0 : for (i = 0; i < nitems(enhinfo); i++) {
1671 0 : if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1672 : continue; /* Skip invalid entries. */
1673 :
1674 : maxpwr = 0;
1675 0 : if (sc->txchainmask & IWN_ANT_A)
1676 0 : maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1677 0 : if (sc->txchainmask & IWN_ANT_B)
1678 0 : maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1679 0 : if (sc->txchainmask & IWN_ANT_C)
1680 0 : maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1681 0 : if (sc->ntxchains == 2)
1682 0 : maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1683 0 : else if (sc->ntxchains == 3)
1684 0 : maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1685 0 : maxpwr /= 2; /* Convert half-dBm to dBm. */
1686 :
1687 : DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1688 0 : sc->enh_maxpwr[i] = maxpwr;
1689 0 : }
1690 0 : }
1691 :
1692 : struct ieee80211_node *
1693 0 : iwn_node_alloc(struct ieee80211com *ic)
1694 : {
1695 0 : return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1696 : }
1697 :
1698 : void
1699 0 : iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1700 : {
1701 0 : struct iwn_softc *sc = ic->ic_if.if_softc;
1702 0 : struct iwn_node *wn = (void *)ni;
1703 : uint8_t rate;
1704 : int ridx, i;
1705 :
1706 0 : if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
1707 0 : ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1708 :
1709 : /* Start at lowest available bit-rate, AMRR/MiRA will raise. */
1710 0 : ni->ni_txrate = 0;
1711 0 : ni->ni_txmcs = 0;
1712 :
1713 0 : for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1714 0 : rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1715 : /* Map 802.11 rate to HW rate index. */
1716 0 : for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
1717 0 : if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID &&
1718 0 : iwn_rates[ridx].rate == rate)
1719 : break;
1720 : }
1721 0 : wn->ridx[i] = ridx;
1722 : }
1723 0 : }
1724 :
1725 : int
1726 0 : iwn_media_change(struct ifnet *ifp)
1727 : {
1728 0 : struct iwn_softc *sc = ifp->if_softc;
1729 0 : struct ieee80211com *ic = &sc->sc_ic;
1730 : uint8_t rate, ridx;
1731 : int error;
1732 :
1733 0 : error = ieee80211_media_change(ifp);
1734 0 : if (error != ENETRESET)
1735 0 : return error;
1736 :
1737 0 : if (ic->ic_fixed_mcs != -1)
1738 0 : sc->fixed_ridx = iwn_mcs2ridx[ic->ic_fixed_mcs];
1739 0 : if (ic->ic_fixed_rate != -1) {
1740 0 : rate = ic->ic_sup_rates[ic->ic_curmode].
1741 0 : rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1742 : /* Map 802.11 rate to HW rate index. */
1743 0 : for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1744 0 : if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID &&
1745 0 : iwn_rates[ridx].rate == rate)
1746 : break;
1747 0 : sc->fixed_ridx = ridx;
1748 0 : }
1749 :
1750 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1751 : (IFF_UP | IFF_RUNNING)) {
1752 0 : iwn_stop(ifp, 0);
1753 0 : error = iwn_init(ifp);
1754 0 : }
1755 0 : return error;
1756 0 : }
1757 :
1758 : int
1759 0 : iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1760 : {
1761 0 : struct ifnet *ifp = &ic->ic_if;
1762 0 : struct iwn_softc *sc = ifp->if_softc;
1763 0 : struct ieee80211_node *ni = ic->ic_bss;
1764 0 : struct iwn_node *wn = (void *)ni;
1765 : int error;
1766 :
1767 0 : if (ic->ic_state == IEEE80211_S_RUN) {
1768 0 : ieee80211_mira_cancel_timeouts(&wn->mn);
1769 0 : timeout_del(&sc->calib_to);
1770 0 : sc->calib.state = IWN_CALIB_STATE_INIT;
1771 0 : if (sc->sc_flags & IWN_FLAG_BGSCAN)
1772 0 : iwn_scan_abort(sc);
1773 : }
1774 :
1775 0 : if (ic->ic_state == IEEE80211_S_SCAN) {
1776 0 : if (nstate == IEEE80211_S_SCAN) {
1777 0 : if (sc->sc_flags & IWN_FLAG_SCANNING)
1778 0 : return 0;
1779 : } else
1780 0 : sc->sc_flags &= ~IWN_FLAG_SCANNING;
1781 : /* Turn LED off when leaving scan state. */
1782 0 : iwn_set_led(sc, IWN_LED_LINK, 1, 0);
1783 0 : }
1784 :
1785 0 : if (ic->ic_state >= IEEE80211_S_ASSOC &&
1786 0 : nstate <= IEEE80211_S_ASSOC) {
1787 : /* Reset state to handle re- and disassociations. */
1788 0 : sc->rxon.associd = 0;
1789 0 : sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1790 0 : sc->calib.state = IWN_CALIB_STATE_INIT;
1791 0 : error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
1792 0 : if (error != 0)
1793 0 : printf("%s: RXON command failed\n",
1794 0 : sc->sc_dev.dv_xname);
1795 : }
1796 :
1797 0 : switch (nstate) {
1798 : case IEEE80211_S_SCAN:
1799 : /* Make the link LED blink while we're scanning. */
1800 0 : iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1801 :
1802 0 : if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 0)) != 0) {
1803 0 : printf("%s: could not initiate scan\n",
1804 0 : sc->sc_dev.dv_xname);
1805 0 : return error;
1806 : }
1807 0 : if (ifp->if_flags & IFF_DEBUG)
1808 0 : printf("%s: %s -> %s\n", ifp->if_xname,
1809 0 : ieee80211_state_name[ic->ic_state],
1810 0 : ieee80211_state_name[nstate]);
1811 0 : if ((sc->sc_flags & IWN_FLAG_BGSCAN) == 0) {
1812 0 : ieee80211_set_link_state(ic, LINK_STATE_DOWN);
1813 0 : ieee80211_free_allnodes(ic, 1);
1814 0 : }
1815 0 : ic->ic_state = nstate;
1816 0 : return 0;
1817 :
1818 : case IEEE80211_S_ASSOC:
1819 0 : if (ic->ic_state != IEEE80211_S_RUN)
1820 : break;
1821 : /* FALLTHROUGH */
1822 : case IEEE80211_S_AUTH:
1823 0 : if ((error = iwn_auth(sc, arg)) != 0) {
1824 0 : printf("%s: could not move to auth state\n",
1825 0 : sc->sc_dev.dv_xname);
1826 0 : return error;
1827 : }
1828 : break;
1829 :
1830 : case IEEE80211_S_RUN:
1831 0 : if ((error = iwn_run(sc)) != 0) {
1832 0 : printf("%s: could not move to run state\n",
1833 0 : sc->sc_dev.dv_xname);
1834 0 : return error;
1835 : }
1836 : break;
1837 :
1838 : case IEEE80211_S_INIT:
1839 0 : sc->calib.state = IWN_CALIB_STATE_INIT;
1840 0 : break;
1841 : }
1842 :
1843 0 : return sc->sc_newstate(ic, nstate, arg);
1844 0 : }
1845 :
1846 : void
1847 0 : iwn_iter_func(void *arg, struct ieee80211_node *ni)
1848 : {
1849 0 : struct iwn_softc *sc = arg;
1850 0 : struct iwn_node *wn = (void *)ni;
1851 :
1852 0 : if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
1853 0 : ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1854 0 : }
1855 :
1856 : void
1857 0 : iwn_calib_timeout(void *arg)
1858 : {
1859 0 : struct iwn_softc *sc = arg;
1860 0 : struct ieee80211com *ic = &sc->sc_ic;
1861 : int s;
1862 :
1863 0 : s = splnet();
1864 0 : if (ic->ic_fixed_rate == -1) {
1865 0 : if (ic->ic_opmode == IEEE80211_M_STA)
1866 0 : iwn_iter_func(sc, ic->ic_bss);
1867 : else
1868 0 : ieee80211_iterate_nodes(ic, iwn_iter_func, sc);
1869 : }
1870 : /* Force automatic TX power calibration every 60 secs. */
1871 0 : if (++sc->calib_cnt >= 120) {
1872 0 : uint32_t flags = 0;
1873 :
1874 : DPRINTFN(2, ("sending request for statistics\n"));
1875 0 : (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1876 : sizeof flags, 1);
1877 0 : sc->calib_cnt = 0;
1878 0 : }
1879 0 : splx(s);
1880 :
1881 : /* Automatic rate control triggered every 500ms. */
1882 0 : timeout_add_msec(&sc->calib_to, 500);
1883 0 : }
1884 :
1885 : int
1886 0 : iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1887 : {
1888 0 : struct ieee80211com *ic = &sc->sc_ic;
1889 0 : struct ieee80211_key *k = &ni->ni_pairwise_key;
1890 : struct ieee80211_frame *wh;
1891 : struct ieee80211_rx_ba *ba;
1892 : uint64_t pn, *prsc;
1893 : uint8_t *ivp;
1894 : uint8_t tid;
1895 : int hdrlen, hasqos;
1896 :
1897 0 : wh = mtod(m, struct ieee80211_frame *);
1898 0 : hdrlen = ieee80211_get_hdrlen(wh);
1899 0 : ivp = (uint8_t *)wh + hdrlen;
1900 :
1901 : /* Check that ExtIV bit is be set. */
1902 0 : if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1903 : DPRINTF(("CCMP decap ExtIV not set\n"));
1904 0 : return 1;
1905 : }
1906 0 : hasqos = ieee80211_has_qos(wh);
1907 0 : tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1908 0 : ba = hasqos ? &ni->ni_rx_ba[tid] : NULL;
1909 0 : prsc = &k->k_rsc[tid];
1910 :
1911 : /* Extract the 48-bit PN from the CCMP header. */
1912 0 : pn = (uint64_t)ivp[0] |
1913 0 : (uint64_t)ivp[1] << 8 |
1914 0 : (uint64_t)ivp[4] << 16 |
1915 0 : (uint64_t)ivp[5] << 24 |
1916 0 : (uint64_t)ivp[6] << 32 |
1917 0 : (uint64_t)ivp[7] << 40;
1918 0 : if (pn <= *prsc) {
1919 0 : if (hasqos && ba->ba_state == IEEE80211_BA_AGREED) {
1920 : /*
1921 : * This is an A-MPDU subframe.
1922 : * Such frames may be received out of order due to
1923 : * legitimate retransmissions of failed subframes
1924 : * in previous A-MPDUs. Duplicates will be handled
1925 : * in ieee80211_input() as part of A-MPDU reordering.
1926 : */
1927 0 : } else if (ieee80211_has_seq(wh)) {
1928 : /*
1929 : * Not necessarily a replayed frame since we did not
1930 : * check the sequence number of the 802.11 header yet.
1931 : */
1932 : int nrxseq, orxseq;
1933 :
1934 0 : nrxseq = letoh16(*(u_int16_t *)wh->i_seq) >>
1935 : IEEE80211_SEQ_SEQ_SHIFT;
1936 0 : if (hasqos)
1937 0 : orxseq = ni->ni_qos_rxseqs[tid];
1938 : else
1939 0 : orxseq = ni->ni_rxseq;
1940 0 : if (nrxseq < orxseq) {
1941 : DPRINTF(("CCMP replayed (n=%d < o=%d)\n",
1942 : nrxseq, orxseq));
1943 0 : ic->ic_stats.is_ccmp_replays++;
1944 0 : return 1;
1945 : }
1946 0 : } else {
1947 : DPRINTF(("CCMP replayed\n"));
1948 0 : ic->ic_stats.is_ccmp_replays++;
1949 0 : return 1;
1950 : }
1951 : }
1952 : /* Update last seen packet number. */
1953 0 : *prsc = pn;
1954 :
1955 : /* Clear Protected bit and strip IV. */
1956 0 : wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1957 0 : memmove(mtod(m, caddr_t) + IEEE80211_CCMP_HDRLEN, wh, hdrlen);
1958 0 : m_adj(m, IEEE80211_CCMP_HDRLEN);
1959 : /* Strip MIC. */
1960 0 : m_adj(m, -IEEE80211_CCMP_MICLEN);
1961 0 : return 0;
1962 0 : }
1963 :
1964 : /*
1965 : * Process an RX_PHY firmware notification. This is usually immediately
1966 : * followed by an MPDU_RX_DONE notification.
1967 : */
1968 : void
1969 0 : iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1970 : struct iwn_rx_data *data)
1971 : {
1972 0 : struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1973 :
1974 : DPRINTFN(2, ("received PHY stats\n"));
1975 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1976 : sizeof (*stat), BUS_DMASYNC_POSTREAD);
1977 :
1978 : /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1979 0 : memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1980 0 : sc->last_rx_valid = IWN_LAST_RX_VALID;
1981 : /*
1982 : * The firmware does not send separate RX_PHY
1983 : * notifications for A-MPDU subframes.
1984 : */
1985 0 : if (stat->flags & htole16(IWN_STAT_FLAG_AGG))
1986 0 : sc->last_rx_valid |= IWN_LAST_RX_AMPDU;
1987 0 : }
1988 :
1989 : /*
1990 : * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1991 : * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1992 : */
1993 : void
1994 0 : iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1995 : struct iwn_rx_data *data)
1996 : {
1997 0 : struct iwn_ops *ops = &sc->ops;
1998 0 : struct ieee80211com *ic = &sc->sc_ic;
1999 0 : struct ifnet *ifp = &ic->ic_if;
2000 0 : struct iwn_rx_ring *ring = &sc->rxq;
2001 : struct ieee80211_frame *wh;
2002 0 : struct ieee80211_rxinfo rxi;
2003 : struct ieee80211_node *ni;
2004 : struct ieee80211_channel *bss_chan = NULL;
2005 : struct mbuf *m, *m1;
2006 : struct iwn_rx_stat *stat;
2007 : caddr_t head;
2008 : uint32_t flags;
2009 : int error, len, rssi;
2010 : uint16_t chan;
2011 :
2012 0 : if (desc->type == IWN_MPDU_RX_DONE) {
2013 : /* Check for prior RX_PHY notification. */
2014 0 : if (!sc->last_rx_valid) {
2015 : DPRINTF(("missing RX_PHY\n"));
2016 0 : return;
2017 : }
2018 0 : sc->last_rx_valid &= ~IWN_LAST_RX_VALID;
2019 0 : stat = &sc->last_rx_stat;
2020 0 : if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) &&
2021 0 : (stat->flags & htole16(IWN_STAT_FLAG_AGG)) == 0) {
2022 : DPRINTF(("missing RX_PHY (expecting A-MPDU)\n"));
2023 0 : return;
2024 : }
2025 0 : if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) == 0 &&
2026 0 : (stat->flags & htole16(IWN_STAT_FLAG_AGG))) {
2027 : DPRINTF(("missing RX_PHY (unexpected A-MPDU)\n"));
2028 0 : return;
2029 : }
2030 : } else
2031 0 : stat = (struct iwn_rx_stat *)(desc + 1);
2032 :
2033 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2034 : BUS_DMASYNC_POSTREAD);
2035 :
2036 0 : if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2037 0 : printf("%s: invalid RX statistic header\n",
2038 0 : sc->sc_dev.dv_xname);
2039 0 : return;
2040 : }
2041 0 : if (desc->type == IWN_MPDU_RX_DONE) {
2042 0 : struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2043 0 : head = (caddr_t)(mpdu + 1);
2044 0 : len = letoh16(mpdu->len);
2045 0 : } else {
2046 0 : head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2047 0 : len = letoh16(stat->len);
2048 : }
2049 :
2050 0 : flags = letoh32(*(uint32_t *)(head + len));
2051 :
2052 : /* Discard frames with a bad FCS early. */
2053 0 : if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2054 : DPRINTFN(2, ("RX flags error %x\n", flags));
2055 0 : ifp->if_ierrors++;
2056 0 : return;
2057 : }
2058 : /* Discard frames that are too short. */
2059 0 : if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2060 : /* Allow control frames in monitor mode. */
2061 0 : if (len < sizeof (struct ieee80211_frame_cts)) {
2062 : DPRINTF(("frame too short: %d\n", len));
2063 0 : ic->ic_stats.is_rx_tooshort++;
2064 0 : ifp->if_ierrors++;
2065 0 : return;
2066 : }
2067 0 : } else if (len < sizeof (*wh)) {
2068 : DPRINTF(("frame too short: %d\n", len));
2069 0 : ic->ic_stats.is_rx_tooshort++;
2070 0 : ifp->if_ierrors++;
2071 0 : return;
2072 : }
2073 :
2074 0 : m1 = MCLGETI(NULL, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2075 0 : if (m1 == NULL) {
2076 0 : ic->ic_stats.is_rx_nombuf++;
2077 0 : ifp->if_ierrors++;
2078 0 : return;
2079 : }
2080 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
2081 :
2082 0 : error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2083 : IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2084 0 : if (error != 0) {
2085 0 : m_freem(m1);
2086 :
2087 : /* Try to reload the old mbuf. */
2088 0 : error = bus_dmamap_load(sc->sc_dmat, data->map,
2089 : mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2090 : BUS_DMA_NOWAIT | BUS_DMA_READ);
2091 0 : if (error != 0) {
2092 0 : panic("%s: could not load old RX mbuf",
2093 0 : sc->sc_dev.dv_xname);
2094 : }
2095 : /* Physical address may have changed. */
2096 0 : ring->desc[ring->cur] =
2097 0 : htole32(data->map->dm_segs[0].ds_addr >> 8);
2098 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2099 : ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2100 : BUS_DMASYNC_PREWRITE);
2101 0 : ifp->if_ierrors++;
2102 0 : return;
2103 : }
2104 :
2105 0 : m = data->m;
2106 0 : data->m = m1;
2107 : /* Update RX descriptor. */
2108 0 : ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2109 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2110 : ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2111 : BUS_DMASYNC_PREWRITE);
2112 :
2113 : /* Finalize mbuf. */
2114 0 : m->m_data = head;
2115 0 : m->m_pkthdr.len = m->m_len = len;
2116 :
2117 : /*
2118 : * Grab a reference to the source node. Note that control frames are
2119 : * shorter than struct ieee80211_frame but ieee80211_find_rxnode()
2120 : * is being careful about control frames.
2121 : */
2122 0 : wh = mtod(m, struct ieee80211_frame *);
2123 0 : if (len < sizeof (*wh) &&
2124 0 : (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2125 0 : ic->ic_stats.is_rx_tooshort++;
2126 0 : ifp->if_ierrors++;
2127 0 : m_freem(m);
2128 0 : return;
2129 : }
2130 0 : ni = ieee80211_find_rxnode(ic, wh);
2131 :
2132 0 : rxi.rxi_flags = 0;
2133 0 : if (((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL)
2134 0 : && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2135 0 : !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2136 0 : (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
2137 0 : ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
2138 0 : if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) {
2139 0 : ic->ic_stats.is_ccmp_dec_errs++;
2140 0 : ifp->if_ierrors++;
2141 0 : m_freem(m);
2142 0 : return;
2143 : }
2144 : /* Check whether decryption was successful or not. */
2145 0 : if ((desc->type == IWN_MPDU_RX_DONE &&
2146 0 : (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) !=
2147 0 : (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) ||
2148 0 : (desc->type != IWN_MPDU_RX_DONE &&
2149 0 : (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) {
2150 : DPRINTF(("CCMP decryption failed 0x%x\n", flags));
2151 0 : ic->ic_stats.is_ccmp_dec_errs++;
2152 0 : ifp->if_ierrors++;
2153 0 : m_freem(m);
2154 0 : return;
2155 : }
2156 0 : if (iwn_ccmp_decap(sc, m, ni) != 0) {
2157 0 : ifp->if_ierrors++;
2158 0 : m_freem(m);
2159 0 : return;
2160 : }
2161 0 : rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
2162 0 : }
2163 :
2164 0 : rssi = ops->get_rssi(stat);
2165 :
2166 0 : chan = stat->chan;
2167 0 : if (chan > IEEE80211_CHAN_MAX)
2168 : chan = IEEE80211_CHAN_MAX;
2169 :
2170 0 : if (ni == ic->ic_bss) {
2171 0 : bss_chan = ni->ni_chan;
2172 : /* Fix current channel. */
2173 0 : ni->ni_chan = &ic->ic_channels[chan];
2174 0 : }
2175 :
2176 : #if NBPFILTER > 0
2177 0 : if (sc->sc_drvbpf != NULL) {
2178 0 : struct mbuf mb;
2179 0 : struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2180 : uint16_t chan_flags;
2181 :
2182 0 : tap->wr_flags = 0;
2183 0 : if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2184 0 : tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2185 0 : tap->wr_chan_freq = htole16(ic->ic_channels[chan].ic_freq);
2186 0 : chan_flags = ic->ic_channels[chan].ic_flags;
2187 0 : if (ic->ic_curmode != IEEE80211_MODE_11N)
2188 0 : chan_flags &= ~IEEE80211_CHAN_HT;
2189 0 : tap->wr_chan_flags = htole16(chan_flags);
2190 0 : tap->wr_dbm_antsignal = (int8_t)rssi;
2191 0 : tap->wr_dbm_antnoise = (int8_t)sc->noise;
2192 0 : tap->wr_tsft = stat->tstamp;
2193 0 : if (stat->rflags & IWN_RFLAG_MCS) {
2194 0 : tap->wr_rate = (0x80 | stat->rate); /* HT MCS index */
2195 0 : } else {
2196 0 : switch (stat->rate) {
2197 : /* CCK rates. */
2198 0 : case 10: tap->wr_rate = 2; break;
2199 0 : case 20: tap->wr_rate = 4; break;
2200 0 : case 55: tap->wr_rate = 11; break;
2201 0 : case 110: tap->wr_rate = 22; break;
2202 : /* OFDM rates. */
2203 0 : case 0xd: tap->wr_rate = 12; break;
2204 0 : case 0xf: tap->wr_rate = 18; break;
2205 0 : case 0x5: tap->wr_rate = 24; break;
2206 0 : case 0x7: tap->wr_rate = 36; break;
2207 0 : case 0x9: tap->wr_rate = 48; break;
2208 0 : case 0xb: tap->wr_rate = 72; break;
2209 0 : case 0x1: tap->wr_rate = 96; break;
2210 0 : case 0x3: tap->wr_rate = 108; break;
2211 : /* Unknown rate: should not happen. */
2212 0 : default: tap->wr_rate = 0;
2213 0 : }
2214 : }
2215 :
2216 0 : mb.m_data = (caddr_t)tap;
2217 0 : mb.m_len = sc->sc_rxtap_len;
2218 0 : mb.m_next = m;
2219 0 : mb.m_nextpkt = NULL;
2220 0 : mb.m_type = 0;
2221 0 : mb.m_flags = 0;
2222 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
2223 0 : }
2224 : #endif
2225 :
2226 : /* Send the frame to the 802.11 layer. */
2227 0 : rxi.rxi_rssi = rssi;
2228 0 : rxi.rxi_tstamp = 0; /* unused */
2229 0 : ieee80211_input(ifp, m, ni, &rxi);
2230 :
2231 : /* Restore BSS channel. */
2232 0 : if (ni == ic->ic_bss)
2233 0 : ni->ni_chan = bss_chan;
2234 :
2235 : /* Node is no longer needed. */
2236 0 : ieee80211_release_node(ic, ni);
2237 0 : }
2238 :
2239 : /* Process an incoming Compressed BlockAck. */
2240 : void
2241 0 : iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2242 : struct iwn_rx_data *data)
2243 : {
2244 0 : struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2245 : struct iwn_tx_ring *txq;
2246 :
2247 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2248 : BUS_DMASYNC_POSTREAD);
2249 :
2250 0 : txq = &sc->txq[letoh16(ba->qid)];
2251 : /* XXX TBD */
2252 0 : }
2253 :
2254 : /*
2255 : * Process a CALIBRATION_RESULT notification sent by the initialization
2256 : * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2257 : */
2258 : void
2259 0 : iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2260 : struct iwn_rx_data *data)
2261 : {
2262 0 : struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2263 : int len, idx = -1;
2264 :
2265 : /* Runtime firmware should not send such a notification. */
2266 0 : if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2267 0 : return;
2268 :
2269 0 : len = (letoh32(desc->len) & 0x3fff) - 4;
2270 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2271 : BUS_DMASYNC_POSTREAD);
2272 :
2273 0 : switch (calib->code) {
2274 : case IWN5000_PHY_CALIB_DC:
2275 0 : if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2276 0 : sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2277 0 : sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2278 0 : sc->hw_type == IWN_HW_REV_TYPE_135 ||
2279 0 : sc->hw_type == IWN_HW_REV_TYPE_105)
2280 0 : idx = 0;
2281 : break;
2282 : case IWN5000_PHY_CALIB_LO:
2283 : idx = 1;
2284 0 : break;
2285 : case IWN5000_PHY_CALIB_TX_IQ:
2286 : idx = 2;
2287 0 : break;
2288 : case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2289 0 : if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2290 0 : sc->hw_type != IWN_HW_REV_TYPE_5150)
2291 0 : idx = 3;
2292 : break;
2293 : case IWN5000_PHY_CALIB_BASE_BAND:
2294 : idx = 4;
2295 0 : break;
2296 : }
2297 0 : if (idx == -1) /* Ignore other results. */
2298 0 : return;
2299 :
2300 : /* Save calibration result. */
2301 0 : if (sc->calibcmd[idx].buf != NULL)
2302 0 : free(sc->calibcmd[idx].buf, M_DEVBUF, 0);
2303 0 : sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2304 0 : if (sc->calibcmd[idx].buf == NULL) {
2305 : DPRINTF(("not enough memory for calibration result %d\n",
2306 : calib->code));
2307 0 : return;
2308 : }
2309 : DPRINTF(("saving calibration result code=%d len=%d\n",
2310 : calib->code, len));
2311 0 : sc->calibcmd[idx].len = len;
2312 0 : memcpy(sc->calibcmd[idx].buf, calib, len);
2313 0 : }
2314 :
2315 : /*
2316 : * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2317 : * The latter is sent by the firmware after each received beacon.
