Line data Source code
1 : /* $OpenBSD: if_wpi.c,v 1.144 2018/04/28 16:05:56 phessler Exp $ */
2 :
3 : /*-
4 : * Copyright (c) 2006-2008
5 : * Damien Bergamini <damien.bergamini@free.fr>
6 : *
7 : * Permission to use, copy, modify, and distribute this software for any
8 : * purpose with or without fee is hereby granted, provided that the above
9 : * copyright notice and this permission notice appear in all copies.
10 : *
11 : * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 : * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 : * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 : * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 : * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 : * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 : * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 : */
19 :
20 : /*
21 : * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
22 : */
23 :
24 : #include "bpfilter.h"
25 :
26 : #include <sys/param.h>
27 : #include <sys/sockio.h>
28 : #include <sys/mbuf.h>
29 : #include <sys/kernel.h>
30 : #include <sys/rwlock.h>
31 : #include <sys/socket.h>
32 : #include <sys/systm.h>
33 : #include <sys/malloc.h>
34 : #include <sys/conf.h>
35 : #include <sys/device.h>
36 : #include <sys/task.h>
37 : #include <sys/endian.h>
38 :
39 : #include <machine/bus.h>
40 : #include <machine/intr.h>
41 :
42 : #include <dev/pci/pcireg.h>
43 : #include <dev/pci/pcivar.h>
44 : #include <dev/pci/pcidevs.h>
45 :
46 : #if NBPFILTER > 0
47 : #include <net/bpf.h>
48 : #endif
49 : #include <net/if.h>
50 : #include <net/if_dl.h>
51 : #include <net/if_media.h>
52 :
53 : #include <netinet/in.h>
54 : #include <netinet/if_ether.h>
55 :
56 : #include <net80211/ieee80211_var.h>
57 : #include <net80211/ieee80211_amrr.h>
58 : #include <net80211/ieee80211_radiotap.h>
59 :
60 : #include <dev/pci/if_wpireg.h>
61 : #include <dev/pci/if_wpivar.h>
62 :
63 : static const struct pci_matchid wpi_devices[] = {
64 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 },
65 : { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2 }
66 : };
67 :
68 : int wpi_match(struct device *, void *, void *);
69 : void wpi_attach(struct device *, struct device *, void *);
70 : #if NBPFILTER > 0
71 : void wpi_radiotap_attach(struct wpi_softc *);
72 : #endif
73 : int wpi_detach(struct device *, int);
74 : int wpi_activate(struct device *, int);
75 : void wpi_wakeup(struct wpi_softc *);
76 : void wpi_init_task(void *);
77 : int wpi_nic_lock(struct wpi_softc *);
78 : int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
79 : int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
80 : void **, bus_size_t, bus_size_t);
81 : void wpi_dma_contig_free(struct wpi_dma_info *);
82 : int wpi_alloc_shared(struct wpi_softc *);
83 : void wpi_free_shared(struct wpi_softc *);
84 : int wpi_alloc_fwmem(struct wpi_softc *);
85 : void wpi_free_fwmem(struct wpi_softc *);
86 : int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
87 : void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
88 : void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
89 : int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
90 : int);
91 : void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
92 : void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
93 : int wpi_read_eeprom(struct wpi_softc *);
94 : void wpi_read_eeprom_channels(struct wpi_softc *, int);
95 : void wpi_read_eeprom_group(struct wpi_softc *, int);
96 : struct ieee80211_node *wpi_node_alloc(struct ieee80211com *);
97 : void wpi_newassoc(struct ieee80211com *, struct ieee80211_node *,
98 : int);
99 : int wpi_media_change(struct ifnet *);
100 : int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
101 : void wpi_iter_func(void *, struct ieee80211_node *);
102 : void wpi_calib_timeout(void *);
103 : int wpi_ccmp_decap(struct wpi_softc *, struct mbuf *,
104 : struct ieee80211_key *);
105 : void wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
106 : struct wpi_rx_data *);
107 : void wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
108 : void wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
109 : void wpi_notif_intr(struct wpi_softc *);
110 : void wpi_fatal_intr(struct wpi_softc *);
111 : int wpi_intr(void *);
112 : int wpi_tx(struct wpi_softc *, struct mbuf *,
113 : struct ieee80211_node *);
114 : void wpi_start(struct ifnet *);
115 : void wpi_watchdog(struct ifnet *);
116 : int wpi_ioctl(struct ifnet *, u_long, caddr_t);
117 : int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
118 : int wpi_mrr_setup(struct wpi_softc *);
119 : void wpi_updateedca(struct ieee80211com *);
120 : void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
121 : int wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
122 : void wpi_power_calibration(struct wpi_softc *);
123 : int wpi_set_txpower(struct wpi_softc *, int);
124 : int wpi_get_power_index(struct wpi_softc *,
125 : struct wpi_power_group *, struct ieee80211_channel *, int);
126 : int wpi_set_pslevel(struct wpi_softc *, int, int, int);
127 : int wpi_config(struct wpi_softc *);
128 : int wpi_scan(struct wpi_softc *, uint16_t);
129 : int wpi_auth(struct wpi_softc *);
130 : int wpi_run(struct wpi_softc *);
131 : int wpi_set_key(struct ieee80211com *, struct ieee80211_node *,
132 : struct ieee80211_key *);
133 : void wpi_delete_key(struct ieee80211com *, struct ieee80211_node *,
134 : struct ieee80211_key *);
135 : int wpi_post_alive(struct wpi_softc *);
136 : int wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
137 : int wpi_load_firmware(struct wpi_softc *);
138 : int wpi_read_firmware(struct wpi_softc *);
139 : int wpi_clock_wait(struct wpi_softc *);
140 : int wpi_apm_init(struct wpi_softc *);
141 : void wpi_apm_stop_master(struct wpi_softc *);
142 : void wpi_apm_stop(struct wpi_softc *);
143 : void wpi_nic_config(struct wpi_softc *);
144 : int wpi_hw_init(struct wpi_softc *);
145 : void wpi_hw_stop(struct wpi_softc *);
146 : int wpi_init(struct ifnet *);
147 : void wpi_stop(struct ifnet *, int);
148 :
149 : #ifdef WPI_DEBUG
150 : #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
151 : #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
152 : int wpi_debug = 0;
153 : #else
154 : #define DPRINTF(x)
155 : #define DPRINTFN(n, x)
156 : #endif
157 :
158 : struct cfdriver wpi_cd = {
159 : NULL, "wpi", DV_IFNET
160 : };
161 :
162 : struct cfattach wpi_ca = {
163 : sizeof (struct wpi_softc), wpi_match, wpi_attach, wpi_detach,
164 : wpi_activate
165 : };
166 :
167 : int
168 0 : wpi_match(struct device *parent, void *match, void *aux)
169 : {
170 0 : return pci_matchbyid((struct pci_attach_args *)aux, wpi_devices,
171 : nitems(wpi_devices));
172 : }
173 :
174 : void
175 0 : wpi_attach(struct device *parent, struct device *self, void *aux)
176 : {
177 0 : struct wpi_softc *sc = (struct wpi_softc *)self;
178 0 : struct ieee80211com *ic = &sc->sc_ic;
179 0 : struct ifnet *ifp = &ic->ic_if;
180 0 : struct pci_attach_args *pa = aux;
181 : const char *intrstr;
182 0 : pci_intr_handle_t ih;
183 : pcireg_t memtype, reg;
184 : int i, error;
185 :
186 0 : sc->sc_pct = pa->pa_pc;
187 0 : sc->sc_pcitag = pa->pa_tag;
188 0 : sc->sc_dmat = pa->pa_dmat;
189 :
190 : /*
191 : * Get the offset of the PCI Express Capability Structure in PCI
192 : * Configuration Space (the vendor driver hard-codes it as E0h.)