2318 : */
2319 : void
2320 0 : iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2321 : struct iwn_rx_data *data)
2322 : {
2323 0 : struct iwn_ops *ops = &sc->ops;
2324 0 : struct ieee80211com *ic = &sc->sc_ic;
2325 0 : struct iwn_calib_state *calib = &sc->calib;
2326 0 : struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2327 : int temp;
2328 :
2329 : /* Ignore statistics received during a scan. */
2330 0 : if (ic->ic_state != IEEE80211_S_RUN)
2331 0 : return;
2332 :
2333 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2334 : sizeof (*stats), BUS_DMASYNC_POSTREAD);
2335 :
2336 : DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2337 0 : sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2338 :
2339 : /* Test if temperature has changed. */
2340 0 : if (stats->general.temp != sc->rawtemp) {
2341 : /* Convert "raw" temperature to degC. */
2342 0 : sc->rawtemp = stats->general.temp;
2343 0 : temp = ops->get_temperature(sc);
2344 : DPRINTFN(2, ("temperature=%dC\n", temp));
2345 :
2346 : /* Update TX power if need be (4965AGN only). */
2347 0 : if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2348 0 : iwn4965_power_calibration(sc, temp);
2349 : }
2350 :
2351 0 : if (desc->type != IWN_BEACON_STATISTICS)
2352 0 : return; /* Reply to a statistics request. */
2353 :
2354 0 : sc->noise = iwn_get_noise(&stats->rx.general);
2355 :
2356 : /* Test that RSSI and noise are present in stats report. */
2357 0 : if (letoh32(stats->rx.general.flags) != 1) {
2358 : DPRINTF(("received statistics without RSSI\n"));
2359 0 : return;
2360 : }
2361 :
2362 : /*
2363 : * XXX Differential gain calibration makes the 6005 firmware
2364 : * crap out, so skip it for now. This effectively disables
2365 : * sensitivity tuning as well.
2366 : */
2367 0 : if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2368 0 : return;
2369 :
2370 0 : if (calib->state == IWN_CALIB_STATE_ASSOC)
2371 0 : iwn_collect_noise(sc, &stats->rx.general);
2372 0 : else if (calib->state == IWN_CALIB_STATE_RUN)
2373 0 : iwn_tune_sensitivity(sc, &stats->rx);
2374 0 : }
2375 :
2376 : /*
2377 : * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2378 : * and 5000 adapters have different incompatible TX status formats.
2379 : */
2380 : void
2381 0 : iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2382 : struct iwn_rx_data *data)
2383 : {
2384 0 : struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2385 0 : struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2386 0 : struct iwn_tx_data *txdata = &ring->data[desc->idx];
2387 : /* XXX 4965 does not report byte count */
2388 0 : uint16_t len = txdata->totlen + IEEE80211_CRC_LEN;
2389 :
2390 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2391 : sizeof (*stat), BUS_DMASYNC_POSTREAD);
2392 0 : iwn_tx_done(sc, desc, stat->nframes, stat->ackfailcnt,
2393 0 : letoh32(stat->status) & 0xff, len);
2394 0 : }
2395 :
2396 : void
2397 0 : iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2398 : struct iwn_rx_data *data)
2399 : {
2400 0 : struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2401 :
2402 : #ifdef notyet
2403 : /* Reset TX scheduler slot. */
2404 : iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2405 : #endif
2406 :
2407 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2408 : sizeof (*stat), BUS_DMASYNC_POSTREAD);
2409 0 : iwn_tx_done(sc, desc, stat->nframes, stat->ackfailcnt,
2410 0 : letoh16(stat->status) & 0xff, letoh16(stat->len));
2411 0 : }
2412 :
2413 : /*
2414 : * Adapter-independent backend for TX_DONE firmware notifications.
2415 : */
2416 : void
2417 0 : iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, uint8_t nframes,
2418 : uint8_t ackfailcnt, uint8_t status, uint16_t len)
2419 : {
2420 0 : struct ieee80211com *ic = &sc->sc_ic;
2421 0 : struct ifnet *ifp = &ic->ic_if;
2422 0 : struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2423 0 : struct iwn_tx_data *data = &ring->data[desc->idx];
2424 0 : struct iwn_node *wn = (void *)data->ni;
2425 0 : int txfail = (status != 1 && status != 2);
2426 :
2427 0 : KASSERT(nframes == 1); /* We don't support aggregation yet. */
2428 :
2429 : /* Update rate control statistics. */
2430 0 : if (data->ni->ni_flags & IEEE80211_NODE_HT) {
2431 0 : wn->mn.frames += nframes;
2432 0 : wn->mn.ampdu_size = len;
2433 0 : wn->mn.agglen = nframes;
2434 0 : if (ackfailcnt > 0)
2435 0 : wn->mn.retries += ackfailcnt;
2436 0 : if (txfail)
2437 0 : wn->mn.txfail += nframes;
2438 0 : if (ic->ic_state == IEEE80211_S_RUN)
2439 0 : ieee80211_mira_choose(&wn->mn, ic, data->ni);
2440 : } else {
2441 0 : wn->amn.amn_txcnt++;
2442 0 : if (ackfailcnt > 0)
2443 0 : wn->amn.amn_retrycnt++;
2444 : }
2445 0 : if (txfail) {
2446 : DPRINTF(("%s: status=0x%x\n", __func__, status));
2447 0 : ifp->if_oerrors++;
2448 0 : }
2449 :
2450 : /* Unmap and free mbuf. */
2451 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2452 : BUS_DMASYNC_POSTWRITE);
2453 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
2454 0 : m_freem(data->m);
2455 0 : data->m = NULL;
2456 0 : ieee80211_release_node(ic, data->ni);
2457 0 : data->ni = NULL;
2458 :
2459 0 : sc->sc_tx_timer = 0;
2460 0 : if (--ring->queued < IWN_TX_RING_LOMARK) {
2461 0 : sc->qfullmsk &= ~(1 << ring->qid);
2462 0 : if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
2463 0 : ifq_clr_oactive(&ifp->if_snd);
2464 0 : (*ifp->if_start)(ifp);
2465 0 : }
2466 : }
2467 0 : }
2468 :
2469 : /*
2470 : * Process a "command done" firmware notification. This is where we wakeup
2471 : * processes waiting for a synchronous command completion.
2472 : */
2473 : void
2474 0 : iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2475 : {
2476 0 : struct iwn_tx_ring *ring = &sc->txq[4];
2477 : struct iwn_tx_data *data;
2478 :
2479 0 : if ((desc->qid & 0xf) != 4)
2480 0 : return; /* Not a command ack. */
2481 :
2482 0 : data = &ring->data[desc->idx];
2483 :
2484 : /* If the command was mapped in an mbuf, free it. */
2485 0 : if (data->m != NULL) {
2486 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2487 : data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2488 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
2489 0 : m_freem(data->m);
2490 0 : data->m = NULL;
2491 0 : }
2492 0 : wakeup(&ring->desc[desc->idx]);
2493 0 : }
2494 :
2495 : /*
2496 : * Process an INT_FH_RX or INT_SW_RX interrupt.
2497 : */
2498 : void
2499 0 : iwn_notif_intr(struct iwn_softc *sc)
2500 : {
2501 0 : struct iwn_ops *ops = &sc->ops;
2502 0 : struct ieee80211com *ic = &sc->sc_ic;
2503 0 : struct ifnet *ifp = &ic->ic_if;
2504 : uint16_t hw;
2505 :
2506 0 : bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2507 : 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2508 :
2509 0 : hw = letoh16(sc->rxq.stat->closed_count) & 0xfff;
2510 0 : while (sc->rxq.cur != hw) {
2511 0 : struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2512 : struct iwn_rx_desc *desc;
2513 :
2514 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2515 : BUS_DMASYNC_POSTREAD);
2516 0 : desc = mtod(data->m, struct iwn_rx_desc *);
2517 :
2518 : DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2519 : desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2520 :
2521 0 : if (!(desc->qid & 0x80)) /* Reply to a command. */
2522 0 : iwn_cmd_done(sc, desc);
2523 :
2524 0 : switch (desc->type) {
2525 : case IWN_RX_PHY:
2526 0 : iwn_rx_phy(sc, desc, data);
2527 0 : break;
2528 :
2529 : case IWN_RX_DONE: /* 4965AGN only. */
2530 : case IWN_MPDU_RX_DONE:
2531 : /* An 802.11 frame has been received. */
2532 0 : iwn_rx_done(sc, desc, data);
2533 0 : break;
2534 : case IWN_RX_COMPRESSED_BA:
2535 : /* A Compressed BlockAck has been received. */
2536 0 : iwn_rx_compressed_ba(sc, desc, data);
2537 0 : break;
2538 : case IWN_TX_DONE:
2539 : /* An 802.11 frame has been transmitted. */
2540 0 : ops->tx_done(sc, desc, data);
2541 0 : break;
2542 :
2543 : case IWN_RX_STATISTICS:
2544 : case IWN_BEACON_STATISTICS:
2545 0 : iwn_rx_statistics(sc, desc, data);
2546 0 : break;
2547 :
2548 : case IWN_BEACON_MISSED:
2549 : {
2550 : struct iwn_beacon_missed *miss =
2551 0 : (struct iwn_beacon_missed *)(desc + 1);
2552 : uint32_t missed;
2553 :
2554 0 : if ((ic->ic_opmode != IEEE80211_M_STA) ||
2555 0 : (ic->ic_state != IEEE80211_S_RUN))
2556 0 : break;
2557 :
2558 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2559 : sizeof (*miss), BUS_DMASYNC_POSTREAD);
2560 0 : missed = letoh32(miss->consecutive);
2561 :
2562 : /*
2563 : * If more than 5 consecutive beacons are missed,
2564 : * reinitialize the sensitivity state machine.
2565 : */
2566 0 : if (missed > 5)
2567 0 : (void)iwn_init_sensitivity(sc);
2568 :
2569 : /*
2570 : * Rather than go directly to scan state, try to send a
2571 : * directed probe request first. If that fails then the
2572 : * state machine will drop us into scanning after timing
2573 : * out waiting for a probe response.
2574 : */
2575 0 : if (missed > ic->ic_bmissthres && !ic->ic_mgt_timer)
2576 0 : IEEE80211_SEND_MGMT(ic, ic->ic_bss,
2577 : IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0);
2578 0 : break;
2579 : }
2580 : case IWN_UC_READY:
2581 : {
2582 : struct iwn_ucode_info *uc =
2583 0 : (struct iwn_ucode_info *)(desc + 1);
2584 :
2585 : /* The microcontroller is ready. */
2586 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2587 : sizeof (*uc), BUS_DMASYNC_POSTREAD);
2588 : DPRINTF(("microcode alive notification version=%d.%d "
2589 : "subtype=%x alive=%x\n", uc->major, uc->minor,
2590 : uc->subtype, letoh32(uc->valid)));
2591 :
2592 0 : if (letoh32(uc->valid) != 1) {
2593 0 : printf("%s: microcontroller initialization "
2594 0 : "failed\n", sc->sc_dev.dv_xname);
2595 0 : break;
2596 : }
2597 0 : if (uc->subtype == IWN_UCODE_INIT) {
2598 : /* Save microcontroller report. */
2599 0 : memcpy(&sc->ucode_info, uc, sizeof (*uc));
2600 0 : }
2601 : /* Save the address of the error log in SRAM. */
2602 0 : sc->errptr = letoh32(uc->errptr);
2603 0 : break;
2604 : }
2605 : case IWN_STATE_CHANGED:
2606 : {
2607 0 : uint32_t *status = (uint32_t *)(desc + 1);
2608 :
2609 : /* Enabled/disabled notification. */
2610 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2611 : sizeof (*status), BUS_DMASYNC_POSTREAD);
2612 : DPRINTF(("state changed to %x\n", letoh32(*status)));
2613 :
2614 0 : if (letoh32(*status) & 1) {
2615 : /* The radio button has to be pushed. */
2616 0 : printf("%s: Radio transmitter is off\n",
2617 0 : sc->sc_dev.dv_xname);
2618 : /* Turn the interface down. */
2619 0 : iwn_stop(ifp, 1);
2620 0 : return; /* No further processing. */
2621 : }
2622 0 : break;
2623 : }
2624 : case IWN_START_SCAN:
2625 : {
2626 : struct iwn_start_scan *scan =
2627 0 : (struct iwn_start_scan *)(desc + 1);
2628 :
2629 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2630 : sizeof (*scan), BUS_DMASYNC_POSTREAD);
2631 : DPRINTFN(2, ("scanning channel %d status %x\n",
2632 : scan->chan, letoh32(scan->status)));
2633 :
2634 0 : if (sc->sc_flags & IWN_FLAG_BGSCAN)
2635 0 : break;
2636 :
2637 : /* Fix current channel. */
2638 0 : ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2639 0 : break;
2640 : }
2641 : case IWN_STOP_SCAN:
2642 : {
2643 : struct iwn_stop_scan *scan =
2644 0 : (struct iwn_stop_scan *)(desc + 1);
2645 :
2646 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2647 : sizeof (*scan), BUS_DMASYNC_POSTREAD);
2648 : DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2649 : scan->nchan, scan->status, scan->chan));
2650 :
2651 0 : if (scan->status == 1 && scan->chan <= 14 &&
2652 0 : (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2653 : int error;
2654 : /*
2655 : * We just finished scanning 2GHz channels,
2656 : * start scanning 5GHz ones.
2657 : */
2658 0 : error = iwn_scan(sc, IEEE80211_CHAN_5GHZ,
2659 0 : (sc->sc_flags & IWN_FLAG_BGSCAN) ? 1 : 0);
2660 0 : if (error == 0)
2661 0 : break;
2662 0 : }
2663 0 : sc->sc_flags &= ~IWN_FLAG_SCANNING;
2664 0 : sc->sc_flags &= ~IWN_FLAG_BGSCAN;
2665 0 : ieee80211_end_scan(ifp);
2666 0 : break;
2667 : }
2668 : case IWN5000_CALIBRATION_RESULT:
2669 0 : iwn5000_rx_calib_results(sc, desc, data);
2670 0 : break;
2671 :
2672 : case IWN5000_CALIBRATION_DONE:
2673 0 : sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2674 0 : wakeup(sc);
2675 0 : break;
2676 : }
2677 :
2678 0 : sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2679 0 : }
2680 :
2681 : /* Tell the firmware what we have processed. */
2682 0 : hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2683 0 : IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2684 0 : }
2685 :
2686 : /*
2687 : * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2688 : * from power-down sleep mode.
2689 : */
2690 : void
2691 0 : iwn_wakeup_intr(struct iwn_softc *sc)
2692 : {
2693 : int qid;
2694 :
2695 : DPRINTF(("ucode wakeup from power-down sleep\n"));
2696 :
2697 : /* Wakeup RX and TX rings. */
2698 0 : IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2699 0 : for (qid = 0; qid < sc->ntxqs; qid++) {
2700 0 : struct iwn_tx_ring *ring = &sc->txq[qid];
2701 0 : IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2702 : }
2703 0 : }
2704 :
2705 : #ifdef IWN_DEBUG
2706 : /*
2707 : * Dump the error log of the firmware when a firmware panic occurs. Although
2708 : * we can't debug the firmware because it is neither open source nor free, it
2709 : * can help us to identify certain classes of problems.
2710 : */
2711 : void
2712 : iwn_fatal_intr(struct iwn_softc *sc)
2713 : {
2714 : struct iwn_fw_dump dump;
2715 : int i;
2716 :
2717 : /* Check that the error log address is valid. */
2718 : if (sc->errptr < IWN_FW_DATA_BASE ||
2719 : sc->errptr + sizeof (dump) >
2720 : IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2721 : printf("%s: bad firmware error log address 0x%08x\n",
2722 : sc->sc_dev.dv_xname, sc->errptr);
2723 : return;
2724 : }
2725 : if (iwn_nic_lock(sc) != 0) {
2726 : printf("%s: could not read firmware error log\n",
2727 : sc->sc_dev.dv_xname);
2728 : return;
2729 : }
2730 : /* Read firmware error log from SRAM. */
2731 : iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2732 : sizeof (dump) / sizeof (uint32_t));
2733 : iwn_nic_unlock(sc);
2734 :
2735 : if (dump.valid == 0) {
2736 : printf("%s: firmware error log is empty\n",
2737 : sc->sc_dev.dv_xname);
2738 : return;
2739 : }
2740 : printf("firmware error log:\n");
2741 : printf(" error type = \"%s\" (0x%08X)\n",
2742 : (dump.id < nitems(iwn_fw_errmsg)) ?
2743 : iwn_fw_errmsg[dump.id] : "UNKNOWN",
2744 : dump.id);
2745 : printf(" program counter = 0x%08X\n", dump.pc);
2746 : printf(" source line = 0x%08X\n", dump.src_line);
2747 : printf(" error data = 0x%08X%08X\n",
2748 : dump.error_data[0], dump.error_data[1]);
2749 : printf(" branch link = 0x%08X%08X\n",
2750 : dump.branch_link[0], dump.branch_link[1]);
2751 : printf(" interrupt link = 0x%08X%08X\n",
2752 : dump.interrupt_link[0], dump.interrupt_link[1]);
2753 : printf(" time = %u\n", dump.time[0]);
2754 :
2755 : /* Dump driver status (TX and RX rings) while we're here. */
2756 : printf("driver status:\n");
2757 : for (i = 0; i < sc->ntxqs; i++) {
2758 : struct iwn_tx_ring *ring = &sc->txq[i];
2759 : printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2760 : i, ring->qid, ring->cur, ring->queued);
2761 : }
2762 : printf(" rx ring: cur=%d\n", sc->rxq.cur);
2763 : printf(" 802.11 state %d\n", sc->sc_ic.ic_state);
2764 : }
2765 : #endif
2766 :
2767 : int
2768 0 : iwn_intr(void *arg)
2769 : {
2770 0 : struct iwn_softc *sc = arg;
2771 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
2772 : uint32_t r1, r2, tmp;
2773 :
2774 : /* Disable interrupts. */
2775 0 : IWN_WRITE(sc, IWN_INT_MASK, 0);
2776 :
2777 : /* Read interrupts from ICT (fast) or from registers (slow). */
2778 0 : if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2779 : tmp = 0;
2780 0 : while (sc->ict[sc->ict_cur] != 0) {
2781 0 : tmp |= sc->ict[sc->ict_cur];
2782 0 : sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2783 0 : sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2784 : }
2785 : tmp = letoh32(tmp);
2786 0 : if (tmp == 0xffffffff) /* Shouldn't happen. */
2787 0 : tmp = 0;
2788 0 : else if (tmp & 0xc0000) /* Workaround a HW bug. */
2789 0 : tmp |= 0x8000;
2790 0 : r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2791 : r2 = 0; /* Unused. */
2792 0 : } else {
2793 0 : r1 = IWN_READ(sc, IWN_INT);
2794 0 : if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2795 0 : return 0; /* Hardware gone! */
2796 0 : r2 = IWN_READ(sc, IWN_FH_INT);
2797 : }
2798 0 : if (r1 == 0 && r2 == 0) {
2799 0 : if (ifp->if_flags & IFF_UP)
2800 0 : IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2801 0 : return 0; /* Interrupt not for us. */
2802 : }
2803 :
2804 : /* Acknowledge interrupts. */
2805 0 : IWN_WRITE(sc, IWN_INT, r1);
2806 0 : if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2807 0 : IWN_WRITE(sc, IWN_FH_INT, r2);
2808 :
2809 0 : if (r1 & IWN_INT_RF_TOGGLED) {
2810 0 : tmp = IWN_READ(sc, IWN_GP_CNTRL);
2811 0 : printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname,
2812 0 : (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2813 0 : }
2814 0 : if (r1 & IWN_INT_CT_REACHED) {
2815 0 : printf("%s: critical temperature reached!\n",
2816 0 : sc->sc_dev.dv_xname);
2817 0 : }
2818 0 : if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2819 0 : printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
2820 :
2821 : /* Force a complete recalibration on next init. */
2822 0 : sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2823 :
2824 : /* Dump firmware error log and stop. */
2825 : #ifdef IWN_DEBUG
2826 : iwn_fatal_intr(sc);
2827 : #endif
2828 0 : iwn_stop(ifp, 1);
2829 0 : task_add(systq, &sc->init_task);
2830 0 : return 1;
2831 : }
2832 0 : if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2833 0 : (r2 & IWN_FH_INT_RX)) {
2834 0 : if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2835 0 : if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2836 0 : IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2837 0 : IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2838 : IWN_INT_PERIODIC_DIS);
2839 0 : iwn_notif_intr(sc);
2840 0 : if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2841 0 : IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2842 : IWN_INT_PERIODIC_ENA);
2843 0 : }
2844 : } else
2845 0 : iwn_notif_intr(sc);
2846 : }
2847 :
2848 0 : if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2849 0 : if (sc->sc_flags & IWN_FLAG_USE_ICT)
2850 0 : IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2851 0 : wakeup(sc); /* FH DMA transfer completed. */
2852 0 : }
2853 :
2854 0 : if (r1 & IWN_INT_ALIVE)
2855 0 : wakeup(sc); /* Firmware is alive. */
2856 :
2857 0 : if (r1 & IWN_INT_WAKEUP)
2858 0 : iwn_wakeup_intr(sc);
2859 :
2860 : /* Re-enable interrupts. */
2861 0 : if (ifp->if_flags & IFF_UP)
2862 0 : IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2863 :
2864 0 : return 1;
2865 0 : }
2866 :
2867 : /*
2868 : * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2869 : * 5000 adapters use a slightly different format).
2870 : */
2871 : void
2872 0 : iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2873 : uint16_t len)
2874 : {
2875 0 : uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2876 :
2877 0 : *w = htole16(len + 8);
2878 0 : bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2879 : (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
2880 : BUS_DMASYNC_PREWRITE);
2881 0 : if (idx < IWN_SCHED_WINSZ) {
2882 0 : *(w + IWN_TX_RING_COUNT) = *w;
2883 0 : bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2884 : (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
2885 : sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2886 0 : }
2887 0 : }
2888 :
2889 : void
2890 0 : iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2891 : uint16_t len)
2892 : {
2893 0 : uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2894 :
2895 0 : *w = htole16(id << 12 | (len + 8));
2896 0 : bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2897 : (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
2898 : BUS_DMASYNC_PREWRITE);
2899 0 : if (idx < IWN_SCHED_WINSZ) {
2900 0 : *(w + IWN_TX_RING_COUNT) = *w;
2901 0 : bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2902 : (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
2903 : sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2904 0 : }
2905 0 : }
2906 :
2907 : void
2908 0 : iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2909 : {
2910 0 : uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2911 :
2912 0 : *w = (*w & htole16(0xf000)) | htole16(1);
2913 0 : bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2914 : (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
2915 : BUS_DMASYNC_PREWRITE);
2916 0 : if (idx < IWN_SCHED_WINSZ) {
2917 0 : *(w + IWN_TX_RING_COUNT) = *w;
2918 0 : bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2919 : (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
2920 : sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2921 0 : }
2922 0 : }
2923 :
2924 : int
2925 0 : iwn_rval2ridx(int rval)
2926 : {
2927 : int ridx;
2928 :
2929 0 : for (ridx = 0; ridx < nitems(iwn_rates); ridx++) {
2930 0 : if (rval == iwn_rates[ridx].rate)
2931 : break;
2932 : }
2933 :
2934 0 : return ridx;
2935 : }
2936 :
2937 : int
2938 0 : iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2939 : {
2940 0 : struct ieee80211com *ic = &sc->sc_ic;
2941 0 : struct iwn_node *wn = (void *)ni;
2942 : struct iwn_tx_ring *ring;
2943 : struct iwn_tx_desc *desc;
2944 : struct iwn_tx_data *data;
2945 : struct iwn_tx_cmd *cmd;
2946 : struct iwn_cmd_data *tx;
2947 : const struct iwn_rate *rinfo;
2948 : struct ieee80211_frame *wh;
2949 : struct ieee80211_key *k = NULL;
2950 : enum ieee80211_edca_ac ac;
2951 : uint32_t flags;
2952 : uint16_t qos;
2953 : u_int hdrlen;
2954 : bus_dma_segment_t *seg;
2955 : uint8_t *ivp, tid, ridx, txant, type;
2956 : int i, totlen, hasqos, error, pad;
2957 :
2958 0 : wh = mtod(m, struct ieee80211_frame *);
2959 0 : hdrlen = ieee80211_get_hdrlen(wh);
2960 0 : type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2961 :
2962 : /* Select EDCA Access Category and TX ring for this frame. */
2963 0 : if ((hasqos = ieee80211_has_qos(wh))) {
2964 0 : qos = ieee80211_get_qos(wh);
2965 0 : tid = qos & IEEE80211_QOS_TID;
2966 0 : ac = ieee80211_up_to_ac(ic, tid);
2967 0 : } else {
2968 : qos = 0;
2969 : tid = 0;
2970 : ac = EDCA_AC_BE;
2971 : }
2972 :
2973 0 : ring = &sc->txq[ac];
2974 0 : desc = &ring->desc[ring->cur];
2975 0 : data = &ring->data[ring->cur];
2976 :
2977 : /* Choose a TX rate index. */
2978 0 : if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2979 0 : type != IEEE80211_FC0_TYPE_DATA)
2980 0 : ridx = iwn_rval2ridx(ieee80211_min_basic_rate(ic));
2981 0 : else if (ic->ic_fixed_mcs != -1)
2982 0 : ridx = sc->fixed_ridx;
2983 0 : else if (ic->ic_fixed_rate != -1)
2984 0 : ridx = sc->fixed_ridx;
2985 : else {
2986 0 : if (ni->ni_flags & IEEE80211_NODE_HT)
2987 0 : ridx = iwn_mcs2ridx[ni->ni_txmcs];
2988 : else
2989 0 : ridx = wn->ridx[ni->ni_txrate];
2990 : }
2991 0 : rinfo = &iwn_rates[ridx];
2992 : #if NBPFILTER > 0
2993 0 : if (sc->sc_drvbpf != NULL) {
2994 0 : struct mbuf mb;
2995 0 : struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2996 : uint16_t chan_flags;
2997 :
2998 0 : tap->wt_flags = 0;
2999 0 : tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3000 0 : chan_flags = ni->ni_chan->ic_flags;
3001 0 : if (ic->ic_curmode != IEEE80211_MODE_11N)
3002 0 : chan_flags &= ~IEEE80211_CHAN_HT;
3003 0 : tap->wt_chan_flags = htole16(chan_flags);
3004 0 : if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3005 0 : !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3006 0 : type == IEEE80211_FC0_TYPE_DATA) {
3007 0 : tap->wt_rate = (0x80 | ni->ni_txmcs);
3008 0 : } else
3009 0 : tap->wt_rate = rinfo->rate;
3010 0 : tap->wt_hwqueue = ac;
3011 0 : if ((ic->ic_flags & IEEE80211_F_WEPON) &&
3012 0 : (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
3013 0 : tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3014 :
3015 0 : mb.m_data = (caddr_t)tap;
3016 0 : mb.m_len = sc->sc_txtap_len;
3017 0 : mb.m_next = m;
3018 0 : mb.m_nextpkt = NULL;
3019 0 : mb.m_type = 0;
3020 0 : mb.m_flags = 0;
3021 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
3022 0 : }
3023 : #endif
3024 :
3025 0 : totlen = m->m_pkthdr.len;
3026 :
3027 : /* Encrypt the frame if need be. */
3028 0 : if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3029 : /* Retrieve key for TX. */
3030 0 : k = ieee80211_get_txkey(ic, wh, ni);
3031 0 : if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
3032 : /* Do software encryption. */
3033 0 : if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
3034 0 : return ENOBUFS;
3035 : /* 802.11 header may have moved. */
3036 0 : wh = mtod(m, struct ieee80211_frame *);
3037 0 : totlen = m->m_pkthdr.len;
3038 :
3039 0 : } else /* HW appends CCMP MIC. */
3040 0 : totlen += IEEE80211_CCMP_HDRLEN;
3041 : }
3042 :
3043 0 : data->totlen = totlen;
3044 :
3045 : /* Prepare TX firmware command. */
3046 0 : cmd = &ring->cmd[ring->cur];
3047 0 : cmd->code = IWN_CMD_TX_DATA;
3048 0 : cmd->flags = 0;
3049 0 : cmd->qid = ring->qid;
3050 0 : cmd->idx = ring->cur;
3051 :
3052 0 : tx = (struct iwn_cmd_data *)cmd->data;
3053 : /* NB: No need to clear tx, all fields are reinitialized here. */
3054 0 : tx->scratch = 0; /* clear "scratch" area */
3055 :
3056 : flags = 0;
3057 0 : if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3058 : /* Unicast frame, check if an ACK is expected. */
3059 0 : if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
3060 : IEEE80211_QOS_ACK_POLICY_NOACK)
3061 0 : flags |= IWN_TX_NEED_ACK;
3062 : }
3063 0 : if ((wh->i_fc[0] &
3064 0 : (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3065 : (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3066 0 : flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
3067 :
3068 0 : if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3069 0 : flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
3070 :
3071 : /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3072 0 : if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3073 : /* NB: Group frames are sent using CCK in 802.11b/g/n (2GHz). */
3074 0 : if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3075 0 : flags |= IWN_TX_NEED_RTS;
3076 0 : } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3077 0 : ridx >= IWN_RIDX_OFDM6) {
3078 0 : if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3079 0 : flags |= IWN_TX_NEED_CTS;
3080 0 : else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3081 0 : flags |= IWN_TX_NEED_RTS;
3082 : }
3083 :
3084 0 : if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3085 0 : if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3086 : /* 5000 autoselects RTS/CTS or CTS-to-self. */
3087 0 : flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3088 0 : flags |= IWN_TX_NEED_PROTECTION;
3089 0 : } else
3090 0 : flags |= IWN_TX_FULL_TXOP;
3091 : }
3092 : }
3093 :
3094 0 : if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3095 0 : type != IEEE80211_FC0_TYPE_DATA)
3096 0 : tx->id = sc->broadcast_id;
3097 : else
3098 0 : tx->id = wn->id;
3099 :
3100 0 : if (type == IEEE80211_FC0_TYPE_MGT) {
3101 0 : uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3102 :
3103 : #ifndef IEEE80211_STA_ONLY
3104 : /* Tell HW to set timestamp in probe responses. */
3105 0 : if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3106 0 : flags |= IWN_TX_INSERT_TSTAMP;
3107 : #endif
3108 0 : if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3109 0 : subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3110 0 : tx->timeout = htole16(3);
3111 : else
3112 0 : tx->timeout = htole16(2);
3113 0 : } else
3114 0 : tx->timeout = htole16(0);
3115 :
3116 0 : if (hdrlen & 3) {
3117 : /* First segment length must be a multiple of 4. */
3118 0 : flags |= IWN_TX_NEED_PADDING;
3119 0 : pad = 4 - (hdrlen & 3);
3120 0 : } else
3121 : pad = 0;
3122 :
3123 0 : tx->len = htole16(totlen);
3124 0 : tx->tid = tid;
3125 0 : tx->rts_ntries = 60;
3126 0 : tx->data_ntries = 15;
3127 0 : tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3128 :
3129 0 : if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3130 0 : tx->id != sc->broadcast_id)
3131 0 : tx->plcp = rinfo->ht_plcp;
3132 : else
3133 0 : tx->plcp = rinfo->plcp;
3134 :
3135 0 : if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3136 0 : tx->id != sc->broadcast_id) {
3137 0 : tx->rflags = rinfo->ht_flags;
3138 0 : if (ni->ni_htcaps & IEEE80211_HTCAP_SGI20)
3139 0 : tx->rflags |= IWN_RFLAG_SGI;
3140 : }
3141 : else
3142 0 : tx->rflags = rinfo->flags;
3143 0 : if (tx->id == sc->broadcast_id) {
3144 : /* Group or management frame. */
3145 0 : tx->linkq = 0;
3146 : /* XXX Alternate between antenna A and B? */
3147 0 : txant = IWN_LSB(sc->txchainmask);
3148 0 : tx->rflags |= IWN_RFLAG_ANT(txant);
3149 0 : } else {
3150 0 : if (ni->ni_flags & IEEE80211_NODE_HT)
3151 0 : tx->linkq = 7 - ni->ni_txmcs; /* XXX revisit for MIMO */
3152 : else
3153 0 : tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3154 0 : flags |= IWN_TX_LINKQ; /* enable MRR */
3155 : }
3156 : /* Set physical address of "scratch area". */
3157 0 : tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3158 0 : tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3159 :
3160 : /* Copy 802.11 header in TX command. */
3161 0 : memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3162 :
3163 0 : if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
3164 : /* Trim 802.11 header and prepend CCMP IV. */
3165 0 : m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
3166 0 : ivp = mtod(m, uint8_t *);
3167 0 : k->k_tsc++;
3168 0 : ivp[0] = k->k_tsc;
3169 0 : ivp[1] = k->k_tsc >> 8;
3170 0 : ivp[2] = 0;
3171 0 : ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
3172 0 : ivp[4] = k->k_tsc >> 16;
3173 0 : ivp[5] = k->k_tsc >> 24;
3174 0 : ivp[6] = k->k_tsc >> 32;
3175 0 : ivp[7] = k->k_tsc >> 40;
3176 :
3177 0 : tx->security = IWN_CIPHER_CCMP;
3178 : /* XXX flags |= IWN_TX_AMPDU_CCMP; */
3179 0 : memcpy(tx->key, k->k_key, k->k_len);
3180 :
3181 : /* TX scheduler includes CCMP MIC len w/5000 Series. */
3182 0 : if (sc->hw_type != IWN_HW_REV_TYPE_4965)
3183 0 : totlen += IEEE80211_CCMP_MICLEN;
3184 : } else {
3185 : /* Trim 802.11 header. */
3186 0 : m_adj(m, hdrlen);
3187 0 : tx->security = 0;
3188 : }
3189 0 : tx->flags = htole32(flags);
3190 :
3191 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3192 : BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3193 0 : if (error != 0 && error != EFBIG) {
3194 0 : printf("%s: can't map mbuf (error %d)\n",
3195 0 : sc->sc_dev.dv_xname, error);
3196 0 : m_freem(m);
3197 0 : return error;
3198 : }
3199 0 : if (error != 0) {
3200 : /* Too many DMA segments, linearize mbuf. */
3201 0 : if (m_defrag(m, M_DONTWAIT)) {
3202 0 : m_freem(m);
3203 0 : return ENOBUFS;
3204 : }
3205 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3206 : BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3207 0 : if (error != 0) {
3208 0 : printf("%s: can't map mbuf (error %d)\n",
3209 0 : sc->sc_dev.dv_xname, error);
3210 0 : m_freem(m);
3211 0 : return error;
3212 : }
3213 : }
3214 :
3215 0 : data->m = m;
3216 0 : data->ni = ni;
3217 :
3218 : DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3219 : ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3220 :
3221 : /* Fill TX descriptor. */
3222 0 : desc->nsegs = 1 + data->map->dm_nsegs;
3223 : /* First DMA segment is used by the TX command. */
3224 0 : desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3225 0 : desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3226 : (4 + sizeof (*tx) + hdrlen + pad) << 4);
3227 : /* Other DMA segments are for data payload. */
3228 0 : seg = data->map->dm_segs;
3229 0 : for (i = 1; i <= data->map->dm_nsegs; i++) {
3230 0 : desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3231 0 : desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3232 : seg->ds_len << 4);
3233 0 : seg++;
3234 : }
3235 :
3236 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3237 : BUS_DMASYNC_PREWRITE);
3238 0 : bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3239 : (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
3240 : BUS_DMASYNC_PREWRITE);
3241 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3242 : (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
3243 : BUS_DMASYNC_PREWRITE);
3244 :
3245 : #ifdef notyet
3246 : /* Update TX scheduler. */
3247 : ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3248 : #endif
3249 :
3250 : /* Kick TX ring. */
3251 0 : ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3252 0 : IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3253 :
3254 : /* Mark TX ring as full if we reach a certain threshold. */
3255 0 : if (++ring->queued > IWN_TX_RING_HIMARK)
3256 0 : sc->qfullmsk |= 1 << ring->qid;
3257 :
3258 0 : return 0;
3259 0 : }
3260 :
3261 : void
3262 0 : iwn_start(struct ifnet *ifp)
3263 : {
3264 0 : struct iwn_softc *sc = ifp->if_softc;
3265 0 : struct ieee80211com *ic = &sc->sc_ic;
3266 0 : struct ieee80211_node *ni;
3267 : struct mbuf *m;
3268 :
3269 0 : if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
3270 0 : return;
3271 :
3272 0 : for (;;) {
3273 0 : if (sc->qfullmsk != 0) {
3274 0 : ifq_set_oactive(&ifp->if_snd);
3275 0 : break;
3276 : }
3277 : /* Send pending management frames first. */
3278 0 : m = mq_dequeue(&ic->ic_mgtq);
3279 0 : if (m != NULL) {
3280 0 : ni = m->m_pkthdr.ph_cookie;
3281 0 : goto sendit;
3282 : }
3283 0 : if (ic->ic_state != IEEE80211_S_RUN ||
3284 0 : (ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY))
3285 : break;
3286 :
3287 : /* Encapsulate and send data frames. */
3288 0 : IFQ_DEQUEUE(&ifp->if_snd, m);
3289 0 : if (m == NULL)
3290 : break;
3291 : #if NBPFILTER > 0
3292 0 : if (ifp->if_bpf != NULL)
3293 0 : bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
3294 : #endif
3295 0 : if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
3296 0 : continue;
3297 : sendit:
3298 : #if NBPFILTER > 0
3299 0 : if (ic->ic_rawbpf != NULL)
3300 0 : bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
3301 : #endif
3302 0 : if (iwn_tx(sc, m, ni) != 0) {
3303 0 : ieee80211_release_node(ic, ni);
3304 0 : ifp->if_oerrors++;
3305 0 : continue;
3306 : }
3307 :
3308 0 : sc->sc_tx_timer = 5;
3309 0 : ifp->if_timer = 1;
3310 : }
3311 0 : }
3312 :
3313 : void
3314 0 : iwn_watchdog(struct ifnet *ifp)
3315 : {
3316 0 : struct iwn_softc *sc = ifp->if_softc;
3317 :
3318 0 : ifp->if_timer = 0;
3319 :
3320 0 : if (sc->sc_tx_timer > 0) {
3321 0 : if (--sc->sc_tx_timer == 0) {
3322 0 : printf("%s: device timeout\n", sc->sc_dev.dv_xname);
3323 0 : iwn_stop(ifp, 1);
3324 0 : ifp->if_oerrors++;
3325 0 : return;
3326 : }
3327 0 : ifp->if_timer = 1;
3328 0 : }
3329 :
3330 0 : ieee80211_watchdog(ifp);
3331 0 : }
3332 :
3333 : int
3334 0 : iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3335 : {
3336 0 : struct iwn_softc *sc = ifp->if_softc;
3337 0 : struct ieee80211com *ic = &sc->sc_ic;
3338 : int s, error = 0;
3339 :
3340 0 : error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
3341 0 : if (error)
3342 0 : return error;
3343 0 : s = splnet();
3344 :
3345 0 : switch (cmd) {
3346 : case SIOCSIFADDR:
3347 0 : ifp->if_flags |= IFF_UP;
3348 : /* FALLTHROUGH */
3349 : case SIOCSIFFLAGS:
3350 0 : if (ifp->if_flags & IFF_UP) {
3351 0 : if (!(ifp->if_flags & IFF_RUNNING))
3352 0 : error = iwn_init(ifp);
3353 : } else {
3354 0 : if (ifp->if_flags & IFF_RUNNING)
3355 0 : iwn_stop(ifp, 1);
3356 : }
3357 : break;
3358 :
3359 : case SIOCS80211POWER:
3360 0 : error = ieee80211_ioctl(ifp, cmd, data);
3361 0 : if (error != ENETRESET)
3362 : break;
3363 0 : if (ic->ic_state == IEEE80211_S_RUN &&
3364 0 : sc->calib.state == IWN_CALIB_STATE_RUN) {
3365 0 : if (ic->ic_flags & IEEE80211_F_PMGTON)
3366 0 : error = iwn_set_pslevel(sc, 0, 3, 0);
3367 : else /* back to CAM */
3368 0 : error = iwn_set_pslevel(sc, 0, 0, 0);
3369 : } else {
3370 : /* Defer until transition to IWN_CALIB_STATE_RUN. */
3371 : error = 0;
3372 : }
3373 : break;
3374 :
3375 : default:
3376 0 : error = ieee80211_ioctl(ifp, cmd, data);
3377 0 : }
3378 :
3379 0 : if (error == ENETRESET) {
3380 : error = 0;
3381 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3382 : (IFF_UP | IFF_RUNNING)) {
3383 0 : iwn_stop(ifp, 0);
3384 0 : error = iwn_init(ifp);
3385 0 : }
3386 : }
3387 :
3388 0 : splx(s);
3389 0 : rw_exit_write(&sc->sc_rwlock);
3390 0 : return error;
3391 0 : }
3392 :
3393 : /*
3394 : * Send a command to the firmware.
3395 : */
3396 : int
3397 0 : iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3398 : {
3399 0 : struct iwn_tx_ring *ring = &sc->txq[4];
3400 : struct iwn_tx_desc *desc;
3401 : struct iwn_tx_data *data;
3402 : struct iwn_tx_cmd *cmd;
3403 : struct mbuf *m;
3404 : bus_addr_t paddr;
3405 : int totlen, error;
3406 :
3407 0 : desc = &ring->desc[ring->cur];
3408 0 : data = &ring->data[ring->cur];
3409 0 : totlen = 4 + size;
3410 :
3411 0 : if (size > sizeof cmd->data) {
3412 : /* Command is too large to fit in a descriptor. */
3413 0 : if (totlen > MCLBYTES)
3414 0 : return EINVAL;
3415 0 : MGETHDR(m, M_DONTWAIT, MT_DATA);
3416 0 : if (m == NULL)
3417 0 : return ENOMEM;
3418 0 : if (totlen > MHLEN) {
3419 0 : MCLGET(m, M_DONTWAIT);
3420 0 : if (!(m->m_flags & M_EXT)) {
3421 0 : m_freem(m);
3422 0 : return ENOMEM;
3423 : }
3424 : }
3425 0 : cmd = mtod(m, struct iwn_tx_cmd *);
3426 0 : error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3427 : NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3428 0 : if (error != 0) {
3429 0 : m_freem(m);
3430 0 : return error;
3431 : }
3432 0 : data->m = m;
3433 0 : paddr = data->map->dm_segs[0].ds_addr;
3434 0 : } else {
3435 0 : cmd = &ring->cmd[ring->cur];
3436 0 : paddr = data->cmd_paddr;
3437 : }
3438 :
3439 0 : cmd->code = code;
3440 0 : cmd->flags = 0;
3441 0 : cmd->qid = ring->qid;
3442 0 : cmd->idx = ring->cur;
3443 0 : memcpy(cmd->data, buf, size);
3444 :
3445 0 : desc->nsegs = 1;
3446 0 : desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3447 0 : desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3448 :
3449 0 : if (size > sizeof cmd->data) {
3450 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3451 : BUS_DMASYNC_PREWRITE);
3452 0 : } else {
3453 0 : bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3454 : (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
3455 : BUS_DMASYNC_PREWRITE);
3456 : }
3457 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3458 : (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
3459 : BUS_DMASYNC_PREWRITE);
3460 :
3461 : #ifdef notyet
3462 : /* Update TX scheduler. */
3463 : ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3464 : #endif
3465 :
3466 : /* Kick command ring. */
3467 0 : ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3468 0 : IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3469 :
3470 0 : return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3471 0 : }
3472 :
3473 : int
3474 0 : iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3475 : {
3476 0 : struct iwn4965_node_info hnode;
3477 : caddr_t src, dst;
3478 :
3479 : /*
3480 : * We use the node structure for 5000 Series internally (it is
3481 : * a superset of the one for 4965AGN). We thus copy the common
3482 : * fields before sending the command.