193 : */
194 0 : error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
195 0 : PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
196 0 : if (error == 0) {
197 0 : printf(": PCIe capability structure not found!\n");
198 0 : return;
199 : }
200 :
201 : /* Clear device-specific "PCI retry timeout" register (41h). */
202 0 : reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
203 0 : reg &= ~0xff00;
204 0 : pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
205 :
206 0 : memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WPI_PCI_BAR0);
207 0 : error = pci_mapreg_map(pa, WPI_PCI_BAR0, memtype, 0, &sc->sc_st,
208 0 : &sc->sc_sh, NULL, &sc->sc_sz, 0);
209 0 : if (error != 0) {
210 0 : printf(": can't map mem space\n");
211 0 : return;
212 : }
213 :
214 : /* Install interrupt handler. */
215 0 : if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
216 0 : printf(": can't map interrupt\n");
217 0 : return;
218 : }
219 0 : intrstr = pci_intr_string(sc->sc_pct, ih);
220 0 : sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc,
221 0 : sc->sc_dev.dv_xname);
222 0 : if (sc->sc_ih == NULL) {
223 0 : printf(": can't establish interrupt");
224 0 : if (intrstr != NULL)
225 0 : printf(" at %s", intrstr);
226 0 : printf("\n");
227 0 : return;
228 : }
229 0 : printf(": %s", intrstr);
230 :
231 : /* Power ON adapter. */
232 0 : if ((error = wpi_apm_init(sc)) != 0) {
233 0 : printf(": could not power ON adapter\n");
234 0 : return;
235 : }
236 :
237 : /* Read MAC address, channels, etc from EEPROM. */
238 0 : if ((error = wpi_read_eeprom(sc)) != 0) {
239 0 : printf(": could not read EEPROM\n");
240 0 : return;
241 : }
242 :
243 : /* Allocate DMA memory for firmware transfers. */
244 0 : if ((error = wpi_alloc_fwmem(sc)) != 0) {
245 0 : printf(": could not allocate memory for firmware\n");
246 0 : return;
247 : }
248 :
249 : /* Allocate shared area. */
250 0 : if ((error = wpi_alloc_shared(sc)) != 0) {
251 0 : printf(": could not allocate shared area\n");
252 0 : goto fail1;
253 : }
254 :
255 : /* Allocate TX rings. */
256 0 : for (i = 0; i < WPI_NTXQUEUES; i++) {
257 0 : if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
258 0 : printf(": could not allocate TX ring %d\n", i);
259 0 : goto fail2;
260 : }
261 : }
262 :
263 : /* Allocate RX ring. */
264 0 : if ((error = wpi_alloc_rx_ring(sc, &sc->rxq)) != 0) {
265 0 : printf(": could not allocate Rx ring\n");
266 0 : goto fail2;
267 : }
268 :
269 : /* Power OFF adapter. */
270 0 : wpi_apm_stop(sc);
271 : /* Clear pending interrupts. */
272 0 : WPI_WRITE(sc, WPI_INT, 0xffffffff);
273 :
274 0 : ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
275 0 : ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
276 0 : ic->ic_state = IEEE80211_S_INIT;
277 :
278 : /* Set device capabilities. */
279 0 : ic->ic_caps =
280 : IEEE80211_C_WEP | /* WEP */
281 : IEEE80211_C_RSN | /* WPA/RSN */
282 : IEEE80211_C_SCANALL | /* device scans all channels at once */
283 : IEEE80211_C_SCANALLBAND | /* driver scans all bands at once */
284 : IEEE80211_C_MONITOR | /* monitor mode supported */
285 : IEEE80211_C_SHSLOT | /* short slot time supported */
286 : IEEE80211_C_SHPREAMBLE | /* short preamble supported */
287 : IEEE80211_C_PMGT; /* power saving supported */
288 :
289 : /* Set supported rates. */
290 0 : ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