3483 : */
3484 0 : src = (caddr_t)node;
3485 : dst = (caddr_t)&hnode;
3486 0 : memcpy(dst, src, 48);
3487 : /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3488 0 : memcpy(dst + 48, src + 72, 20);
3489 0 : return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3490 0 : }
3491 :
3492 : int
3493 0 : iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3494 : {
3495 : /* Direct mapping. */
3496 0 : return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3497 : }
3498 :
3499 : int
3500 0 : iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3501 : {
3502 0 : struct ieee80211com *ic = &sc->sc_ic;
3503 0 : struct iwn_node *wn = (void *)ni;
3504 0 : struct ieee80211_rateset *rs = &ni->ni_rates;
3505 0 : struct iwn_cmd_link_quality linkq;
3506 : const struct iwn_rate *rinfo;
3507 : uint8_t txant;
3508 : int i, txrate;
3509 :
3510 : /* Use the first valid TX antenna. */
3511 0 : txant = IWN_LSB(sc->txchainmask);
3512 :
3513 0 : memset(&linkq, 0, sizeof linkq);
3514 0 : linkq.id = wn->id;
3515 0 : linkq.antmsk_1stream = txant;
3516 0 : linkq.antmsk_2stream = IWN_ANT_AB;
3517 0 : linkq.ampdu_max = IWN_AMPDU_MAX;
3518 0 : linkq.ampdu_threshold = 3;
3519 0 : linkq.ampdu_limit = htole16(4000); /* 4ms */
3520 :
3521 0 : if (ni->ni_flags & IEEE80211_NODE_HT) {
3522 : /* Fill LQ table with MCS 7 - 0 (XXX revisit for MIMO) */
3523 : i = 0;
3524 0 : for (txrate = 7; txrate >= 0; txrate--) {
3525 0 : rinfo = &iwn_rates[iwn_mcs2ridx[txrate]];
3526 0 : linkq.retry[i].plcp = rinfo->ht_plcp;
3527 0 : linkq.retry[i].rflags = rinfo->ht_flags;
3528 :
3529 0 : if (ni->ni_htcaps & IEEE80211_HTCAP_SGI20)
3530 0 : linkq.retry[i].rflags |= IWN_RFLAG_SGI;
3531 :
3532 : /* XXX set correct ant mask for MIMO rates here */
3533 0 : linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3534 :
3535 0 : if (++i >= IWN_MAX_TX_RETRIES)
3536 : break;
3537 : }
3538 :
3539 : /* Fill the rest with the lowest basic rate. */
3540 0 : rinfo = &iwn_rates[iwn_rval2ridx(ieee80211_min_basic_rate(ic))];
3541 0 : while (i < IWN_MAX_TX_RETRIES) {
3542 0 : linkq.retry[i].plcp = rinfo->plcp;
3543 0 : linkq.retry[i].rflags = rinfo->flags;
3544 0 : linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3545 0 : i++;
3546 : }
3547 : } else {
3548 : /* Start at highest available bit-rate. */
3549 0 : txrate = rs->rs_nrates - 1;
3550 0 : for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3551 0 : rinfo = &iwn_rates[wn->ridx[txrate]];
3552 0 : linkq.retry[i].plcp = rinfo->plcp;
3553 0 : linkq.retry[i].rflags = rinfo->flags;
3554 0 : linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3555 : /* Next retry at immediate lower bit-rate. */
3556 0 : if (txrate > 0)
3557 0 : txrate--;
3558 : }
3559 : }
3560 :
3561 0 : return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3562 0 : }
3563 :
3564 : /*
3565 : * Broadcast node is used to send group-addressed and management frames.
3566 : */
3567 : int
3568 0 : iwn_add_broadcast_node(struct iwn_softc *sc, int async, int ridx)
3569 : {
3570 0 : struct iwn_ops *ops = &sc->ops;
3571 0 : struct iwn_node_info node;
3572 0 : struct iwn_cmd_link_quality linkq;
3573 : const struct iwn_rate *rinfo;
3574 : uint8_t txant;
3575 : int i, error;
3576 :
3577 0 : memset(&node, 0, sizeof node);
3578 0 : IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3579 0 : node.id = sc->broadcast_id;
3580 : DPRINTF(("adding broadcast node\n"));
3581 0 : if ((error = ops->add_node(sc, &node, async)) != 0)
3582 0 : return error;
3583 :
3584 : /* Use the first valid TX antenna. */
3585 0 : txant = IWN_LSB(sc->txchainmask);
3586 :
3587 0 : memset(&linkq, 0, sizeof linkq);
3588 0 : linkq.id = sc->broadcast_id;
3589 0 : linkq.antmsk_1stream = txant;
3590 0 : linkq.antmsk_2stream = IWN_ANT_AB;
3591 0 : linkq.ampdu_max = IWN_AMPDU_MAX_NO_AGG;
3592 0 : linkq.ampdu_threshold = 3;
3593 0 : linkq.ampdu_limit = htole16(4000); /* 4ms */
3594 :
3595 : /* Use lowest mandatory bit-rate. */
3596 0 : rinfo = &iwn_rates[ridx];
3597 0 : linkq.retry[0].plcp = rinfo->plcp;
3598 0 : linkq.retry[0].rflags = rinfo->flags;
3599 0 : linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3600 : /* Use same bit-rate for all TX retries. */
3601 0 : for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3602 0 : linkq.retry[i].plcp = linkq.retry[0].plcp;
3603 0 : linkq.retry[i].rflags = linkq.retry[0].rflags;
3604 : }
3605 0 : return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3606 0 : }
3607 :
3608 : void
3609 0 : iwn_updateedca(struct ieee80211com *ic)
3610 : {
3611 : #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
3612 0 : struct iwn_softc *sc = ic->ic_softc;
3613 0 : struct iwn_edca_params cmd;
3614 : int aci;
3615 :
3616 0 : memset(&cmd, 0, sizeof cmd);
3617 0 : cmd.flags = htole32(IWN_EDCA_UPDATE);
3618 0 : for (aci = 0; aci < EDCA_NUM_AC; aci++) {
3619 : const struct ieee80211_edca_ac_params *ac =
3620 0 : &ic->ic_edca_ac[aci];
3621 0 : cmd.ac[aci].aifsn = ac->ac_aifsn;
3622 0 : cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin));
3623 0 : cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax));
3624 0 : cmd.ac[aci].txoplimit =
3625 0 : htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
3626 : }
3627 0 : (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3628 : #undef IWN_EXP2
3629 0 : }
3630 :
3631 : void
3632 0 : iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3633 : {
3634 0 : struct iwn_cmd_led led;
3635 :
3636 : /* Clear microcode LED ownership. */
3637 0 : IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3638 :
3639 0 : led.which = which;
3640 0 : led.unit = htole32(10000); /* on/off in unit of 100ms */
3641 0 : led.off = off;
3642 0 : led.on = on;
3643 0 : (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3644 0 : }
3645 :
3646 : /*
3647 : * Set the critical temperature at which the firmware will stop the radio
3648 : * and notify us.
3649 : */
3650 : int
3651 0 : iwn_set_critical_temp(struct iwn_softc *sc)
3652 : {
3653 0 : struct iwn_critical_temp crit;
3654 : int32_t temp;
3655 :
3656 0 : IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3657 :
3658 0 : if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3659 0 : temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3660 0 : else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3661 0 : temp = IWN_CTOK(110);
3662 : else
3663 : temp = 110;
3664 0 : memset(&crit, 0, sizeof crit);
3665 0 : crit.tempR = htole32(temp);
3666 : DPRINTF(("setting critical temperature to %d\n", temp));
3667 0 : return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3668 0 : }
3669 :
3670 : int
3671 0 : iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3672 : {
3673 0 : struct iwn_cmd_timing cmd;
3674 : uint64_t val, mod;
3675 :
3676 0 : memset(&cmd, 0, sizeof cmd);
3677 0 : memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
3678 0 : cmd.bintval = htole16(ni->ni_intval);
3679 0 : cmd.lintval = htole16(10);
3680 :
3681 : /* Compute remaining time until next beacon. */
3682 0 : val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3683 0 : mod = letoh64(cmd.tstamp) % val;
3684 0 : cmd.binitval = htole32((uint32_t)(val - mod));
3685 :
3686 : DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
3687 : ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
3688 :
3689 0 : return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3690 0 : }
3691 :
3692 : void
3693 0 : iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3694 : {
3695 : /* Adjust TX power if need be (delta >= 3 degC). */
3696 : DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3697 0 : if (abs(temp - sc->temp) >= 3) {
3698 : /* Record temperature of last calibration. */
3699 0 : sc->temp = temp;
3700 0 : (void)iwn4965_set_txpower(sc, 1);
3701 0 : }
3702 0 : }
3703 :
3704 : /*
3705 : * Set TX power for current channel (each rate has its own power settings).
3706 : * This function takes into account the regulatory information from EEPROM,
3707 : * the current temperature and the current voltage.
3708 : */
3709 : int
3710 0 : iwn4965_set_txpower(struct iwn_softc *sc, int async)
3711 : {
3712 : /* Fixed-point arithmetic division using a n-bit fractional part. */
3713 : #define fdivround(a, b, n) \
3714 : ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3715 : /* Linear interpolation. */
3716 : #define interpolate(x, x1, y1, x2, y2, n) \
3717 : ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3718 :
3719 : static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3720 0 : struct ieee80211com *ic = &sc->sc_ic;
3721 0 : struct iwn_ucode_info *uc = &sc->ucode_info;
3722 : struct ieee80211_channel *ch;
3723 0 : struct iwn4965_cmd_txpower cmd;
3724 : struct iwn4965_eeprom_chan_samples *chans;
3725 : const uint8_t *rf_gain, *dsp_gain;
3726 : int32_t vdiff, tdiff;
3727 : int i, c, grp, maxpwr;
3728 : uint8_t chan;
3729 :
3730 : /* Retrieve current channel from last RXON. */
3731 0 : chan = sc->rxon.chan;
3732 : DPRINTF(("setting TX power for channel %d\n", chan));
3733 0 : ch = &ic->ic_channels[chan];
3734 :
3735 0 : memset(&cmd, 0, sizeof cmd);
3736 0 : cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3737 0 : cmd.chan = chan;
3738 :
3739 0 : if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3740 0 : maxpwr = sc->maxpwr5GHz;
3741 : rf_gain = iwn4965_rf_gain_5ghz;
3742 : dsp_gain = iwn4965_dsp_gain_5ghz;
3743 0 : } else {
3744 0 : maxpwr = sc->maxpwr2GHz;
3745 : rf_gain = iwn4965_rf_gain_2ghz;
3746 : dsp_gain = iwn4965_dsp_gain_2ghz;
3747 : }
3748 :
3749 : /* Compute voltage compensation. */
3750 0 : vdiff = ((int32_t)letoh32(uc->volt) - sc->eeprom_voltage) / 7;
3751 0 : if (vdiff > 0)
3752 0 : vdiff *= 2;
3753 0 : if (abs(vdiff) > 2)
3754 0 : vdiff = 0;
3755 : DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3756 : vdiff, letoh32(uc->volt), sc->eeprom_voltage));
3757 :
3758 : /* Get channel attenuation group. */
3759 0 : if (chan <= 20) /* 1-20 */
3760 0 : grp = 4;
3761 0 : else if (chan <= 43) /* 34-43 */
3762 0 : grp = 0;
3763 0 : else if (chan <= 70) /* 44-70 */
3764 0 : grp = 1;
3765 0 : else if (chan <= 124) /* 71-124 */
3766 0 : grp = 2;
3767 : else /* 125-200 */
3768 : grp = 3;
3769 : DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3770 :
3771 : /* Get channel sub-band. */
3772 0 : for (i = 0; i < IWN_NBANDS; i++)
3773 0 : if (sc->bands[i].lo != 0 &&
3774 0 : sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3775 : break;
3776 0 : if (i == IWN_NBANDS) /* Can't happen in real-life. */
3777 0 : return EINVAL;
3778 0 : chans = sc->bands[i].chans;
3779 : DPRINTF(("chan %d sub-band=%d\n", chan, i));
3780 :
3781 0 : for (c = 0; c < 2; c++) {
3782 : uint8_t power, gain, temp;
3783 : int maxchpwr, pwr, ridx, idx;
3784 :
3785 0 : power = interpolate(chan,
3786 : chans[0].num, chans[0].samples[c][1].power,
3787 : chans[1].num, chans[1].samples[c][1].power, 1);
3788 0 : gain = interpolate(chan,
3789 : chans[0].num, chans[0].samples[c][1].gain,
3790 : chans[1].num, chans[1].samples[c][1].gain, 1);
3791 0 : temp = interpolate(chan,
3792 : chans[0].num, chans[0].samples[c][1].temp,
3793 : chans[1].num, chans[1].samples[c][1].temp, 1);
3794 : DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3795 : c, power, gain, temp));
3796 :
3797 : /* Compute temperature compensation. */
3798 0 : tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3799 : DPRINTF(("temperature compensation=%d (current=%d, "
3800 : "EEPROM=%d)\n", tdiff, sc->temp, temp));
3801 :
3802 0 : for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3803 : /* Convert dBm to half-dBm. */
3804 0 : maxchpwr = sc->maxpwr[chan] * 2;
3805 : #ifdef notyet
3806 : if (ridx > iwn_mcs2ridx[7] && ridx < iwn_mcs2ridx[16])
3807 : maxchpwr -= 6; /* MIMO 2T: -3dB */
3808 : #endif
3809 :
3810 : pwr = maxpwr;
3811 :
3812 : /* Adjust TX power based on rate. */
3813 0 : if ((ridx % 8) == 5)
3814 0 : pwr -= 15; /* OFDM48: -7.5dB */
3815 0 : else if ((ridx % 8) == 6)
3816 0 : pwr -= 17; /* OFDM54: -8.5dB */
3817 0 : else if ((ridx % 8) == 7)
3818 0 : pwr -= 20; /* OFDM60: -10dB */
3819 : else
3820 0 : pwr -= 10; /* Others: -5dB */
3821 :
3822 : /* Do not exceed channel max TX power. */
3823 0 : if (pwr > maxchpwr)
3824 0 : pwr = maxchpwr;
3825 :
3826 0 : idx = gain - (pwr - power) - tdiff - vdiff;
3827 0 : if (ridx > iwn_mcs2ridx[7]) /* MIMO */
3828 0 : idx += (int32_t)letoh32(uc->atten[grp][c]);
3829 :
3830 0 : if (cmd.band == 0)
3831 0 : idx += 9; /* 5GHz */
3832 0 : if (ridx == IWN_RIDX_MAX)
3833 0 : idx += 5; /* CCK */
3834 :
3835 : /* Make sure idx stays in a valid range. */
3836 0 : if (idx < 0)
3837 0 : idx = 0;
3838 0 : else if (idx > IWN4965_MAX_PWR_INDEX)
3839 0 : idx = IWN4965_MAX_PWR_INDEX;
3840 :
3841 : DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3842 : c, ridx, idx));
3843 0 : cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3844 0 : cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3845 : }
3846 : }
3847 :
3848 : DPRINTF(("setting TX power for chan %d\n", chan));
3849 0 : return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3850 :
3851 : #undef interpolate
3852 : #undef fdivround
3853 0 : }
3854 :
3855 : int
3856 0 : iwn5000_set_txpower(struct iwn_softc *sc, int async)
3857 : {
3858 0 : struct iwn5000_cmd_txpower cmd;
3859 :
3860 : /*
3861 : * TX power calibration is handled automatically by the firmware
3862 : * for 5000 Series.
3863 : */
3864 0 : memset(&cmd, 0, sizeof cmd);
3865 0 : cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3866 0 : cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3867 0 : cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3868 : DPRINTF(("setting TX power\n"));
3869 0 : return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3870 0 : }
3871 :
3872 : /*
3873 : * Retrieve the maximum RSSI (in dBm) among receivers.
3874 : */
3875 : int
3876 0 : iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3877 : {
3878 0 : struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3879 : uint8_t mask, agc;
3880 : int rssi;
3881 :
3882 0 : mask = (letoh16(phy->antenna) >> 4) & IWN_ANT_ABC;
3883 0 : agc = (letoh16(phy->agc) >> 7) & 0x7f;
3884 :
3885 : rssi = 0;
3886 0 : if (mask & IWN_ANT_A)
3887 0 : rssi = MAX(rssi, phy->rssi[0]);
3888 0 : if (mask & IWN_ANT_B)
3889 0 : rssi = MAX(rssi, phy->rssi[2]);
3890 0 : if (mask & IWN_ANT_C)
3891 0 : rssi = MAX(rssi, phy->rssi[4]);
3892 :
3893 0 : return rssi - agc - IWN_RSSI_TO_DBM;
3894 : }
3895 :
3896 : int
3897 0 : iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3898 : {
3899 0 : struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
3900 : uint8_t agc;
3901 : int rssi;
3902 :
3903 0 : agc = (letoh32(phy->agc) >> 9) & 0x7f;
3904 :
3905 0 : rssi = MAX(letoh16(phy->rssi[0]) & 0xff,
3906 : letoh16(phy->rssi[1]) & 0xff);
3907 0 : rssi = MAX(letoh16(phy->rssi[2]) & 0xff, rssi);
3908 :
3909 0 : return rssi - agc - IWN_RSSI_TO_DBM;
3910 : }
3911 :
3912 : /*
3913 : * Retrieve the average noise (in dBm) among receivers.
3914 : */
3915 : int
3916 0 : iwn_get_noise(const struct iwn_rx_general_stats *stats)
3917 : {
3918 : int i, total, nbant, noise;
3919 :
3920 : total = nbant = 0;
3921 0 : for (i = 0; i < 3; i++) {
3922 0 : if ((noise = letoh32(stats->noise[i]) & 0xff) == 0)
3923 : continue;
3924 0 : total += noise;
3925 0 : nbant++;
3926 0 : }
3927 : /* There should be at least one antenna but check anyway. */
3928 0 : return (nbant == 0) ? -127 : (total / nbant) - 107;
3929 : }
3930 :
3931 : /*
3932 : * Compute temperature (in degC) from last received statistics.
3933 : */
3934 : int
3935 0 : iwn4965_get_temperature(struct iwn_softc *sc)
3936 : {
3937 0 : struct iwn_ucode_info *uc = &sc->ucode_info;
3938 : int32_t r1, r2, r3, r4, temp;
3939 :
3940 0 : r1 = letoh32(uc->temp[0].chan20MHz);
3941 0 : r2 = letoh32(uc->temp[1].chan20MHz);
3942 0 : r3 = letoh32(uc->temp[2].chan20MHz);
3943 0 : r4 = letoh32(sc->rawtemp);
3944 :
3945 0 : if (r1 == r3) /* Prevents division by 0 (should not happen). */
3946 0 : return 0;
3947 :
3948 : /* Sign-extend 23-bit R4 value to 32-bit. */
3949 0 : r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3950 : /* Compute temperature in Kelvin. */
3951 0 : temp = (259 * (r4 - r2)) / (r3 - r1);
3952 0 : temp = (temp * 97) / 100 + 8;
3953 :
3954 : DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3955 0 : return IWN_KTOC(temp);
3956 0 : }
3957 :
3958 : int
3959 0 : iwn5000_get_temperature(struct iwn_softc *sc)
3960 : {
3961 : int32_t temp;
3962 :
3963 : /*
3964 : * Temperature is not used by the driver for 5000 Series because
3965 : * TX power calibration is handled by firmware.
3966 : */
3967 0 : temp = letoh32(sc->rawtemp);
3968 0 : if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3969 0 : temp = (temp / -5) + sc->temp_off;
3970 0 : temp = IWN_KTOC(temp);
3971 0 : }
3972 0 : return temp;
3973 : }
3974 :
3975 : /*
3976 : * Initialize sensitivity calibration state machine.
3977 : */
3978 : int
3979 0 : iwn_init_sensitivity(struct iwn_softc *sc)
3980 : {
3981 0 : struct iwn_ops *ops = &sc->ops;
3982 0 : struct iwn_calib_state *calib = &sc->calib;
3983 0 : uint32_t flags;
3984 : int error;
3985 :
3986 : /* Reset calibration state machine. */
3987 0 : memset(calib, 0, sizeof (*calib));
3988 0 : calib->state = IWN_CALIB_STATE_INIT;
3989 0 : calib->cck_state = IWN_CCK_STATE_HIFA;
3990 : /* Set initial correlation values. */
3991 0 : calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3992 0 : calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3993 0 : calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3994 0 : calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3995 0 : calib->cck_x4 = 125;
3996 0 : calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3997 0 : calib->energy_cck = sc->limits->energy_cck;
3998 :
3999 : /* Write initial sensitivity. */
4000 0 : if ((error = iwn_send_sensitivity(sc)) != 0)
4001 0 : return error;
4002 :
4003 : /* Write initial gains. */
4004 0 : if ((error = ops->init_gains(sc)) != 0)
4005 0 : return error;
4006 :
4007 : /* Request statistics at each beacon interval. */
4008 0 : flags = 0;
4009 : DPRINTFN(2, ("sending request for statistics\n"));
4010 0 : return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4011 0 : }
4012 :
4013 : /*
4014 : * Collect noise and RSSI statistics for the first 20 beacons received
4015 : * after association and use them to determine connected antennas and
4016 : * to set differential gains.
4017 : */
4018 : void
4019 0 : iwn_collect_noise(struct iwn_softc *sc,
4020 : const struct iwn_rx_general_stats *stats)
4021 : {
4022 0 : struct iwn_ops *ops = &sc->ops;
4023 0 : struct iwn_calib_state *calib = &sc->calib;
4024 : uint32_t val;
4025 : int i;
4026 :
4027 : /* Accumulate RSSI and noise for all 3 antennas. */
4028 0 : for (i = 0; i < 3; i++) {
4029 0 : calib->rssi[i] += letoh32(stats->rssi[i]) & 0xff;
4030 0 : calib->noise[i] += letoh32(stats->noise[i]) & 0xff;
4031 : }
4032 : /* NB: We update differential gains only once after 20 beacons. */
4033 0 : if (++calib->nbeacons < 20)
4034 0 : return;
4035 :
4036 : /* Determine highest average RSSI. */
4037 0 : val = MAX(calib->rssi[0], calib->rssi[1]);
4038 0 : val = MAX(calib->rssi[2], val);
4039 :
4040 : /* Determine which antennas are connected. */
4041 0 : sc->chainmask = sc->rxchainmask;
4042 0 : for (i = 0; i < 3; i++)
4043 0 : if (val - calib->rssi[i] > 15 * 20)
4044 0 : sc->chainmask &= ~(1 << i);
4045 : DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4046 : sc->rxchainmask, sc->chainmask));
4047 :
4048 : /* If none of the TX antennas are connected, keep at least one. */
4049 0 : if ((sc->chainmask & sc->txchainmask) == 0)
4050 0 : sc->chainmask |= IWN_LSB(sc->txchainmask);
4051 :
4052 0 : (void)ops->set_gains(sc);
4053 0 : calib->state = IWN_CALIB_STATE_RUN;
4054 :
4055 : #ifdef notyet
4056 : /* XXX Disable RX chains with no antennas connected. */
4057 : sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4058 : (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4059 : #endif
4060 :
4061 : /* Enable power-saving mode if requested by user. */
4062 0 : if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4063 0 : (void)iwn_set_pslevel(sc, 0, 3, 1);
4064 0 : }
4065 :
4066 : int
4067 0 : iwn4965_init_gains(struct iwn_softc *sc)
4068 : {
4069 0 : struct iwn_phy_calib_gain cmd;
4070 :
4071 0 : memset(&cmd, 0, sizeof cmd);
4072 0 : cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4073 : /* Differential gains initially set to 0 for all 3 antennas. */
4074 : DPRINTF(("setting initial differential gains\n"));
4075 0 : return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4076 0 : }
4077 :
4078 : int
4079 0 : iwn5000_init_gains(struct iwn_softc *sc)
4080 : {
4081 0 : struct iwn_phy_calib cmd;
4082 :
4083 0 : memset(&cmd, 0, sizeof cmd);
4084 0 : cmd.code = sc->reset_noise_gain;
4085 0 : cmd.ngroups = 1;
4086 0 : cmd.isvalid = 1;
4087 : DPRINTF(("setting initial differential gains\n"));
4088 0 : return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4089 0 : }
4090 :
4091 : int
4092 0 : iwn4965_set_gains(struct iwn_softc *sc)
4093 : {
4094 0 : struct iwn_calib_state *calib = &sc->calib;
4095 0 : struct iwn_phy_calib_gain cmd;
4096 : int i, delta, noise;
4097 :
4098 : /* Get minimal noise among connected antennas. */
4099 : noise = INT_MAX; /* NB: There's at least one antenna. */
4100 0 : for (i = 0; i < 3; i++)
4101 0 : if (sc->chainmask & (1 << i))
4102 0 : noise = MIN(calib->noise[i], noise);
4103 :
4104 0 : memset(&cmd, 0, sizeof cmd);
4105 0 : cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4106 : /* Set differential gains for connected antennas. */
4107 0 : for (i = 0; i < 3; i++) {
4108 0 : if (sc->chainmask & (1 << i)) {
4109 : /* Compute attenuation (in unit of 1.5dB). */
4110 0 : delta = (noise - (int32_t)calib->noise[i]) / 30;
4111 : /* NB: delta <= 0 */
4112 : /* Limit to [-4.5dB,0]. */
4113 0 : cmd.gain[i] = MIN(abs(delta), 3);
4114 0 : if (delta < 0)
4115 0 : cmd.gain[i] |= 1 << 2; /* sign bit */
4116 : }
4117 : }
4118 : DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4119 : cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4120 0 : return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4121 0 : }
4122 :
4123 : int
4124 0 : iwn5000_set_gains(struct iwn_softc *sc)
4125 : {
4126 0 : struct iwn_calib_state *calib = &sc->calib;
4127 0 : struct iwn_phy_calib_gain cmd;
4128 : int i, ant, div, delta;
4129 :
4130 : /* We collected 20 beacons and !=6050 need a 1.5 factor. */
4131 0 : div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4132 :
4133 0 : memset(&cmd, 0, sizeof cmd);
4134 0 : cmd.code = sc->noise_gain;
4135 0 : cmd.ngroups = 1;
4136 0 : cmd.isvalid = 1;
4137 : /* Get first available RX antenna as referential. */
4138 0 : ant = IWN_LSB(sc->rxchainmask);
4139 : /* Set differential gains for other antennas. */
4140 0 : for (i = ant + 1; i < 3; i++) {
4141 0 : if (sc->chainmask & (1 << i)) {
4142 : /* The delta is relative to antenna "ant". */
4143 0 : delta = ((int32_t)calib->noise[ant] -
4144 0 : (int32_t)calib->noise[i]) / div;
4145 : /* Limit to [-4.5dB,+4.5dB]. */
4146 0 : cmd.gain[i - 1] = MIN(abs(delta), 3);
4147 0 : if (delta < 0)
4148 0 : cmd.gain[i - 1] |= 1 << 2; /* sign bit */
4149 : }
4150 : }
4151 : DPRINTF(("setting differential gains: %x/%x (%x)\n",
4152 : cmd.gain[0], cmd.gain[1], sc->chainmask));
4153 0 : return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4154 0 : }
4155 :
4156 : /*
4157 : * Tune RF RX sensitivity based on the number of false alarms detected
4158 : * during the last beacon period.
4159 : */
4160 : void
4161 0 : iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4162 : {
4163 : #define inc(val, inc, max) \
4164 : if ((val) < (max)) { \
4165 : if ((val) < (max) - (inc)) \
4166 : (val) += (inc); \
4167 : else \
4168 : (val) = (max); \
4169 : needs_update = 1; \
4170 : }
4171 : #define dec(val, dec, min) \
4172 : if ((val) > (min)) { \
4173 : if ((val) > (min) + (dec)) \
4174 : (val) -= (dec); \
4175 : else \
4176 : (val) = (min); \
4177 : needs_update = 1; \
4178 : }
4179 :
4180 0 : const struct iwn_sensitivity_limits *limits = sc->limits;
4181 0 : struct iwn_calib_state *calib = &sc->calib;
4182 : uint32_t val, rxena, fa;
4183 0 : uint32_t energy[3], energy_min;
4184 0 : uint8_t noise[3], noise_ref;
4185 : int i, needs_update = 0;
4186 :
4187 : /* Check that we've been enabled long enough. */
4188 0 : if ((rxena = letoh32(stats->general.load)) == 0)
4189 0 : return;
4190 :
4191 : /* Compute number of false alarms since last call for OFDM. */
4192 0 : fa = letoh32(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4193 0 : fa += letoh32(stats->ofdm.fa) - calib->fa_ofdm;
4194 0 : fa *= 200 * IEEE80211_DUR_TU; /* 200TU */
4195 :
4196 : /* Save counters values for next call. */
4197 0 : calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp);
4198 0 : calib->fa_ofdm = letoh32(stats->ofdm.fa);
4199 :
4200 0 : if (fa > 50 * rxena) {
4201 : /* High false alarm count, decrease sensitivity. */
4202 : DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4203 0 : inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
4204 0 : inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4205 0 : inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
4206 0 : inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4207 :
4208 0 : } else if (fa < 5 * rxena) {
4209 : /* Low false alarm count, increase sensitivity. */
4210 : DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4211 0 : dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
4212 0 : dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4213 0 : dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
4214 0 : dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4215 : }
4216 :
4217 : /* Compute maximum noise among 3 receivers. */
4218 0 : for (i = 0; i < 3; i++)
4219 0 : noise[i] = (letoh32(stats->general.noise[i]) >> 8) & 0xff;
4220 0 : val = MAX(noise[0], noise[1]);
4221 0 : val = MAX(noise[2], val);
4222 : /* Insert it into our samples table. */
4223 0 : calib->noise_samples[calib->cur_noise_sample] = val;
4224 0 : calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4225 :
4226 : /* Compute maximum noise among last 20 samples. */
4227 0 : noise_ref = calib->noise_samples[0];
4228 0 : for (i = 1; i < 20; i++)
4229 0 : noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4230 :
4231 : /* Compute maximum energy among 3 receivers. */
4232 0 : for (i = 0; i < 3; i++)
4233 0 : energy[i] = letoh32(stats->general.energy[i]);
4234 0 : val = MIN(energy[0], energy[1]);
4235 0 : val = MIN(energy[2], val);
4236 : /* Insert it into our samples table. */
4237 0 : calib->energy_samples[calib->cur_energy_sample] = val;
4238 0 : calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4239 :
4240 : /* Compute minimum energy among last 10 samples. */
4241 0 : energy_min = calib->energy_samples[0];
4242 0 : for (i = 1; i < 10; i++)
4243 0 : energy_min = MAX(energy_min, calib->energy_samples[i]);
4244 0 : energy_min += 6;
4245 :
4246 : /* Compute number of false alarms since last call for CCK. */
4247 0 : fa = letoh32(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4248 0 : fa += letoh32(stats->cck.fa) - calib->fa_cck;
4249 0 : fa *= 200 * IEEE80211_DUR_TU; /* 200TU */
4250 :
4251 : /* Save counters values for next call. */
4252 0 : calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp);
4253 0 : calib->fa_cck = letoh32(stats->cck.fa);
4254 :
4255 0 : if (fa > 50 * rxena) {
4256 : /* High false alarm count, decrease sensitivity. */
4257 : DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4258 0 : calib->cck_state = IWN_CCK_STATE_HIFA;
4259 0 : calib->low_fa = 0;
4260 :
4261 0 : if (calib->cck_x4 > 160) {
4262 0 : calib->noise_ref = noise_ref;
4263 0 : if (calib->energy_cck > 2)
4264 0 : dec(calib->energy_cck, 2, energy_min);
4265 : }
4266 0 : if (calib->cck_x4 < 160) {
4267 0 : calib->cck_x4 = 161;
4268 : needs_update = 1;
4269 0 : } else
4270 0 : inc(calib->cck_x4, 3, limits->max_cck_x4);
4271 :
4272 0 : inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4273 :
4274 0 : } else if (fa < 5 * rxena) {
4275 : /* Low false alarm count, increase sensitivity. */
4276 : DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4277 0 : calib->cck_state = IWN_CCK_STATE_LOFA;
4278 0 : calib->low_fa++;
4279 :
4280 0 : if (calib->cck_state != IWN_CCK_STATE_INIT &&
4281 0 : (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4282 0 : calib->low_fa > 100)) {
4283 0 : inc(calib->energy_cck, 2, limits->min_energy_cck);
4284 0 : dec(calib->cck_x4, 3, limits->min_cck_x4);
4285 0 : dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4286 : }
4287 : } else {
4288 : /* Not worth to increase or decrease sensitivity. */
4289 : DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4290 0 : calib->low_fa = 0;
4291 0 : calib->noise_ref = noise_ref;
4292 :
4293 0 : if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4294 : /* Previous interval had many false alarms. */
4295 0 : dec(calib->energy_cck, 8, energy_min);
4296 : }
4297 0 : calib->cck_state = IWN_CCK_STATE_INIT;
4298 : }
4299 :
4300 0 : if (needs_update)
4301 0 : (void)iwn_send_sensitivity(sc);
4302 : #undef dec
4303 : #undef inc
4304 0 : }
4305 :
4306 : int
4307 0 : iwn_send_sensitivity(struct iwn_softc *sc)
4308 : {
4309 0 : struct iwn_calib_state *calib = &sc->calib;
4310 0 : struct iwn_enhanced_sensitivity_cmd cmd;
4311 : int len;
4312 :
4313 0 : memset(&cmd, 0, sizeof cmd);
4314 : len = sizeof (struct iwn_sensitivity_cmd);
4315 0 : cmd.which = IWN_SENSITIVITY_WORKTBL;
4316 : /* OFDM modulation. */
4317 0 : cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4318 0 : cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4319 0 : cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4320 0 : cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4321 0 : cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4322 0 : cmd.energy_ofdm_th = htole16(62);
4323 : /* CCK modulation. */
4324 0 : cmd.corr_cck_x4 = htole16(calib->cck_x4);
4325 0 : cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4326 0 : cmd.energy_cck = htole16(calib->energy_cck);
4327 : /* Barker modulation: use default values. */
4328 0 : cmd.corr_barker = htole16(190);
4329 0 : cmd.corr_barker_mrc = htole16(390);
4330 0 : if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4331 : goto send;
4332 : /* Enhanced sensitivity settings. */
4333 : len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4334 0 : cmd.ofdm_det_slope_mrc = htole16(668);
4335 0 : cmd.ofdm_det_icept_mrc = htole16(4);
4336 0 : cmd.ofdm_det_slope = htole16(486);
4337 0 : cmd.ofdm_det_icept = htole16(37);
4338 0 : cmd.cck_det_slope_mrc = htole16(853);
4339 0 : cmd.cck_det_icept_mrc = htole16(4);
4340 0 : cmd.cck_det_slope = htole16(476);
4341 0 : cmd.cck_det_icept = htole16(99);
4342 : send:
4343 0 : return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4344 0 : }
4345 :
4346 : /*
4347 : * Set STA mode power saving level (between 0 and 5).
4348 : * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4349 : */
4350 : int
4351 0 : iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4352 : {
4353 0 : struct iwn_pmgt_cmd cmd;
4354 : const struct iwn_pmgt *pmgt;
4355 : uint32_t max, skip_dtim;
4356 : pcireg_t reg;
4357 : int i;
4358 :
4359 : /* Select which PS parameters to use. */
4360 0 : if (dtim <= 2)
4361 0 : pmgt = &iwn_pmgt[0][level];
4362 0 : else if (dtim <= 10)
4363 0 : pmgt = &iwn_pmgt[1][level];
4364 : else
4365 0 : pmgt = &iwn_pmgt[2][level];
4366 :
4367 0 : memset(&cmd, 0, sizeof cmd);
4368 0 : if (level != 0) /* not CAM */
4369 0 : cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4370 0 : if (level == 5)
4371 0 : cmd.flags |= htole16(IWN_PS_FAST_PD);
4372 : /* Retrieve PCIe Active State Power Management (ASPM). */
4373 0 : reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4374 0 : sc->sc_cap_off + PCI_PCIE_LCSR);
4375 0 : if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4376 0 : cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4377 0 : cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4378 0 : cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4379 :
4380 0 : if (dtim == 0) {
4381 : dtim = 1;
4382 : skip_dtim = 0;
4383 0 : } else
4384 0 : skip_dtim = pmgt->skip_dtim;
4385 0 : if (skip_dtim != 0) {
4386 0 : cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4387 0 : max = pmgt->intval[4];
4388 0 : if (max == (uint32_t)-1)
4389 0 : max = dtim * (skip_dtim + 1);
4390 0 : else if (max > dtim)
4391 0 : max = (max / dtim) * dtim;
4392 : } else
4393 : max = dtim;
4394 0 : for (i = 0; i < 5; i++)
4395 0 : cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4396 :
4397 : DPRINTF(("setting power saving level to %d\n", level));
4398 0 : return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4399 0 : }
4400 :
4401 : int
4402 0 : iwn_send_btcoex(struct iwn_softc *sc)
4403 : {
4404 0 : struct iwn_bluetooth cmd;
4405 :
4406 0 : memset(&cmd, 0, sizeof cmd);
4407 0 : cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4408 0 : cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
4409 0 : cmd.max_kill = IWN_BT_MAX_KILL_DEF;
4410 : DPRINTF(("configuring bluetooth coexistence\n"));
4411 0 : return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
4412 0 : }
4413 :
4414 : int
4415 0 : iwn_send_advanced_btcoex(struct iwn_softc *sc)
4416 : {
4417 : static const uint32_t btcoex_3wire[12] = {
4418 : 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
4419 : 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
4420 : 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
4421 : };
4422 0 : struct iwn_btcoex_priotable btprio;
4423 0 : struct iwn_btcoex_prot btprot;
4424 : int error, i;
4425 :
4426 0 : if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4427 0 : sc->hw_type == IWN_HW_REV_TYPE_135) {
4428 0 : struct iwn2000_btcoex_config btconfig;
4429 :
4430 0 : memset(&btconfig, 0, sizeof btconfig);
4431 0 : btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION |
4432 : (IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) |
4433 : IWN_BT_SYNC_2_BT_DISABLE;
4434 0 : btconfig.max_kill = 5;
4435 0 : btconfig.bt3_t7_timer = 1;
4436 0 : btconfig.kill_ack = htole32(0xffff0000);
4437 0 : btconfig.kill_cts = htole32(0xffff0000);
4438 0 : btconfig.sample_time = 2;
4439 0 : btconfig.bt3_t2_timer = 0xc;
4440 0 : for (i = 0; i < 12; i++)
4441 0 : btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4442 0 : btconfig.valid = htole16(0xff);
4443 0 : btconfig.prio_boost = htole32(0xf0);
4444 : DPRINTF(("configuring advanced bluetooth coexistence\n"));
4445 0 : error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
4446 : sizeof(btconfig), 1);
4447 0 : if (error != 0)
4448 0 : return (error);
4449 0 : } else {
4450 0 : struct iwn6000_btcoex_config btconfig;
4451 :
4452 0 : memset(&btconfig, 0, sizeof btconfig);
4453 0 : btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION |
4454 : (IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) |
4455 : IWN_BT_SYNC_2_BT_DISABLE;
4456 0 : btconfig.max_kill = 5;
4457 0 : btconfig.bt3_t7_timer = 1;
4458 0 : btconfig.kill_ack = htole32(0xffff0000);
4459 0 : btconfig.kill_cts = htole32(0xffff0000);
4460 0 : btconfig.sample_time = 2;
4461 0 : btconfig.bt3_t2_timer = 0xc;
4462 0 : for (i = 0; i < 12; i++)
4463 0 : btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4464 0 : btconfig.valid = htole16(0xff);
4465 0 : btconfig.prio_boost = 0xf0;
4466 : DPRINTF(("configuring advanced bluetooth coexistence\n"));
4467 0 : error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
4468 : sizeof(btconfig), 1);
4469 0 : if (error != 0)
4470 0 : return (error);
4471 0 : }
4472 :
4473 0 : memset(&btprio, 0, sizeof btprio);
4474 0 : btprio.calib_init1 = 0x6;
4475 0 : btprio.calib_init2 = 0x7;
4476 0 : btprio.calib_periodic_low1 = 0x2;
4477 0 : btprio.calib_periodic_low2 = 0x3;
4478 0 : btprio.calib_periodic_high1 = 0x4;
4479 0 : btprio.calib_periodic_high2 = 0x5;
4480 0 : btprio.dtim = 0x6;
4481 0 : btprio.scan52 = 0x8;
4482 0 : btprio.scan24 = 0xa;
4483 0 : error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
4484 : 1);
4485 0 : if (error != 0)
4486 0 : return (error);
4487 :
4488 : /* Force BT state machine change */
4489 0 : memset(&btprot, 0, sizeof btprot);
4490 0 : btprot.open = 1;
4491 0 : btprot.type = 1;
4492 0 : error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
4493 0 : if (error != 0)
4494 0 : return (error);
4495 :
4496 0 : btprot.open = 0;
4497 0 : return (iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1));
4498 0 : }
4499 :
4500 : int
4501 0 : iwn5000_runtime_calib(struct iwn_softc *sc)
4502 : {
4503 0 : struct iwn5000_calib_config cmd;
4504 :
4505 0 : memset(&cmd, 0, sizeof cmd);
4506 0 : cmd.ucode.once.enable = 0xffffffff;
4507 0 : cmd.ucode.once.start = IWN5000_CALIB_DC;
4508 : DPRINTF(("configuring runtime calibration\n"));
4509 0 : return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4510 0 : }
4511 :
4512 : int
4513 0 : iwn_config(struct iwn_softc *sc)
4514 : {
4515 0 : struct iwn_ops *ops = &sc->ops;
4516 0 : struct ieee80211com *ic = &sc->sc_ic;
4517 0 : struct ifnet *ifp = &ic->ic_if;
4518 0 : uint32_t txmask;
4519 : uint16_t rxchain;
4520 : int error, ridx;
4521 :
4522 : /* Set radio temperature sensor offset. */
4523 0 : if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4524 0 : error = iwn6000_temp_offset_calib(sc);
4525 0 : if (error != 0) {
4526 0 : printf("%s: could not set temperature offset\n",
4527 0 : sc->sc_dev.dv_xname);
4528 0 : return error;
4529 : }
4530 : }
4531 :
4532 0 : if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4533 0 : sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4534 0 : sc->hw_type == IWN_HW_REV_TYPE_135 ||
4535 0 : sc->hw_type == IWN_HW_REV_TYPE_105) {
4536 0 : error = iwn2000_temp_offset_calib(sc);
4537 0 : if (error != 0) {
4538 0 : printf("%s: could not set temperature offset\n",
4539 0 : sc->sc_dev.dv_xname);
4540 0 : return error;
4541 : }
4542 : }
4543 :
4544 0 : if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4545 0 : sc->hw_type == IWN_HW_REV_TYPE_6005) {
4546 : /* Configure runtime DC calibration. */
4547 0 : error = iwn5000_runtime_calib(sc);
4548 0 : if (error != 0) {
4549 0 : printf("%s: could not configure runtime calibration\n",
4550 0 : sc->sc_dev.dv_xname);
4551 0 : return error;
4552 : }
4553 : }
4554 :
4555 : /* Configure valid TX chains for >=5000 Series. */
4556 0 : if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4557 0 : txmask = htole32(sc->txchainmask);
4558 : DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4559 0 : error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4560 : sizeof txmask, 0);
4561 0 : if (error != 0) {
4562 0 : printf("%s: could not configure valid TX chains\n",
4563 0 : sc->sc_dev.dv_xname);
4564 0 : return error;
4565 : }
4566 : }
4567 :
4568 : /* Configure bluetooth coexistence. */
4569 0 : if (sc->sc_flags & IWN_FLAG_ADV_BT_COEX)
4570 0 : error = iwn_send_advanced_btcoex(sc);
4571 : else
4572 0 : error = iwn_send_btcoex(sc);
4573 0 : if (error != 0) {
4574 0 : printf("%s: could not configure bluetooth coexistence\n",
4575 0 : sc->sc_dev.dv_xname);
4576 0 : return error;
4577 : }
4578 :
4579 : /* Set mode, channel, RX filter and enable RX. */
4580 0 : memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4581 0 : IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
4582 0 : IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4583 0 : IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4584 0 : sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4585 0 : sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4586 0 : if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
4587 0 : sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4588 0 : if (ic->ic_flags & IEEE80211_F_USEPROT)
4589 0 : sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
4590 : DPRINTF(("%s: 2ghz prot 0x%x\n", __func__,
4591 : le32toh(sc->rxon.flags)));
4592 : }
4593 0 : switch (ic->ic_opmode) {
4594 : case IEEE80211_M_STA:
4595 0 : sc->rxon.mode = IWN_MODE_STA;
4596 0 : sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4597 0 : break;
4598 : case IEEE80211_M_MONITOR:
4599 0 : sc->rxon.mode = IWN_MODE_MONITOR;
4600 0 : sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4601 : IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4602 0 : break;
4603 : default:
4604 : /* Should not get there. */
4605 : break;
4606 : }
4607 0 : sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4608 0 : sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4609 0 : sc->rxon.ht_single_mask = 0xff;
4610 0 : sc->rxon.ht_dual_mask = 0xff;
4611 0 : sc->rxon.ht_triple_mask = 0xff;
4612 : rxchain =
4613 0 : IWN_RXCHAIN_VALID(sc->rxchainmask) |
4614 0 : IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
4615 0 : IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
4616 0 : if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4617 0 : rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4618 0 : rxchain |= IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask);
4619 0 : rxchain |= (IWN_RXCHAIN_DRIVER_FORCE | IWN_RXCHAIN_MIMO_FORCE);
4620 0 : }
4621 0 : sc->rxon.rxchain = htole16(rxchain);
4622 : DPRINTF(("setting configuration\n"));
4623 : DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x rxchain %x\n",
4624 : __func__, sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
4625 : sc->rxon.ofdm_mask, sc->rxon.rxchain));
4626 0 : error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4627 0 : if (error != 0) {
4628 0 : printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
4629 0 : return error;
4630 : }
4631 :
4632 0 : ridx = (sc->sc_ic.ic_curmode == IEEE80211_MODE_11A) ?
4633 : IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
4634 0 : if ((error = iwn_add_broadcast_node(sc, 0, ridx)) != 0) {
4635 0 : printf("%s: could not add broadcast node\n",
4636 0 : sc->sc_dev.dv_xname);
4637 0 : return error;
4638 : }
4639 :
4640 : /* Configuration has changed, set TX power accordingly. */
4641 0 : if ((error = ops->set_txpower(sc, 0)) != 0) {
4642 0 : printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
4643 0 : return error;
4644 : }
4645 :
4646 0 : if ((error = iwn_set_critical_temp(sc)) != 0) {
4647 0 : printf("%s: could not set critical temperature\n",
4648 0 : sc->sc_dev.dv_xname);
4649 0 : return error;
4650 : }
4651 :
4652 : /* Set power saving level to CAM during initialization. */
4653 0 : if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4654 0 : printf("%s: could not set power saving level\n",
4655 0 : sc->sc_dev.dv_xname);
4656 0 : return error;
4657 : }
4658 0 : return 0;
4659 0 : }
4660 :
4661 : uint16_t
4662 0 : iwn_get_active_dwell_time(struct iwn_softc *sc,
4663 : uint16_t flags, uint8_t n_probes)
4664 : {
4665 : /* No channel? Default to 2GHz settings */
4666 0 : if (flags & IEEE80211_CHAN_2GHZ) {
4667 0 : return (IWN_ACTIVE_DWELL_TIME_2GHZ +
4668 0 : IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
4669 : }
4670 :
4671 : /* 5GHz dwell time */
4672 0 : return (IWN_ACTIVE_DWELL_TIME_5GHZ +
4673 0 : IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4674 0 : }
4675 :
4676 : /*
4677 : * Limit the total dwell time to 85% of the beacon interval.
4678 : *
4679 : * Returns the dwell time in milliseconds.
4680 : */
4681 : uint16_t
4682 0 : iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4683 : {
4684 0 : struct ieee80211com *ic = &sc->sc_ic;
4685 0 : struct ieee80211_node *ni = ic->ic_bss;
4686 : int bintval = 0;
4687 :
4688 : /* bintval is in TU (1.024mS) */
4689 0 : if (ni != NULL)
4690 0 : bintval = ni->ni_intval;
4691 :
4692 : /*
4693 : * If it's non-zero, we should calculate the minimum of
4694 : * it and the DWELL_BASE.
4695 : *
4696 : * XXX Yes, the math should take into account that bintval
4697 : * is 1.024mS, not 1mS..