291 0 : ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
292 0 : if (sc->sc_flags & WPI_FLAG_HAS_5GHZ) {
293 0 : ic->ic_sup_rates[IEEE80211_MODE_11A] =
294 0 : ieee80211_std_rateset_11a;
295 0 : }
296 :
297 : /* IBSS channel undefined for now. */
298 0 : ic->ic_ibss_chan = &ic->ic_channels[0];
299 :
300 0 : ifp->if_softc = sc;
301 0 : ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
302 0 : ifp->if_ioctl = wpi_ioctl;
303 0 : ifp->if_start = wpi_start;
304 0 : ifp->if_watchdog = wpi_watchdog;
305 0 : memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
306 :
307 0 : if_attach(ifp);
308 0 : ieee80211_ifattach(ifp);
309 0 : ic->ic_node_alloc = wpi_node_alloc;
310 0 : ic->ic_newassoc = wpi_newassoc;
311 0 : ic->ic_updateedca = wpi_updateedca;
312 0 : ic->ic_set_key = wpi_set_key;
313 0 : ic->ic_delete_key = wpi_delete_key;
314 :
315 : /* Override 802.11 state transition machine. */
316 0 : sc->sc_newstate = ic->ic_newstate;
317 0 : ic->ic_newstate = wpi_newstate;
318 0 : ieee80211_media_init(ifp, wpi_media_change, ieee80211_media_status);
319 :
320 0 : sc->amrr.amrr_min_success_threshold = 1;
321 0 : sc->amrr.amrr_max_success_threshold = 15;
322 :
323 : #if NBPFILTER > 0
324 0 : wpi_radiotap_attach(sc);
325 : #endif
326 0 : timeout_set(&sc->calib_to, wpi_calib_timeout, sc);
327 0 : rw_init(&sc->sc_rwlock, "wpilock");
328 0 : task_set(&sc->init_task, wpi_init_task, sc);
329 0 : return;
330 :
331 : /* Free allocated memory if something failed during attachment. */
332 0 : fail2: while (--i >= 0)
333 0 : wpi_free_tx_ring(sc, &sc->txq[i]);
334 0 : wpi_free_shared(sc);
335 0 : fail1: wpi_free_fwmem(sc);
336 0 : }
337 :
338 : #if NBPFILTER > 0
339 : /*
340 : * Attach the interface to 802.11 radiotap.
341 : */
342 : void
343 0 : wpi_radiotap_attach(struct wpi_softc *sc)
344 : {
345 0 : bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
346 : sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
347 :
348 0 : sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
349 0 : sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
350 0 : sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
351 :
352 0 : sc->sc_txtap_len = sizeof sc->sc_txtapu;
353 0 : sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
354 0 : sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
355 0 : }
356 : #endif
357 :
358 : int
359 0 : wpi_detach(struct device *self, int flags)
360 : {
361 0 : struct wpi_softc *sc = (struct wpi_softc *)self;
362 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
363 : int qid;
364 :
365 0 : timeout_del(&sc->calib_to);
366 0 : task_del(systq, &sc->init_task);
367 :
368 : /* Uninstall interrupt handler. */
369 0 : if (sc->sc_ih != NULL)
370 0 : pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
371 :
372 : /* Free DMA resources. */
373 0 : wpi_free_rx_ring(sc, &sc->rxq);
374 0 : for (qid = 0; qid < WPI_NTXQUEUES; qid++)
375 0 : wpi_free_tx_ring(sc, &sc->txq[qid]);
376 0 : wpi_free_shared(sc);
377 0 : wpi_free_fwmem(sc);
378 :
379 0 : bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
380 :
381 0 : ieee80211_ifdetach(ifp);
382 0 : if_detach(ifp);
383 :
384 0 : return 0;
385 : }
386 :
387 : int
388 0 : wpi_activate(struct device *self, int act)
389 : {
390 0 : struct wpi_softc *sc = (struct wpi_softc *)self;
391 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
392 :
393 0 : switch (act) {
394 : case DVACT_SUSPEND:
395 0 : if (ifp->if_flags & IFF_RUNNING)
396 0 : wpi_stop(ifp, 0);
397 : break;
398 : case DVACT_WAKEUP:
399 0 : wpi_wakeup(sc);
400 0 : break;
401 : }
402 :
403 0 : return 0;
404 : }
405 :
406 : void
407 0 : wpi_wakeup(struct wpi_softc *sc)
408 : {
409 : pcireg_t reg;
410 :
411 : /* Clear device-specific "PCI retry timeout" register (41h). */
412 0 : reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
413 0 : reg &= ~0xff00;
414 0 : pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
415 :
416 0 : wpi_init_task(sc);
417 0 : }
418 :
419 : void
420 0 : wpi_init_task(void *arg1)
421 : {
422 0 : struct wpi_softc *sc = arg1;
423 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
424 : int s;
425 :
426 0 : rw_enter_write(&sc->sc_rwlock);
427 0 : s = splnet();
428 :
429 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
430 0 : wpi_init(ifp);
431 :
432 0 : splx(s);
433 0 : rw_exit_write(&sc->sc_rwlock);
434 0 : }
435 :
436 : int
437 0 : wpi_nic_lock(struct wpi_softc *sc)
438 : {
439 : int ntries;
440 :
441 : /* Request exclusive access to NIC. */
442 0 : WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
443 :
444 : /* Spin until we actually get the lock. */
445 0 : for (ntries = 0; ntries < 1000; ntries++) {
446 0 : if ((WPI_READ(sc, WPI_GP_CNTRL) &
447 0 : (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
448 : WPI_GP_CNTRL_MAC_ACCESS_ENA)
449 0 : return 0;
450 0 : DELAY(10);
451 : }
452 0 : return ETIMEDOUT;
453 0 : }
454 :
455 : static __inline void
456 0 : wpi_nic_unlock(struct wpi_softc *sc)
457 : {
458 0 : WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
459 0 : }
460 :
461 : static __inline uint32_t
462 0 : wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
463 : {
464 0 : WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
465 0 : WPI_BARRIER_READ_WRITE(sc);
466 0 : return WPI_READ(sc, WPI_PRPH_RDATA);
467 : }
468 :
469 : static __inline void
470 0 : wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
471 : {
472 0 : WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
473 0 : WPI_BARRIER_WRITE(sc);
474 0 : WPI_WRITE(sc, WPI_PRPH_WDATA, data);
475 0 : }
476 :
477 : static __inline void
478 0 : wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
479 : {
480 0 : wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
481 0 : }
482 :
483 : static __inline void
484 0 : wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
485 : {
486 0 : wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
487 0 : }
488 :
489 : static __inline void
490 0 : wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
491 : const uint32_t *data, int count)
492 : {
493 0 : for (; count > 0; count--, data++, addr += 4)
494 0 : wpi_prph_write(sc, addr, *data);
495 0 : }
496 :
497 : #ifdef WPI_DEBUG
498 :
499 : static __inline uint32_t
500 : wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
501 : {
502 : WPI_WRITE(sc, WPI_MEM_RADDR, addr);
503 : WPI_BARRIER_READ_WRITE(sc);
504 : return WPI_READ(sc, WPI_MEM_RDATA);
505 : }
506 :
507 : static __inline void
508 : wpi_mem_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
509 : {
510 : WPI_WRITE(sc, WPI_MEM_WADDR, addr);
511 : WPI_BARRIER_WRITE(sc);
512 : WPI_WRITE(sc, WPI_MEM_WDATA, data);
513 : }
514 :
515 : static __inline void
516 : wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