4698 : */
4699 0 : if (ic->ic_state == IEEE80211_S_RUN && bintval > 0)
4700 0 : return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
4701 :
4702 : /* No association context? Default */
4703 0 : return (IWN_PASSIVE_DWELL_BASE);
4704 0 : }
4705 :
4706 : uint16_t
4707 0 : iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4708 : {
4709 : uint16_t passive;
4710 0 : if (flags & IEEE80211_CHAN_2GHZ) {
4711 : passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4712 0 : } else {
4713 : passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4714 : }
4715 :
4716 : /* Clamp to the beacon interval if we're associated */
4717 0 : return (iwn_limit_dwell(sc, passive));
4718 : }
4719 :
4720 : int
4721 0 : iwn_scan(struct iwn_softc *sc, uint16_t flags, int bgscan)
4722 : {
4723 0 : struct ieee80211com *ic = &sc->sc_ic;
4724 : struct iwn_scan_hdr *hdr;
4725 : struct iwn_cmd_data *tx;
4726 : struct iwn_scan_essid *essid;
4727 : struct iwn_scan_chan *chan;
4728 : struct ieee80211_frame *wh;
4729 : struct ieee80211_rateset *rs;
4730 : struct ieee80211_channel *c;
4731 0 : struct ifnet *ifp = &ic->ic_if;
4732 : uint8_t *buf, *frm;
4733 : uint16_t rxchain, dwell_active, dwell_passive;
4734 : uint8_t txant;
4735 : int buflen, error, is_active;
4736 :
4737 0 : buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4738 0 : if (buf == NULL) {
4739 0 : printf("%s: could not allocate buffer for scan command\n",
4740 0 : sc->sc_dev.dv_xname);
4741 0 : return ENOMEM;
4742 : }
4743 0 : hdr = (struct iwn_scan_hdr *)buf;
4744 : /*
4745 : * Move to the next channel if no frames are received within 10ms
4746 : * after sending the probe request.
4747 : */
4748 0 : hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4749 0 : hdr->quiet_threshold = htole16(1); /* min # of packets */
4750 :
4751 0 : if (bgscan) {
4752 : int bintval;
4753 :
4754 : /* Set maximum off-channel time. */
4755 0 : hdr->max_out = htole32(200 * 1024);
4756 :
4757 : /* Configure scan pauses which service on-channel traffic. */
4758 0 : bintval = ic->ic_bss->ni_intval ? ic->ic_bss->ni_intval : 100;
4759 0 : hdr->pause_scan = htole32(((100 / bintval) << 22) |
4760 : ((100 % bintval) * 1024));
4761 0 : }
4762 :
4763 : /* Select antennas for scanning. */
4764 : rxchain =
4765 0 : IWN_RXCHAIN_VALID(sc->rxchainmask) |
4766 0 : IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4767 : IWN_RXCHAIN_DRIVER_FORCE;
4768 0 : if ((flags & IEEE80211_CHAN_5GHZ) &&
4769 0 : sc->hw_type == IWN_HW_REV_TYPE_4965) {
4770 : /*
4771 : * On 4965 ant A and C must be avoided in 5GHz because of a
4772 : * HW bug which causes very weak RSSI values being reported.
4773 : */
4774 0 : rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
4775 0 : } else /* Use all available RX antennas. */
4776 0 : rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4777 0 : hdr->rxchain = htole16(rxchain);
4778 0 : hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4779 :
4780 0 : tx = (struct iwn_cmd_data *)(hdr + 1);
4781 0 : tx->flags = htole32(IWN_TX_AUTO_SEQ);
4782 0 : tx->id = sc->broadcast_id;
4783 0 : tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4784 :
4785 0 : if (flags & IEEE80211_CHAN_5GHZ) {
4786 : /* Send probe requests at 6Mbps. */
4787 0 : tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4788 0 : rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4789 0 : } else {
4790 0 : hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4791 0 : if (bgscan && sc->hw_type == IWN_HW_REV_TYPE_4965 &&
4792 0 : sc->rxon.chan > 14) {
4793 : /*
4794 : * 4965 firmware can crash when sending probe requests
4795 : * with CCK rates while associated to a 5GHz AP.
4796 : * Send probe requests at 6Mbps OFDM as a workaround.
4797 : */
4798 0 : tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4799 0 : } else {
4800 : /* Send probe requests at 1Mbps. */
4801 0 : tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4802 0 : tx->rflags = IWN_RFLAG_CCK;
4803 : }
4804 0 : rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4805 : }
4806 : /* Use the first valid TX antenna. */
4807 0 : txant = IWN_LSB(sc->txchainmask);
4808 0 : tx->rflags |= IWN_RFLAG_ANT(txant);
4809 :
4810 : /*
4811 : * Only do active scanning if we're announcing a probe request
4812 : * for a given SSID (or more, if we ever add it to the driver.)
4813 : */
4814 : is_active = 0;
4815 :
4816 : /*
4817 : * If we're scanning for a specific SSID, add it to the command.
4818 : */
4819 0 : essid = (struct iwn_scan_essid *)(tx + 1);
4820 0 : if (ic->ic_des_esslen != 0) {
4821 0 : essid[0].id = IEEE80211_ELEMID_SSID;
4822 0 : essid[0].len = ic->ic_des_esslen;
4823 0 : memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4824 :
4825 : is_active = 1;
4826 0 : }
4827 : /*
4828 : * Build a probe request frame. Most of the following code is a
4829 : * copy & paste of what is done in net80211.
4830 : */
4831 0 : wh = (struct ieee80211_frame *)(essid + 20);
4832 0 : wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4833 : IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4834 0 : wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4835 0 : IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
4836 0 : IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4837 0 : IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4838 0 : IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4839 0 : *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4840 0 : *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4841 :
4842 0 : frm = (uint8_t *)(wh + 1);
4843 0 : frm = ieee80211_add_ssid(frm, NULL, 0);
4844 0 : frm = ieee80211_add_rates(frm, rs);
4845 0 : if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4846 0 : frm = ieee80211_add_xrates(frm, rs);
4847 0 : if (ic->ic_flags & IEEE80211_F_HTON)
4848 0 : frm = ieee80211_add_htcaps(frm, ic);
4849 :
4850 : /* Set length of probe request. */
4851 0 : tx->len = htole16(frm - (uint8_t *)wh);
4852 :
4853 : /*
4854 : * If active scanning is requested but a certain channel is
4855 : * marked passive, we can do active scanning if we detect
4856 : * transmissions.
4857 : *
4858 : * There is an issue with some firmware versions that triggers
4859 : * a sysassert on a "good CRC threshold" of zero (== disabled),
4860 : * on a radar channel even though this means that we should NOT
4861 : * send probes.
4862 : *
4863 : * The "good CRC threshold" is the number of frames that we
4864 : * need to receive during our dwell time on a channel before
4865 : * sending out probes -- setting this to a huge value will
4866 : * mean we never reach it, but at the same time work around
4867 : * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4868 : * here instead of IWN_GOOD_CRC_TH_DISABLED.
4869 : *
4870 : * This was fixed in later versions along with some other
4871 : * scan changes, and the threshold behaves as a flag in those
4872 : * versions.
4873 : */
4874 :
4875 : /*
4876 : * If we're doing active scanning, set the crc_threshold
4877 : * to a suitable value. This is different to active veruss
4878 : * passive scanning depending upon the channel flags; the
4879 : * firmware will obey that particular check for us.
4880 : */
4881 0 : if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4882 0 : hdr->crc_threshold = is_active ?
4883 : IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4884 : else
4885 0 : hdr->crc_threshold = is_active ?
4886 : IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4887 :
4888 0 : chan = (struct iwn_scan_chan *)frm;
4889 0 : for (c = &ic->ic_channels[1];
4890 0 : c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4891 0 : if ((c->ic_flags & flags) != flags)
4892 : continue;
4893 :
4894 0 : chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4895 : DPRINTFN(2, ("adding channel %d\n", chan->chan));
4896 0 : chan->flags = 0;
4897 0 : if (ic->ic_des_esslen != 0)
4898 0 : chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4899 :
4900 0 : if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
4901 0 : chan->flags |= htole32(IWN_CHAN_PASSIVE);
4902 : else
4903 0 : chan->flags |= htole32(IWN_CHAN_ACTIVE);
4904 :
4905 : /*
4906 : * Calculate the active/passive dwell times.
4907 : */
4908 :
4909 0 : dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4910 0 : dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4911 :
4912 : /* Make sure they're valid */
4913 0 : if (dwell_passive <= dwell_active)
4914 0 : dwell_passive = dwell_active + 1;
4915 :
4916 0 : chan->active = htole16(dwell_active);
4917 0 : chan->passive = htole16(dwell_passive);
4918 :
4919 0 : chan->dsp_gain = 0x6e;
4920 0 : if (IEEE80211_IS_CHAN_5GHZ(c)) {
4921 0 : chan->rf_gain = 0x3b;
4922 0 : } else {
4923 0 : chan->rf_gain = 0x28;
4924 : }
4925 0 : hdr->nchan++;
4926 0 : chan++;
4927 0 : }
4928 :
4929 0 : buflen = (uint8_t *)chan - buf;
4930 0 : hdr->len = htole16(buflen);
4931 :
4932 : DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4933 0 : error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4934 0 : if (error == 0) {
4935 0 : sc->sc_flags |= IWN_FLAG_SCANNING;
4936 0 : if (bgscan)
4937 0 : sc->sc_flags |= IWN_FLAG_BGSCAN;
4938 : }
4939 0 : free(buf, M_DEVBUF, IWN_SCAN_MAXSZ);
4940 0 : return error;
4941 0 : }
4942 :
4943 : void
4944 0 : iwn_scan_abort(struct iwn_softc *sc)
4945 : {
4946 0 : iwn_cmd(sc, IWN_CMD_SCAN_ABORT, NULL, 0, 1);
4947 :
4948 : /* XXX Cannot wait for status response in interrupt context. */
4949 0 : DELAY(100);
4950 :
4951 0 : sc->sc_flags &= ~IWN_FLAG_SCANNING;
4952 0 : sc->sc_flags &= ~IWN_FLAG_BGSCAN;
4953 0 : }
4954 :
4955 : int
4956 0 : iwn_bgscan(struct ieee80211com *ic)
4957 : {
4958 0 : struct iwn_softc *sc = ic->ic_softc;
4959 : int error;
4960 :
4961 0 : if (sc->sc_flags & IWN_FLAG_SCANNING)
4962 0 : return 0;
4963 :
4964 0 : error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 1);
4965 0 : if (error)
4966 0 : printf("%s: could not initiate background scan\n",
4967 0 : sc->sc_dev.dv_xname);
4968 0 : return error;
4969 0 : }
4970 :
4971 : int
4972 0 : iwn_auth(struct iwn_softc *sc, int arg)
4973 : {
4974 0 : struct iwn_ops *ops = &sc->ops;
4975 0 : struct ieee80211com *ic = &sc->sc_ic;
4976 0 : struct ieee80211_node *ni = ic->ic_bss;
4977 : int error, ridx;
4978 : int bss_switch =
4979 0 : (!IEEE80211_ADDR_EQ(sc->bss_node_addr, etheranyaddr) &&
4980 0 : !IEEE80211_ADDR_EQ(sc->bss_node_addr, ni->ni_macaddr));
4981 :
4982 : /* Update adapter configuration. */
4983 0 : IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4984 0 : sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4985 0 : sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4986 0 : if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
4987 0 : sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4988 0 : if (ic->ic_flags & IEEE80211_F_USEPROT)
4989 0 : sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
4990 : DPRINTF(("%s: 2ghz prot 0x%x\n", __func__,
4991 : le32toh(sc->rxon.flags)));
4992 : }
4993 0 : if (ic->ic_flags & IEEE80211_F_SHSLOT)
4994 0 : sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4995 : else
4996 0 : sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT);
4997 0 : if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4998 0 : sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4999 : else
5000 0 : sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE);
5001 0 : switch (ic->ic_curmode) {
5002 : case IEEE80211_MODE_11A:
5003 0 : sc->rxon.cck_mask = 0;
5004 0 : sc->rxon.ofdm_mask = 0x15;
5005 0 : break;
5006 : case IEEE80211_MODE_11B:
5007 0 : sc->rxon.cck_mask = 0x03;
5008 0 : sc->rxon.ofdm_mask = 0;
5009 0 : break;
5010 : default: /* Assume 802.11b/g/n. */
5011 0 : sc->rxon.cck_mask = 0x0f;
5012 0 : sc->rxon.ofdm_mask = 0x15;
5013 0 : }
5014 : DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__,
5015 : sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
5016 : sc->rxon.ofdm_mask));
5017 0 : error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5018 0 : if (error != 0) {
5019 0 : printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
5020 0 : return error;
5021 : }
5022 :
5023 : /* Configuration has changed, set TX power accordingly. */
5024 0 : if ((error = ops->set_txpower(sc, 1)) != 0) {
5025 0 : printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5026 0 : return error;
5027 : }
5028 : /*
5029 : * Reconfiguring RXON clears the firmware nodes table so we must
5030 : * add the broadcast node again.
5031 : */
5032 0 : ridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ?
5033 : IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
5034 0 : if ((error = iwn_add_broadcast_node(sc, 1, ridx)) != 0) {
5035 0 : printf("%s: could not add broadcast node\n",
5036 0 : sc->sc_dev.dv_xname);
5037 0 : return error;
5038 : }
5039 :
5040 : /*
5041 : * Make sure the firmware gets to see a beacon before we send
5042 : * the auth request. Otherwise the Tx attempt can fail due to
5043 : * the firmware's built-in regulatory domain enforcement.
5044 : * Delaying here for every incoming deauth frame can result in a DoS.
5045 : * Don't delay if we're here because of an incoming frame (arg != -1)
5046 : * or if we're already waiting for a response (ic_mgt_timer != 0).
5047 : * If we are switching APs after a background scan then net80211 has
5048 : * just faked the reception of a deauth frame from our old AP, so it
5049 : * is safe to delay in that case.
5050 : */
5051 0 : if ((arg == -1 || bss_switch) && ic->ic_mgt_timer == 0)
5052 0 : DELAY(ni->ni_intval * 3 * IEEE80211_DUR_TU);
5053 :
5054 : /* We can now clear the cached address of our previous AP. */
5055 0 : memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr));
5056 :
5057 0 : return 0;
5058 0 : }
5059 :
5060 : int
5061 0 : iwn_run(struct iwn_softc *sc)
5062 : {
5063 0 : struct iwn_ops *ops = &sc->ops;
5064 0 : struct ieee80211com *ic = &sc->sc_ic;
5065 0 : struct ieee80211_node *ni = ic->ic_bss;
5066 0 : struct iwn_node *wn = (void *)ni;
5067 0 : struct iwn_node_info node;
5068 : int error;
5069 :
5070 0 : if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5071 : /* Link LED blinks while monitoring. */
5072 0 : iwn_set_led(sc, IWN_LED_LINK, 50, 50);
5073 0 : return 0;
5074 : }
5075 0 : if ((error = iwn_set_timing(sc, ni)) != 0) {
5076 0 : printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
5077 0 : return error;
5078 : }
5079 :
5080 : /* Update adapter configuration. */
5081 0 : sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5082 : /* Short preamble and slot time are negotiated when associating. */
5083 0 : sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
5084 0 : if (ic->ic_flags & IEEE80211_F_SHSLOT)
5085 0 : sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5086 0 : if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5087 0 : sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5088 0 : sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5089 :
5090 : /* HT is negotiated when associating. */
5091 0 : if (ni->ni_flags & IEEE80211_NODE_HT) {
5092 : enum ieee80211_htprot htprot =
5093 0 : (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
5094 : DPRINTF(("%s: htprot = %d\n", __func__, htprot));
5095 0 : sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot));
5096 0 : } else
5097 0 : sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3));
5098 :
5099 0 : if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) {
5100 : /* 11a or 11n 5GHz */
5101 0 : sc->rxon.cck_mask = 0;
5102 0 : sc->rxon.ofdm_mask = 0x15;
5103 0 : } else if (ni->ni_flags & IEEE80211_NODE_HT) {
5104 : /* 11n 2GHz */
5105 0 : sc->rxon.cck_mask = 0x0f;
5106 0 : sc->rxon.ofdm_mask = 0x15;
5107 0 : } else {
5108 0 : if (ni->ni_rates.rs_nrates == 4) {
5109 : /* 11b */
5110 0 : sc->rxon.cck_mask = 0x03;
5111 0 : sc->rxon.ofdm_mask = 0;
5112 0 : } else {
5113 : /* assume 11g */
5114 0 : sc->rxon.cck_mask = 0x0f;
5115 0 : sc->rxon.ofdm_mask = 0x15;
5116 : }
5117 : }
5118 : DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__,
5119 : sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
5120 : sc->rxon.ofdm_mask));
5121 0 : error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5122 0 : if (error != 0) {
5123 0 : printf("%s: could not update configuration\n",
5124 0 : sc->sc_dev.dv_xname);
5125 0 : return error;
5126 : }
5127 :
5128 : /* Configuration has changed, set TX power accordingly. */
5129 0 : if ((error = ops->set_txpower(sc, 1)) != 0) {
5130 0 : printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5131 0 : return error;
5132 : }
5133 :
5134 : /* Fake a join to initialize the TX rate. */
5135 0 : ((struct iwn_node *)ni)->id = IWN_ID_BSS;
5136 0 : iwn_newassoc(ic, ni, 1);
5137 :
5138 : /* Add BSS node. */
5139 0 : memset(&node, 0, sizeof node);
5140 0 : IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5141 0 : node.id = IWN_ID_BSS;
5142 0 : if (ni->ni_flags & IEEE80211_NODE_HT) {
5143 0 : node.htmask = (IWN_AMDPU_SIZE_FACTOR_MASK |
5144 : IWN_AMDPU_DENSITY_MASK);
5145 0 : node.htflags = htole32(
5146 : IWN_AMDPU_SIZE_FACTOR(
5147 : (ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_LE)) |
5148 : IWN_AMDPU_DENSITY(
5149 : (ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) >> 2));
5150 0 : }
5151 : DPRINTF(("adding BSS node\n"));
5152 0 : error = ops->add_node(sc, &node, 1);
5153 0 : if (error != 0) {
5154 0 : printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
5155 0 : return error;
5156 : }
5157 :
5158 : /* Cache address of AP in case it changes after a background scan. */
5159 0 : IEEE80211_ADDR_COPY(sc->bss_node_addr, ni->ni_macaddr);
5160 :
5161 : DPRINTF(("setting link quality for node %d\n", node.id));
5162 0 : if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5163 0 : printf("%s: could not setup link quality for node %d\n",
5164 0 : sc->sc_dev.dv_xname, node.id);
5165 0 : return error;
5166 : }
5167 :
5168 0 : if ((error = iwn_init_sensitivity(sc)) != 0) {
5169 0 : printf("%s: could not set sensitivity\n",
5170 0 : sc->sc_dev.dv_xname);
5171 0 : return error;
5172 : }
5173 : /* Start periodic calibration timer. */
5174 0 : sc->calib.state = IWN_CALIB_STATE_ASSOC;
5175 0 : sc->calib_cnt = 0;
5176 0 : timeout_add_msec(&sc->calib_to, 500);
5177 :
5178 0 : ieee80211_mira_node_init(&wn->mn);
5179 :
5180 : /* Link LED always on while associated. */
5181 0 : iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5182 0 : return 0;
5183 0 : }
5184 :
5185 : /*
5186 : * We support CCMP hardware encryption/decryption of unicast frames only.
5187 : * HW support for TKIP really sucks. We should let TKIP die anyway.
5188 : */
5189 : int
5190 0 : iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5191 : struct ieee80211_key *k)
5192 : {
5193 0 : struct iwn_softc *sc = ic->ic_softc;
5194 0 : struct iwn_ops *ops = &sc->ops;
5195 0 : struct iwn_node *wn = (void *)ni;
5196 0 : struct iwn_node_info node;
5197 : uint16_t kflags;
5198 :
5199 0 : if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5200 0 : k->k_cipher != IEEE80211_CIPHER_CCMP)
5201 0 : return ieee80211_set_key(ic, ni, k);
5202 :
5203 0 : kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5204 0 : if (k->k_flags & IEEE80211_KEY_GROUP)
5205 0 : kflags |= IWN_KFLAG_GROUP;
5206 :
5207 0 : memset(&node, 0, sizeof node);
5208 0 : node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5209 0 : sc->broadcast_id : wn->id;
5210 0 : node.control = IWN_NODE_UPDATE;
5211 0 : node.flags = IWN_FLAG_SET_KEY;
5212 0 : node.kflags = htole16(kflags);
5213 0 : node.kid = k->k_id;
5214 0 : memcpy(node.key, k->k_key, k->k_len);
5215 : DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5216 0 : return ops->add_node(sc, &node, 1);
5217 0 : }
5218 :
5219 : void
5220 0 : iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5221 : struct ieee80211_key *k)
5222 : {
5223 0 : struct iwn_softc *sc = ic->ic_softc;
5224 0 : struct iwn_ops *ops = &sc->ops;
5225 0 : struct iwn_node *wn = (void *)ni;
5226 0 : struct iwn_node_info node;
5227 :
5228 0 : if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5229 0 : k->k_cipher != IEEE80211_CIPHER_CCMP) {
5230 : /* See comment about other ciphers above. */
5231 0 : ieee80211_delete_key(ic, ni, k);
5232 0 : return;
5233 : }
5234 0 : if (ic->ic_state != IEEE80211_S_RUN)
5235 0 : return; /* Nothing to do. */
5236 0 : memset(&node, 0, sizeof node);
5237 0 : node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5238 0 : sc->broadcast_id : wn->id;
5239 0 : node.control = IWN_NODE_UPDATE;
5240 0 : node.flags = IWN_FLAG_SET_KEY;
5241 0 : node.kflags = htole16(IWN_KFLAG_INVALID);
5242 0 : node.kid = 0xff;
5243 : DPRINTF(("delete keys for node %d\n", node.id));
5244 0 : (void)ops->add_node(sc, &node, 1);
5245 0 : }
5246 :
5247 : /*
5248 : * This function is called by upper layer when HT protection settings in
5249 : * beacons have changed.
5250 : */
5251 : void
5252 0 : iwn_update_htprot(struct ieee80211com *ic, struct ieee80211_node *ni)
5253 : {
5254 0 : struct iwn_softc *sc = ic->ic_softc;
5255 0 : struct iwn_ops *ops = &sc->ops;
5256 : enum ieee80211_htprot htprot;
5257 0 : struct iwn_rxon_assoc rxon_assoc;
5258 : int s, error;
5259 :
5260 : /* Update HT protection mode setting. */
5261 0 : htprot = (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK) >>
5262 : IEEE80211_HTOP1_PROT_SHIFT;
5263 0 : sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3));
5264 0 : sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot));
5265 :
5266 : /* Update RXON config. */
5267 0 : memset(&rxon_assoc, 0, sizeof(rxon_assoc));
5268 0 : rxon_assoc.flags = sc->rxon.flags;
5269 0 : rxon_assoc.filter = sc->rxon.filter;
5270 0 : rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
5271 0 : rxon_assoc.cck_mask = sc->rxon.cck_mask;
5272 0 : rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask;
5273 0 : rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask;
5274 0 : rxon_assoc.ht_triple_mask = sc->rxon.ht_triple_mask;
5275 0 : rxon_assoc.rxchain = sc->rxon.rxchain;
5276 0 : rxon_assoc.acquisition = sc->rxon.acquisition;
5277 :
5278 0 : s = splnet();
5279 :
5280 0 : error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &rxon_assoc,
5281 : sizeof(rxon_assoc), 1);
5282 0 : if (error != 0)
5283 0 : printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname);
5284 :
5285 0 : DELAY(100);
5286 :
5287 : /* All RXONs wipe the firmware's txpower table. Restore it. */
5288 0 : error = ops->set_txpower(sc, 1);
5289 0 : if (error != 0)
5290 0 : printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5291 :
5292 0 : DELAY(100);
5293 :
5294 : /* Restore power saving level */
5295 0 : if (ic->ic_flags & IEEE80211_F_PMGTON)
5296 0 : error = iwn_set_pslevel(sc, 0, 3, 1);
5297 : else
5298 0 : error = iwn_set_pslevel(sc, 0, 0, 1);
5299 0 : if (error != 0)
5300 0 : printf("%s: could not set PS level\n", sc->sc_dev.dv_xname);
5301 :
5302 0 : splx(s);
5303 0 : }
5304 :
5305 : /*
5306 : * This function is called by upper layer when an ADDBA request is received
5307 : * from another STA and before the ADDBA response is sent.
5308 : */
5309 : int
5310 0 : iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5311 : uint8_t tid)
5312 : {
5313 0 : struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5314 0 : struct iwn_softc *sc = ic->ic_softc;
5315 0 : struct iwn_ops *ops = &sc->ops;
5316 0 : struct iwn_node *wn = (void *)ni;
5317 0 : struct iwn_node_info node;
5318 :
5319 0 : memset(&node, 0, sizeof node);
5320 0 : node.id = wn->id;
5321 0 : node.control = IWN_NODE_UPDATE;
5322 0 : node.flags = IWN_FLAG_SET_ADDBA;
5323 0 : node.addba_tid = tid;
5324 0 : node.addba_ssn = htole16(ba->ba_winstart);
5325 : DPRINTF(("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5326 : ba->ba_winstart));
5327 : /* XXX async command, so firmware may still fail to add BA agreement */
5328 0 : return ops->add_node(sc, &node, 1);
5329 0 : }
5330 :
5331 : /*
5332 : * This function is called by upper layer on teardown of an HT-immediate
5333 : * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5334 : */
5335 : void
5336 0 : iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5337 : uint8_t tid)
5338 : {
5339 0 : struct iwn_softc *sc = ic->ic_softc;
5340 0 : struct iwn_ops *ops = &sc->ops;
5341 0 : struct iwn_node *wn = (void *)ni;
5342 0 : struct iwn_node_info node;
5343 :
5344 0 : memset(&node, 0, sizeof node);
5345 0 : node.id = wn->id;
5346 0 : node.control = IWN_NODE_UPDATE;
5347 0 : node.flags = IWN_FLAG_SET_DELBA;
5348 0 : node.delba_tid = tid;
5349 : DPRINTF(("DELBA RA=%d TID=%d\n", wn->id, tid));
5350 0 : (void)ops->add_node(sc, &node, 1);
5351 0 : }
5352 :
5353 : /*
5354 : * This function is called by upper layer when an ADDBA response is received
5355 : * from another STA.
5356 : */
5357 : int
5358 0 : iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5359 : uint8_t tid)
5360 : {
5361 0 : struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5362 0 : struct iwn_softc *sc = ic->ic_softc;
5363 0 : struct iwn_ops *ops = &sc->ops;
5364 0 : struct iwn_node *wn = (void *)ni;
5365 0 : struct iwn_node_info node;
5366 : int error;
5367 :
5368 : /* Enable TX for the specified RA/TID. */
5369 0 : wn->disable_tid &= ~(1 << tid);
5370 0 : memset(&node, 0, sizeof node);
5371 0 : node.id = wn->id;
5372 0 : node.control = IWN_NODE_UPDATE;
5373 0 : node.flags = IWN_FLAG_SET_DISABLE_TID;
5374 0 : node.disable_tid = htole16(wn->disable_tid);
5375 0 : error = ops->add_node(sc, &node, 1);
5376 0 : if (error != 0)
5377 0 : return error;
5378 :
5379 0 : if ((error = iwn_nic_lock(sc)) != 0)
5380 0 : return error;
5381 0 : ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5382 0 : iwn_nic_unlock(sc);
5383 0 : return 0;
5384 0 : }
5385 :
5386 : void
5387 0 : iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5388 : uint8_t tid)
5389 : {
5390 0 : struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5391 0 : struct iwn_softc *sc = ic->ic_softc;
5392 0 : struct iwn_ops *ops = &sc->ops;
5393 :
5394 0 : if (iwn_nic_lock(sc) != 0)
5395 0 : return;
5396 0 : ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5397 0 : iwn_nic_unlock(sc);
5398 0 : }
5399 :
5400 : void
5401 0 : iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5402 : uint8_t tid, uint16_t ssn)
5403 : {
5404 0 : struct iwn_node *wn = (void *)ni;
5405 0 : int qid = 7 + tid;
5406 :
5407 : /* Stop TX scheduler while we're changing its configuration. */
5408 0 : iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5409 : IWN4965_TXQ_STATUS_CHGACT);
5410 :
5411 : /* Assign RA/TID translation to the queue. */
5412 0 : iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5413 0 : wn->id << 4 | tid);
5414 :
5415 : /* Enable chain-building mode for the queue. */
5416 0 : iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5417 :
5418 : /* Set starting sequence number from the ADDBA request. */
5419 0 : IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5420 0 : iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5421 :
5422 : /* Set scheduler window size. */
5423 0 : iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5424 : IWN_SCHED_WINSZ);
5425 : /* Set scheduler frame limit. */
5426 0 : iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5427 : IWN_SCHED_LIMIT << 16);
5428 :
5429 : /* Enable interrupts for the queue. */
5430 0 : iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5431 :
5432 : /* Mark the queue as active. */
5433 0 : iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5434 0 : IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5435 0 : iwn_tid2fifo[tid] << 1);
5436 0 : }
5437 :
5438 : void
5439 0 : iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5440 : {
5441 0 : int qid = 7 + tid;
5442 :
5443 : /* Stop TX scheduler while we're changing its configuration. */
5444 0 : iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5445 : IWN4965_TXQ_STATUS_CHGACT);
5446 :
5447 : /* Set starting sequence number from the ADDBA request. */
5448 0 : IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5449 0 : iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5450 :
5451 : /* Disable interrupts for the queue. */
5452 0 : iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5453 :
5454 : /* Mark the queue as inactive. */
5455 0 : iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5456 0 : IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5457 0 : }
5458 :
5459 : void
5460 0 : iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5461 : uint8_t tid, uint16_t ssn)
5462 : {
5463 0 : struct iwn_node *wn = (void *)ni;
5464 0 : int qid = 10 + tid;
5465 :
5466 : /* Stop TX scheduler while we're changing its configuration. */
5467 0 : iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5468 : IWN5000_TXQ_STATUS_CHGACT);
5469 :
5470 : /* Assign RA/TID translation to the queue. */
5471 0 : iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5472 0 : wn->id << 4 | tid);
5473 :
5474 : /* Enable chain-building mode for the queue. */
5475 0 : iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5476 :
5477 : /* Enable aggregation for the queue. */
5478 0 : iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5479 :
5480 : /* Set starting sequence number from the ADDBA request. */
5481 0 : IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5482 0 : iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5483 :
5484 : /* Set scheduler window size and frame limit. */
5485 0 : iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5486 : IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5487 :
5488 : /* Enable interrupts for the queue. */
5489 0 : iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5490 :
5491 : /* Mark the queue as active. */
5492 0 : iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5493 0 : IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5494 0 : }
5495 :
5496 : void
5497 0 : iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5498 : {
5499 0 : int qid = 10 + tid;
5500 :
5501 : /* Stop TX scheduler while we're changing its configuration. */
5502 0 : iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5503 : IWN5000_TXQ_STATUS_CHGACT);
5504 :
5505 : /* Disable aggregation for the queue. */
5506 0 : iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5507 :
5508 : /* Set starting sequence number from the ADDBA request. */
5509 0 : IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5510 0 : iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5511 :
5512 : /* Disable interrupts for the queue. */
5513 0 : iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5514 :
5515 : /* Mark the queue as inactive. */
5516 0 : iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5517 0 : IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5518 0 : }
5519 :
5520 : /*
5521 : * Query calibration tables from the initialization firmware. We do this
5522 : * only once at first boot. Called from a process context.
5523 : */
5524 : int
5525 0 : iwn5000_query_calibration(struct iwn_softc *sc)
5526 : {
5527 0 : struct iwn5000_calib_config cmd;
5528 : int error;
5529 :
5530 0 : memset(&cmd, 0, sizeof cmd);
5531 0 : cmd.ucode.once.enable = 0xffffffff;
5532 0 : cmd.ucode.once.start = 0xffffffff;
5533 0 : cmd.ucode.once.send = 0xffffffff;
5534 0 : cmd.ucode.flags = 0xffffffff;
5535 : DPRINTF(("sending calibration query\n"));
5536 0 : error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5537 0 : if (error != 0)
5538 0 : return error;
5539 :
5540 : /* Wait at most two seconds for calibration to complete. */
5541 0 : if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5542 0 : error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5543 0 : return error;
5544 0 : }
5545 :
5546 : /*
5547 : * Send calibration results to the runtime firmware. These results were
5548 : * obtained on first boot from the initialization firmware.
5549 : */
5550 : int
5551 0 : iwn5000_send_calibration(struct iwn_softc *sc)
5552 : {
5553 : int idx, error;
5554 :
5555 0 : for (idx = 0; idx < 5; idx++) {
5556 0 : if (sc->calibcmd[idx].buf == NULL)
5557 : continue; /* No results available. */
5558 : DPRINTF(("send calibration result idx=%d len=%d\n",
5559 : idx, sc->calibcmd[idx].len));
5560 0 : error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5561 0 : sc->calibcmd[idx].len, 0);
5562 0 : if (error != 0) {
5563 0 : printf("%s: could not send calibration result\n",
5564 0 : sc->sc_dev.dv_xname);
5565 0 : return error;
5566 : }
5567 : }
5568 0 : return 0;
5569 0 : }
5570 :
5571 : int
5572 0 : iwn5000_send_wimax_coex(struct iwn_softc *sc)
5573 : {
5574 0 : struct iwn5000_wimax_coex wimax;
5575 :
5576 : #ifdef notyet
5577 : if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5578 : /* Enable WiMAX coexistence for combo adapters. */
5579 : wimax.flags =
5580 : IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5581 : IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5582 : IWN_WIMAX_COEX_STA_TABLE_VALID |
5583 : IWN_WIMAX_COEX_ENABLE;
5584 : memcpy(wimax.events, iwn6050_wimax_events,
5585 : sizeof iwn6050_wimax_events);
5586 : } else
5587 : #endif
5588 : {
5589 : /* Disable WiMAX coexistence. */
5590 0 : wimax.flags = 0;
5591 0 : memset(wimax.events, 0, sizeof wimax.events);
5592 : }
5593 : DPRINTF(("Configuring WiMAX coexistence\n"));
5594 0 : return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5595 0 : }
5596 :
5597 : int
5598 0 : iwn5000_crystal_calib(struct iwn_softc *sc)
5599 : {
5600 0 : struct iwn5000_phy_calib_crystal cmd;
5601 :
5602 0 : memset(&cmd, 0, sizeof cmd);
5603 0 : cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5604 0 : cmd.ngroups = 1;
5605 0 : cmd.isvalid = 1;
5606 0 : cmd.cap_pin[0] = letoh32(sc->eeprom_crystal) & 0xff;
5607 0 : cmd.cap_pin[1] = (letoh32(sc->eeprom_crystal) >> 16) & 0xff;
5608 : DPRINTF(("sending crystal calibration %d, %d\n",
5609 : cmd.cap_pin[0], cmd.cap_pin[1]));
5610 0 : return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5611 0 : }
5612 :
5613 : int
5614 0 : iwn6000_temp_offset_calib(struct iwn_softc *sc)
5615 : {
5616 0 : struct iwn6000_phy_calib_temp_offset cmd;
5617 :
5618 0 : memset(&cmd, 0, sizeof cmd);
5619 0 : cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5620 0 : cmd.ngroups = 1;
5621 0 : cmd.isvalid = 1;
5622 0 : if (sc->eeprom_temp != 0)
5623 0 : cmd.offset = htole16(sc->eeprom_temp);
5624 : else
5625 0 : cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5626 : DPRINTF(("setting radio sensor offset to %d\n", letoh16(cmd.offset)));
5627 0 : return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5628 0 : }
5629 :
5630 : int
5631 0 : iwn2000_temp_offset_calib(struct iwn_softc *sc)
5632 : {
5633 0 : struct iwn2000_phy_calib_temp_offset cmd;
5634 :
5635 0 : memset(&cmd, 0, sizeof cmd);
5636 0 : cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5637 0 : cmd.ngroups = 1;
5638 0 : cmd.isvalid = 1;
5639 0 : if (sc->eeprom_rawtemp != 0) {
5640 0 : cmd.offset_low = htole16(sc->eeprom_rawtemp);
5641 0 : cmd.offset_high = htole16(sc->eeprom_temp);
5642 0 : } else {
5643 0 : cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5644 0 : cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5645 : }
5646 0 : cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5647 : DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5648 : letoh16(cmd.offset_low), letoh16(cmd.offset_high),
5649 : letoh16(cmd.burnt_voltage_ref)));
5650 0 : return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5651 0 : }
5652 :
5653 : /*
5654 : * This function is called after the runtime firmware notifies us of its
5655 : * readiness (called in a process context).
5656 : */
5657 : int
5658 0 : iwn4965_post_alive(struct iwn_softc *sc)
5659 : {
5660 : int error, qid;
5661 :
5662 0 : if ((error = iwn_nic_lock(sc)) != 0)
5663 0 : return error;
5664 :
5665 : /* Clear TX scheduler state in SRAM. */
5666 0 : sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5667 0 : iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5668 : IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5669 :
5670 : /* Set physical address of TX scheduler rings (1KB aligned). */
5671 0 : iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5672 :
5673 0 : IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5674 :
5675 : /* Disable chain mode for all our 16 queues. */
5676 0 : iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5677 :
5678 0 : for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5679 0 : iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5680 0 : IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5681 :
5682 : /* Set scheduler window size. */
5683 0 : iwn_mem_write(sc, sc->sched_base +
5684 0 : IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5685 : /* Set scheduler frame limit. */
5686 0 : iwn_mem_write(sc, sc->sched_base +
5687 0 : IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5688 : IWN_SCHED_LIMIT << 16);
5689 : }
5690 :
5691 : /* Enable interrupts for all our 16 queues. */
5692 0 : iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5693 : /* Identify TX FIFO rings (0-7). */
5694 0 : iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5695 :
5696 : /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5697 0 : for (qid = 0; qid < 7; qid++) {
5698 : static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5699 0 : iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5700 0 : IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5701 : }
5702 0 : iwn_nic_unlock(sc);
5703 0 : return 0;
5704 0 : }
5705 :
5706 : /*
5707 : * This function is called after the initialization or runtime firmware
5708 : * notifies us of its readiness (called in a process context).
5709 : */
5710 : int
5711 0 : iwn5000_post_alive(struct iwn_softc *sc)
5712 : {
5713 : int error, qid;
5714 :
5715 : /* Switch to using ICT interrupt mode. */
5716 0 : iwn5000_ict_reset(sc);
5717 :
5718 0 : if ((error = iwn_nic_lock(sc)) != 0)
5719 0 : return error;
5720 :
5721 : /* Clear TX scheduler state in SRAM. */
5722 0 : sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5723 0 : iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5724 : IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5725 :
5726 : /* Set physical address of TX scheduler rings (1KB aligned). */
5727 0 : iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5728 :
5729 0 : IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5730 :
5731 : /* Enable chain mode for all queues, except command queue. */
5732 0 : iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5733 0 : iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5734 :
5735 0 : for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5736 0 : iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5737 0 : IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5738 :
5739 0 : iwn_mem_write(sc, sc->sched_base +
5740 0 : IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5741 : /* Set scheduler window size and frame limit. */
5742 0 : iwn_mem_write(sc, sc->sched_base +
5743 0 : IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5744 : IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5745 : }
5746 :
5747 : /* Enable interrupts for all our 20 queues. */
5748 0 : iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5749 : /* Identify TX FIFO rings (0-7). */
5750 0 : iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5751 :
5752 : /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5753 0 : for (qid = 0; qid < 7; qid++) {
5754 : static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5755 0 : iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5756 0 : IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5757 : }
5758 0 : iwn_nic_unlock(sc);
5759 :
5760 : /* Configure WiMAX coexistence for combo adapters. */
5761 0 : error = iwn5000_send_wimax_coex(sc);
5762 0 : if (error != 0) {
5763 0 : printf("%s: could not configure WiMAX coexistence\n",
5764 0 : sc->sc_dev.dv_xname);
5765 0 : return error;
5766 : }
5767 0 : if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5768 : /* Perform crystal calibration. */
5769 0 : error = iwn5000_crystal_calib(sc);
5770 0 : if (error != 0) {
5771 0 : printf("%s: crystal calibration failed\n",
5772 0 : sc->sc_dev.dv_xname);
5773 0 : return error;
5774 : }
5775 : }
5776 0 : if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5777 : /* Query calibration from the initialization firmware. */
5778 0 : if ((error = iwn5000_query_calibration(sc)) != 0) {
5779 0 : printf("%s: could not query calibration\n",
5780 0 : sc->sc_dev.dv_xname);
5781 0 : return error;
5782 : }
5783 : /*
5784 : * We have the calibration results now, reboot with the
5785 : * runtime firmware (call ourselves recursively!)
5786 : */
5787 0 : iwn_hw_stop(sc);
5788 0 : error = iwn_hw_init(sc);
5789 0 : } else {
5790 : /* Send calibration results to runtime firmware. */
5791 0 : error = iwn5000_send_calibration(sc);
5792 : }
5793 0 : return error;
5794 0 : }
5795 :
5796 : /*
5797 : * The firmware boot code is small and is intended to be copied directly into
5798 : * the NIC internal memory (no DMA transfer).
5799 : */
5800 : int
5801 0 : iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5802 : {
5803 : int error, ntries;
5804 :
5805 0 : size /= sizeof (uint32_t);
5806 :
5807 0 : if ((error = iwn_nic_lock(sc)) != 0)
5808 0 : return error;
5809 :
5810 : /* Copy microcode image into NIC memory. */
5811 0 : iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5812 0 : (const uint32_t *)ucode, size);
5813 :
5814 0 : iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5815 0 : iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5816 0 : iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5817 :
5818 : /* Start boot load now. */
5819 0 : iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5820 :
5821 : /* Wait for transfer to complete. */
5822 0 : for (ntries = 0; ntries < 1000; ntries++) {
5823 0 : if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5824 : IWN_BSM_WR_CTRL_START))
5825 : break;
5826 0 : DELAY(10);
5827 : }
5828 0 : if (ntries == 1000) {
5829 0 : printf("%s: could not load boot firmware\n",
5830 0 : sc->sc_dev.dv_xname);
5831 0 : iwn_nic_unlock(sc);
5832 0 : return ETIMEDOUT;
5833 : }
5834 :
5835 : /* Enable boot after power up. */
5836 0 : iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5837 :
5838 0 : iwn_nic_unlock(sc);
5839 0 : return 0;
5840 0 : }
5841 :
5842 : int
5843 0 : iwn4965_load_firmware(struct iwn_softc *sc)
5844 : {
5845 0 : struct iwn_fw_info *fw = &sc->fw;
5846 0 : struct iwn_dma_info *dma = &sc->fw_dma;
5847 : int error;
5848 :
5849 : /* Copy initialization sections into pre-allocated DMA-safe memory. */
5850 0 : memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5851 0 : bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5852 : BUS_DMASYNC_PREWRITE);
5853 0 : memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5854 : fw->init.text, fw->init.textsz);
5855 0 : bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5856 : fw->init.textsz, BUS_DMASYNC_PREWRITE);
5857 :
5858 : /* Tell adapter where to find initialization sections. */
5859 0 : if ((error = iwn_nic_lock(sc)) != 0)
5860 0 : return error;
5861 0 : iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5862 0 : iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5863 0 : iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5864 0 : (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5865 0 : iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5866 0 : iwn_nic_unlock(sc);
5867 :
5868 : /* Load firmware boot code. */
5869 0 : error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5870 0 : if (error != 0) {
5871 0 : printf("%s: could not load boot firmware\n",
5872 0 : sc->sc_dev.dv_xname);
5873 0 : return error;
5874 : }
5875 : /* Now press "execute". */
5876 0 : IWN_WRITE(sc, IWN_RESET, 0);
5877 :
5878 : /* Wait at most one second for first alive notification. */
5879 0 : if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5880 0 : printf("%s: timeout waiting for adapter to initialize\n",
5881 0 : sc->sc_dev.dv_xname);
5882 0 : return error;
5883 : }
5884 :
5885 : /* Retrieve current temperature for initial TX power calibration. */
5886 0 : sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5887 0 : sc->temp = iwn4965_get_temperature(sc);
5888 :
5889 : /* Copy runtime sections into pre-allocated DMA-safe memory. */
5890 0 : memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5891 0 : bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5892 : BUS_DMASYNC_PREWRITE);
5893 0 : memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5894 : fw->main.text, fw->main.textsz);
5895 0 : bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5896 : fw->main.textsz, BUS_DMASYNC_PREWRITE);
5897 :
5898 : /* Tell adapter where to find runtime sections. */
5899 0 : if ((error = iwn_nic_lock(sc)) != 0)
5900 0 : return error;
5901 0 : iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5902 0 : iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5903 0 : iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5904 0 : (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5905 0 : iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5906 0 : IWN_FW_UPDATED | fw->main.textsz);
5907 0 : iwn_nic_unlock(sc);
5908 :
5909 0 : return 0;
5910 0 : }
5911 :
5912 : int
5913 0 : iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5914 : const uint8_t *section, int size)
5915 : {
5916 0 : struct iwn_dma_info *dma = &sc->fw_dma;
5917 : int error;
5918 :
5919 : /* Copy firmware section into pre-allocated DMA-safe memory. */
5920 0 : memcpy(dma->vaddr, section, size);
5921 0 : bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5922 :
5923 0 : if ((error = iwn_nic_lock(sc)) != 0)
5924 0 : return error;
5925 :
5926 0 : IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5927 : IWN_FH_TX_CONFIG_DMA_PAUSE);
5928 :
5929 0 : IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5930 0 : IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5931 : IWN_LOADDR(dma->paddr));
5932 0 : IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5933 : IWN_HIADDR(dma->paddr) << 28 | size);
5934 0 : IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5935 : IWN_FH_TXBUF_STATUS_TBNUM(1) |
5936 : IWN_FH_TXBUF_STATUS_TBIDX(1) |
5937 : IWN_FH_TXBUF_STATUS_TFBD_VALID);
5938 :
5939 : /* Kick Flow Handler to start DMA transfer. */
5940 0 : IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5941 : IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5942 :
5943 0 : iwn_nic_unlock(sc);
5944 :
5945 : /* Wait at most five seconds for FH DMA transfer to complete. */
5946 0 : return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5947 0 : }
5948 :
5949 : int
5950 0 : iwn5000_load_firmware(struct iwn_softc *sc)
5951 : {
5952 : struct iwn_fw_part *fw;
5953 : int error;
5954 :
5955 : /* Load the initialization firmware on first boot only. */
5956 0 : fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5957 0 : &sc->fw.main : &sc->fw.init;
5958 :
5959 0 : error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5960 0 : fw->text, fw->textsz);
5961 0 : if (error != 0) {
5962 0 : printf("%s: could not load firmware %s section\n",
5963 0 : sc->sc_dev.dv_xname, ".text");
5964 0 : return error;
5965 : }
5966 0 : error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5967 0 : fw->data, fw->datasz);
5968 0 : if (error != 0) {
5969 0 : printf("%s: could not load firmware %s section\n",
5970 0 : sc->sc_dev.dv_xname, ".data");
5971 0 : return error;
5972 : }
5973 :
5974 : /* Now press "execute". */
5975 0 : IWN_WRITE(sc, IWN_RESET, 0);
5976 0 : return 0;
5977 0 : }
5978 :
5979 : /*
5980 : * Extract text and data sections from a legacy firmware image.
5981 : */
5982 : int
5983 0 : iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5984 : {
5985 : const uint32_t *ptr;
5986 : size_t hdrlen = 24;
5987 : uint32_t rev;
5988 :
5989 0 : ptr = (const uint32_t *)fw->data;
5990 0 : rev = letoh32(*ptr++);
5991 :
5992 : /* Check firmware API version. */
5993 0 : if (IWN_FW_API(rev) <= 1) {
5994 0 : printf("%s: bad firmware, need API version >=2\n",
5995 0 : sc->sc_dev.dv_xname);
5996 0 : return EINVAL;
5997 : }
5998 0 : if (IWN_FW_API(rev) >= 3) {
5999 : /* Skip build number (version 2 header). */
6000 : hdrlen += 4;
6001 0 : ptr++;
6002 0 : }
6003 0 : if (fw->size < hdrlen) {
6004 0 : printf("%s: firmware too short: %zu bytes\n",
6005 0 : sc->sc_dev.dv_xname, fw->size);
6006 0 : return EINVAL;
6007 : }
6008 0 : fw->main.textsz = letoh32(*ptr++);
6009 0 : fw->main.datasz = letoh32(*ptr++);
6010 0 : fw->init.textsz = letoh32(*ptr++);
6011 0 : fw->init.datasz = letoh32(*ptr++);
6012 0 : fw->boot.textsz = letoh32(*ptr++);
6013 :
6014 : /* Check that all firmware sections fit. */
6015 0 : if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6016 0 : fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6017 0 : printf("%s: firmware too short: %zu bytes\n",
6018 0 : sc->sc_dev.dv_xname, fw->size);
6019 0 : return EINVAL;
6020 : }
6021 :
6022 : /* Get pointers to firmware sections. */
6023 0 : fw->main.text = (const uint8_t *)ptr;
6024 0 : fw->main.data = fw->main.text + fw->main.textsz;
6025 0 : fw->init.text = fw->main.data + fw->main.datasz;
6026 0 : fw->init.data = fw->init.text + fw->init.textsz;
6027 0 : fw->boot.text = fw->init.data + fw->init.datasz;
6028 0 : return 0;
6029 0 : }
6030 :
6031 : /*
6032 : * Extract text and data sections from a TLV firmware image.
6033 : */
6034 : int
6035 0 : iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6036 : uint16_t alt)
6037 : {
6038 : const struct iwn_fw_tlv_hdr *hdr;
6039 : const struct iwn_fw_tlv *tlv;
6040 : const uint8_t *ptr, *end;
6041 : uint64_t altmask;
6042 : uint32_t len;
6043 :
6044 0 : if (fw->size < sizeof (*hdr)) {
6045 0 : printf("%s: firmware too short: %zu bytes\n",
6046 0 : sc->sc_dev.dv_xname, fw->size);
6047 0 : return EINVAL;
6048 : }
6049 0 : hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6050 0 : if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6051 0 : printf("%s: bad firmware signature 0x%08x\n",
6052 0 : sc->sc_dev.dv_xname, letoh32(hdr->signature));
6053 0 : return EINVAL;
6054 : }
6055 : DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
6056 : letoh32(hdr->build)));
6057 :
6058 : /*
6059 : * Select the closest supported alternative that is less than
6060 : * or equal to the specified one.
6061 : */
6062 0 : altmask = letoh64(hdr->altmask);
6063 0 : while (alt > 0 && !(altmask & (1ULL << alt)))
6064 0 : alt--; /* Downgrade. */
6065 : DPRINTF(("using alternative %d\n", alt));
6066 :
6067 0 : ptr = (const uint8_t *)(hdr + 1);
6068 0 : end = (const uint8_t *)(fw->data + fw->size);
6069 :
6070 : /* Parse type-length-value fields. */
6071 0 : while (ptr + sizeof (*tlv) <= end) {
6072 0 : tlv = (const struct iwn_fw_tlv *)ptr;
6073 0 : len = letoh32(tlv->len);
6074 :
6075 : ptr += sizeof (*tlv);
6076 0 : if (ptr + len > end) {
6077 0 : printf("%s: firmware too short: %zu bytes\n",
6078 0 : sc->sc_dev.dv_xname, fw->size);
6079 0 : return EINVAL;
6080 : }
6081 : /* Skip other alternatives. */
6082 0 : if (tlv->alt != 0 && tlv->alt != htole16(alt))
6083 : goto next;
6084 :
6085 0 : switch (letoh16(tlv->type)) {
6086 : case IWN_FW_TLV_MAIN_TEXT:
6087 0 : fw->main.text = ptr;
6088 0 : fw->main.textsz = len;
6089 0 : break;
6090 : case IWN_FW_TLV_MAIN_DATA:
6091 0 : fw->main.data = ptr;
6092 0 : fw->main.datasz = len;
6093 0 : break;
6094 : case IWN_FW_TLV_INIT_TEXT:
6095 0 : fw->init.text = ptr;
6096 0 : fw->init.textsz = len;
6097 0 : break;
6098 : case IWN_FW_TLV_INIT_DATA:
6099 0 : fw->init.data = ptr;
6100 0 : fw->init.datasz = len;
6101 0 : break;
6102 : case IWN_FW_TLV_BOOT_TEXT:
6103 0 : fw->boot.text = ptr;
6104 0 : fw->boot.textsz = len;
6105 0 : break;
6106 : case IWN_FW_TLV_ENH_SENS:
6107 0 : if (len != 0) {
6108 0 : printf("%s: TLV type %d has invalid size %u\n",
6109 0 : sc->sc_dev.dv_xname, letoh16(tlv->type),
6110 : len);
6111 0 : goto next;
6112 : }
6113 0 : sc->sc_flags |= IWN_FLAG_ENH_SENS;
6114 0 : break;
6115 : case IWN_FW_TLV_PHY_CALIB:
6116 0 : if (len != sizeof(uint32_t)) {
6117 0 : printf("%s: TLV type %d has invalid size %u\n",
6118 0 : sc->sc_dev.dv_xname, letoh16(tlv->type),
6119 : len);
6120 0 : goto next;
6121 : }
6122 0 : if (letoh32(*ptr) <= IWN5000_PHY_CALIB_MAX) {
6123 0 : sc->reset_noise_gain = letoh32(*ptr);
6124 0 : sc->noise_gain = letoh32(*ptr) + 1;
6125 0 : }
6126 : break;
6127 : case IWN_FW_TLV_FLAGS:
6128 0 : if (len < sizeof(uint32_t))
6129 : break;
6130 0 : if (len % sizeof(uint32_t))
6131 : break;
6132 0 : sc->tlv_feature_flags = letoh32(*ptr);
6133 : DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
6134 0 : break;
6135 : default:
6136 : DPRINTF(("TLV type %d not handled\n",
6137 : letoh16(tlv->type)));
6138 : break;
6139 : }
6140 : next: /* TLV fields are 32-bit aligned. */
6141 0 : ptr += (len + 3) & ~3;
6142 : }
6143 0 : return 0;
6144 0 : }
6145 :
6146 : int
6147 0 : iwn_read_firmware(struct iwn_softc *sc)
6148 : {
6149 0 : struct iwn_fw_info *fw = &sc->fw;
6150 : int error;
6151 :
6152 : /*
6153 : * Some PHY calibration commands are firmware-dependent; these
6154 : * are the default values that will be overridden if
6155 : * necessary.
6156 : */
6157 0 : sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
6158 0 : sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
6159 :
6160 0 : memset(fw, 0, sizeof (*fw));
6161 :
6162 : /* Read firmware image from filesystem. */
6163 0 : if ((error = loadfirmware(sc->fwname, &fw->data, &fw->size)) != 0) {
6164 0 : printf("%s: could not read firmware %s (error %d)\n",
6165 0 : sc->sc_dev.dv_xname, sc->fwname, error);
6166 0 : return error;
6167 : }
6168 0 : if (fw->size < sizeof (uint32_t)) {
6169 0 : printf("%s: firmware too short: %zu bytes\n",
6170 0 : sc->sc_dev.dv_xname, fw->size);
6171 0 : free(fw->data, M_DEVBUF, fw->size);
6172 0 : return EINVAL;
6173 : }
6174 :
6175 : /* Retrieve text and data sections. */
6176 0 : if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
6177 0 : error = iwn_read_firmware_leg(sc, fw);
6178 : else
6179 0 : error = iwn_read_firmware_tlv(sc, fw, 1);
6180 0 : if (error != 0) {
6181 0 : printf("%s: could not read firmware sections\n",
6182 0 : sc->sc_dev.dv_xname);
6183 0 : free(fw->data, M_DEVBUF, fw->size);
6184 0 : return error;
6185 : }
6186 :
6187 : /* Make sure text and data sections fit in hardware memory. */
6188 0 : if (fw->main.textsz > sc->fw_text_maxsz ||
6189 0 : fw->main.datasz > sc->fw_data_maxsz ||
6190 0 : fw->init.textsz > sc->fw_text_maxsz ||
6191 0 : fw->init.datasz > sc->fw_data_maxsz ||
6192 0 : fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6193 0 : (fw->boot.textsz & 3) != 0) {
6194 0 : printf("%s: firmware sections too large\n",
6195 0 : sc->sc_dev.dv_xname);
6196 0 : free(fw->data, M_DEVBUF, fw->size);
6197 0 : return EINVAL;
6198 : }
6199 :
6200 : /* We can proceed with loading the firmware. */
6201 0 : return 0;
6202 0 : }
6203 :
6204 : int
6205 0 : iwn_clock_wait(struct iwn_softc *sc)
6206 : {
6207 : int ntries;
6208 :
6209 : /* Set "initialization complete" bit. */
6210 0 : IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6211 :
6212 : /* Wait for clock stabilization. */
6213 0 : for (ntries = 0; ntries < 2500; ntries++) {
6214 0 : if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6215 0 : return 0;
6216 0 : DELAY(10);
6217 : }
6218 0 : printf("%s: timeout waiting for clock stabilization\n",
6219 0 : sc->sc_dev.dv_xname);
6220 0 : return ETIMEDOUT;
6221 0 : }
6222 :
6223 : int
6224 0 : iwn_apm_init(struct iwn_softc *sc)
6225 : {
6226 : pcireg_t reg;
6227 : int error;
6228 :
6229 : /* Disable L0s exit timer (NMI bug workaround). */
6230 0 : IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6231 : /* Don't wait for ICH L0s (ICH bug workaround). */
6232 0 : IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6233 :
6234 : /* Set FH wait threshold to max (HW bug under stress workaround). */
6235 0 : IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6236 :
6237 : /* Enable HAP INTA to move adapter from L1a to L0s. */
6238 0 : IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6239 :
6240 : /* Retrieve PCIe Active State Power Management (ASPM). */
6241 0 : reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6242 0 : sc->sc_cap_off + PCI_PCIE_LCSR);
6243 : /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6244 0 : if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
6245 0 : IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6246 : else
6247 0 : IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6248 :
6249 0 : if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6250 0 : sc->hw_type <= IWN_HW_REV_TYPE_1000)
6251 0 : IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6252 :
6253 : /* Wait for clock stabilization before accessing prph. */
6254 0 : if ((error = iwn_clock_wait(sc)) != 0)
6255 0 : return error;
6256 :
6257 0 : if ((error = iwn_nic_lock(sc)) != 0)
6258 0 : return error;
6259 0 : if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6260 : /* Enable DMA and BSM (Bootstrap State Machine). */
6261 0 : iwn_prph_write(sc, IWN_APMG_CLK_EN,
6262 : IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6263 : IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6264 0 : } else {
6265 : /* Enable DMA. */
6266 0 : iwn_prph_write(sc, IWN_APMG_CLK_EN,
6267 : IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6268 : }
6269 0 : DELAY(20);
6270 : /* Disable L1-Active. */
6271 0 : iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6272 0 : iwn_nic_unlock(sc);
6273 :
6274 0 : return 0;
6275 0 : }
6276 :
6277 : void
6278 0 : iwn_apm_stop_master(struct iwn_softc *sc)
6279 : {
6280 : int ntries;
6281 :
6282 : /* Stop busmaster DMA activity. */
6283 0 : IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6284 0 : for (ntries = 0; ntries < 100; ntries++) {
6285 0 : if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6286 0 : return;
6287 0 : DELAY(10);
6288 : }
6289 0 : printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
6290 0 : }
6291 :
6292 : void
6293 0 : iwn_apm_stop(struct iwn_softc *sc)
6294 : {
6295 0 : iwn_apm_stop_master(sc);
6296 :
6297 : /* Reset the entire device. */
6298 0 : IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6299 0 : DELAY(10);
6300 : /* Clear "initialization complete" bit. */
6301 0 : IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6302 0 : }
6303 :
6304 : int
6305 0 : iwn4965_nic_config(struct iwn_softc *sc)
6306 : {
6307 0 : if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6308 : /*
6309 : * I don't believe this to be correct but this is what the
6310 : * vendor driver is doing. Probably the bits should not be
6311 : * shifted in IWN_RFCFG_*.
6312 : */
6313 0 : IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6314 : IWN_RFCFG_TYPE(sc->rfcfg) |
6315 : IWN_RFCFG_STEP(sc->rfcfg) |
6316 : IWN_RFCFG_DASH(sc->rfcfg));
6317 0 : }
6318 0 : IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6319 : IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6320 0 : return 0;
6321 : }
6322 :
6323 : int
6324 0 : iwn5000_nic_config(struct iwn_softc *sc)
6325 : {
6326 : uint32_t tmp;
6327 : int error;
6328 :
6329 0 : if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6330 0 : IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6331 : IWN_RFCFG_TYPE(sc->rfcfg) |
6332 : IWN_RFCFG_STEP(sc->rfcfg) |
6333 : IWN_RFCFG_DASH(sc->rfcfg));
6334 0 : }
6335 0 : IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6336 : IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6337 :
6338 0 : if ((error = iwn_nic_lock(sc)) != 0)
6339 0 : return error;
6340 0 : iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6341 :
6342 0 : if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6343 : /*
6344 : * Select first Switching Voltage Regulator (1.32V) to
6345 : * solve a stability issue related to noisy DC2DC line
6346 : * in the silicon of 1000 Series.
6347 : */
6348 0 : tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6349 0 : tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6350 0 : tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6351 0 : iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6352 0 : }
6353 0 : iwn_nic_unlock(sc);
6354 :
6355 0 : if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6356 : /* Use internal power amplifier only. */
6357 0 : IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6358 0 : }
6359 0 : if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6360 0 : sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6361 : /* Indicate that ROM calibration version is >=6. */
6362 0 : IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6363 0 : }
6364 0 : if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6365 0 : IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6366 0 : if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6367 0 : sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6368 0 : sc->hw_type == IWN_HW_REV_TYPE_135 ||
6369 0 : sc->hw_type == IWN_HW_REV_TYPE_105)
6370 0 : IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6371 0 : return 0;
6372 0 : }
6373 :
6374 : /*
6375 : * Take NIC ownership over Intel Active Management Technology (AMT).
6376 : */
6377 : int
6378 0 : iwn_hw_prepare(struct iwn_softc *sc)
6379 : {
6380 : int ntries;
6381 :
6382 : /* Check if hardware is ready. */
6383 0 : IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6384 0 : for (ntries = 0; ntries < 5; ntries++) {
6385 0 : if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6386 : IWN_HW_IF_CONFIG_NIC_READY)
6387 0 : return 0;
6388 0 : DELAY(10);
6389 : }
6390 :
6391 : /* Hardware not ready, force into ready state. */
6392 0 : IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6393 0 : for (ntries = 0; ntries < 15000; ntries++) {
6394 0 : if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6395 : IWN_HW_IF_CONFIG_PREPARE_DONE))
6396 : break;
6397 0 : DELAY(10);
6398 : }
6399 0 : if (ntries == 15000)
6400 0 : return ETIMEDOUT;
6401 :
6402 : /* Hardware should be ready now. */
6403 0 : IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6404 0 : for (ntries = 0; ntries < 5; ntries++) {
6405 0 : if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6406 : IWN_HW_IF_CONFIG_NIC_READY)
6407 0 : return 0;
6408 0 : DELAY(10);
6409 : }
6410 0 : return ETIMEDOUT;
6411 0 : }
6412 :
6413 : int
6414 0 : iwn_hw_init(struct iwn_softc *sc)
6415 : {
6416 0 : struct iwn_ops *ops = &sc->ops;
6417 : int error, chnl, qid;
6418 :
6419 : /* Clear pending interrupts. */
6420 0 : IWN_WRITE(sc, IWN_INT, 0xffffffff);
6421 :
6422 0 : if ((error = iwn_apm_init(sc)) != 0) {
6423 0 : printf("%s: could not power on adapter\n",
6424 0 : sc->sc_dev.dv_xname);
6425 0 : return error;
6426 : }
6427 :
6428 : /* Select VMAIN power source. */
6429 0 : if ((error = iwn_nic_lock(sc)) != 0)
6430 0 : return error;
6431 0 : iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6432 0 : iwn_nic_unlock(sc);
6433 :
6434 : /* Perform adapter-specific initialization. */
6435 0 : if ((error = ops->nic_config(sc)) != 0)
6436 0 : return error;
6437 :
6438 : /* Initialize RX ring. */
6439 0 : if ((error = iwn_nic_lock(sc)) != 0)
6440 0 : return error;
6441 0 : IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6442 0 : IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6443 : /* Set physical address of RX ring (256-byte aligned). */
6444 0 : IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6445 : /* Set physical address of RX status (16-byte aligned). */
6446 0 : IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6447 : /* Enable RX. */
6448 0 : IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6449 : IWN_FH_RX_CONFIG_ENA |
6450 : IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
6451 : IWN_FH_RX_CONFIG_IRQ_DST_HOST |
6452 : IWN_FH_RX_CONFIG_SINGLE_FRAME |
6453 : IWN_FH_RX_CONFIG_RB_TIMEOUT(0x11) | /* about 1/2 msec */
6454 : IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6455 0 : iwn_nic_unlock(sc);
6456 0 : IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6457 :
6458 0 : if ((error = iwn_nic_lock(sc)) != 0)
6459 0 : return error;
6460 :
6461 : /* Initialize TX scheduler. */
6462 0 : iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6463 :
6464 : /* Set physical address of "keep warm" page (16-byte aligned). */
6465 0 : IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6466 :
6467 : /* Initialize TX rings. */
6468 0 : for (qid = 0; qid < sc->ntxqs; qid++) {
6469 0 : struct iwn_tx_ring *txq = &sc->txq[qid];
6470 :
6471 : /* Set physical address of TX ring (256-byte aligned). */
6472 0 : IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6473 : txq->desc_dma.paddr >> 8);
6474 : }
6475 0 : iwn_nic_unlock(sc);
6476 :
6477 : /* Enable DMA channels. */
6478 0 : for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6479 0 : IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6480 : IWN_FH_TX_CONFIG_DMA_ENA |
6481 : IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6482 : }
6483 :
6484 : /* Clear "radio off" and "commands blocked" bits. */
6485 0 : IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6486 0 : IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6487 :
6488 : /* Clear pending interrupts. */
6489 0 : IWN_WRITE(sc, IWN_INT, 0xffffffff);
6490 : /* Enable interrupt coalescing. */
6491 0 : IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6492 : /* Enable interrupts. */
6493 0 : IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6494 :
6495 : /* _Really_ make sure "radio off" bit is cleared! */
6496 0 : IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6497 0 : IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6498 :
6499 : /* Enable shadow registers. */
6500 0 : if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6501 0 : IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6502 :
6503 0 : if ((error = ops->load_firmware(sc)) != 0) {
6504 0 : printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
6505 0 : return error;
6506 : }
6507 : /* Wait at most one second for firmware alive notification. */
6508 0 : if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6509 0 : printf("%s: timeout waiting for adapter to initialize\n",
6510 0 : sc->sc_dev.dv_xname);
6511 0 : return error;
6512 : }
6513 : /* Do post-firmware initialization. */
6514 0 : return ops->post_alive(sc);
6515 0 : }
6516 :
6517 : void
6518 0 : iwn_hw_stop(struct iwn_softc *sc)
6519 : {
6520 : int chnl, qid, ntries;
6521 :
6522 0 : IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6523 :
6524 : /* Disable interrupts. */
6525 0 : IWN_WRITE(sc, IWN_INT_MASK, 0);
6526 0 : IWN_WRITE(sc, IWN_INT, 0xffffffff);
6527 0 : IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6528 0 : sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6529 :
6530 : /* Make sure we no longer hold the NIC lock. */
6531 0 : iwn_nic_unlock(sc);
6532 :
6533 : /* Stop TX scheduler. */
6534 0 : iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6535 :
6536 : /* Stop all DMA channels. */
6537 0 : if (iwn_nic_lock(sc) == 0) {
6538 0 : for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6539 0 : IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6540 0 : for (ntries = 0; ntries < 200; ntries++) {
6541 0 : if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6542 0 : IWN_FH_TX_STATUS_IDLE(chnl))
6543 : break;
6544 0 : DELAY(10);
6545 : }
6546 : }
6547 0 : iwn_nic_unlock(sc);
6548 0 : }
6549 :
6550 : /* Stop RX ring. */
6551 0 : iwn_reset_rx_ring(sc, &sc->rxq);
6552 :
6553 : /* Reset all TX rings. */
6554 0 : for (qid = 0; qid < sc->ntxqs; qid++)
6555 0 : iwn_reset_tx_ring(sc, &sc->txq[qid]);
6556 :
6557 0 : if (iwn_nic_lock(sc) == 0) {
6558 0 : iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6559 : IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6560 0 : iwn_nic_unlock(sc);
6561 0 : }
6562 0 : DELAY(5);
6563 : /* Power OFF adapter. */
6564 0 : iwn_apm_stop(sc);
6565 0 : }
6566 :
6567 : int
6568 0 : iwn_init(struct ifnet *ifp)
6569 : {
6570 0 : struct iwn_softc *sc = ifp->if_softc;
6571 0 : struct ieee80211com *ic = &sc->sc_ic;
6572 : int error;
6573 :
6574 0 : memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr));
6575 :
6576 0 : if ((error = iwn_hw_prepare(sc)) != 0) {
6577 0 : printf("%s: hardware not ready\n", sc->sc_dev.dv_xname);
6578 0 : goto fail;
6579 : }
6580 :
6581 : /* Check that the radio is not disabled by hardware switch. */
6582 0 : if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6583 0 : printf("%s: radio is disabled by hardware switch\n",
6584 0 : sc->sc_dev.dv_xname);
6585 : error = EPERM; /* :-) */
6586 0 : goto fail;
6587 : }
6588 :
6589 : /* Read firmware images from the filesystem. */
6590 0 : if ((error = iwn_read_firmware(sc)) != 0) {
6591 0 : printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
6592 0 : goto fail;
6593 : }
6594 :
6595 : /* Initialize interrupt mask to default value. */
6596 0 : sc->int_mask = IWN_INT_MASK_DEF;
6597 0 : sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6598 :
6599 : /* Initialize hardware and upload firmware. */
6600 0 : error = iwn_hw_init(sc);
6601 0 : free(sc->fw.data, M_DEVBUF, sc->fw.size);
6602 0 : if (error != 0) {
6603 0 : printf("%s: could not initialize hardware\n",
6604 0 : sc->sc_dev.dv_xname);
6605 0 : goto fail;
6606 : }
6607 :
6608 : /* Configure adapter now that it is ready. */
6609 0 : if ((error = iwn_config(sc)) != 0) {
6610 0 : printf("%s: could not configure device\n",
6611 0 : sc->sc_dev.dv_xname);
6612 0 : goto fail;
6613 : }
6614 :
6615 0 : ifq_clr_oactive(&ifp->if_snd);
6616 0 : ifp->if_flags |= IFF_RUNNING;
6617 :
6618 0 : if (ic->ic_opmode != IEEE80211_M_MONITOR)
6619 0 : ieee80211_begin_scan(ifp);
6620 : else
6621 0 : ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6622 :
6623 0 : return 0;
6624 :
6625 0 : fail: iwn_stop(ifp, 1);
6626 0 : return error;
6627 0 : }
6628 :
6629 : void
6630 0 : iwn_stop(struct ifnet *ifp, int disable)
6631 : {
6632 0 : struct iwn_softc *sc = ifp->if_softc;
6633 0 : struct ieee80211com *ic = &sc->sc_ic;
6634 :
6635 0 : timeout_del(&sc->calib_to);
6636 0 : ifp->if_timer = sc->sc_tx_timer = 0;
6637 0 : ifp->if_flags &= ~IFF_RUNNING;
6638 0 : ifq_clr_oactive(&ifp->if_snd);
6639 :
6640 0 : ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6641 :
6642 : /* Power OFF hardware. */
6643 0 : iwn_hw_stop(sc);
6644 0 : }
|