517 : int count)
518 : {
519 : for (; count > 0; count--, addr += 4)
520 : *data++ = wpi_mem_read(sc, addr);
521 : }
522 :
523 : #endif
524 :
525 : int
526 0 : wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
527 : {
528 : uint8_t *out = data;
529 : uint32_t val;
530 : int error, ntries;
531 :
532 0 : if ((error = wpi_nic_lock(sc)) != 0)
533 0 : return error;
534 :
535 0 : for (; count > 0; count -= 2, addr++) {
536 0 : WPI_WRITE(sc, WPI_EEPROM, addr << 2);
537 0 : WPI_CLRBITS(sc, WPI_EEPROM, WPI_EEPROM_CMD);
538 :
539 0 : for (ntries = 0; ntries < 10; ntries++) {
540 0 : val = WPI_READ(sc, WPI_EEPROM);
541 0 : if (val & WPI_EEPROM_READ_VALID)
542 : break;
543 0 : DELAY(5);
544 : }
545 0 : if (ntries == 10) {
546 0 : printf("%s: could not read EEPROM\n",
547 0 : sc->sc_dev.dv_xname);
548 0 : return ETIMEDOUT;
549 : }
550 0 : *out++ = val >> 16;
551 0 : if (count > 1)
552 0 : *out++ = val >> 24;
553 : }
554 :
555 0 : wpi_nic_unlock(sc);
556 0 : return 0;
557 0 : }
558 :
559 : int
560 0 : wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
561 : bus_size_t size, bus_size_t alignment)
562 : {
563 0 : int nsegs, error;
564 :
565 0 : dma->tag = tag;
566 0 : dma->size = size;
567 :
568 0 : error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
569 : &dma->map);
570 0 : if (error != 0)
571 : goto fail;
572 :
573 0 : error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
574 : BUS_DMA_NOWAIT | BUS_DMA_ZERO);
575 0 : if (error != 0)
576 : goto fail;
577 :
578 0 : error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
579 : BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
580 0 : if (error != 0)
581 : goto fail;
582 :
583 0 : error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
584 : BUS_DMA_NOWAIT);
585 0 : if (error != 0)
586 : goto fail;
587 :
588 0 : bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
589 :
590 0 : dma->paddr = dma->map->dm_segs[0].ds_addr;
591 0 : if (kvap != NULL)
592 0 : *kvap = dma->vaddr;
593 :
594 0 : return 0;
595 :
596 0 : fail: wpi_dma_contig_free(dma);
597 0 : return error;
598 0 : }
599 :
600 : void
601 0 : wpi_dma_contig_free(struct wpi_dma_info *dma)
602 : {
603 0 : if (dma->map != NULL) {
604 0 : if (dma->vaddr != NULL) {
605 0 : bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
606 : BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
607 0 : bus_dmamap_unload(dma->tag, dma->map);
608 0 : bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
609 0 : bus_dmamem_free(dma->tag, &dma->seg, 1);
610 0 : dma->vaddr = NULL;
611 0 : }
612 0 : bus_dmamap_destroy(dma->tag, dma->map);
613 0 : dma->map = NULL;
614 0 : }
615 0 : }
616 :
617 : int
618 0 : wpi_alloc_shared(struct wpi_softc *sc)
619 : {
620 : /* Shared buffer must be aligned on a 4KB boundary. */
621 0 : return wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
622 0 : (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
623 : }
624 :
625 : void
626 0 : wpi_free_shared(struct wpi_softc *sc)
627 : {
628 0 : wpi_dma_contig_free(&sc->shared_dma);
629 0 : }
630 :
631 : int
632 0 : wpi_alloc_fwmem(struct wpi_softc *sc)
633 : {
634 : /* Allocate enough contiguous space to store text and data. */
635 0 : return wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
636 : WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
637 : }
638 :
639 : void
640 0 : wpi_free_fwmem(struct wpi_softc *sc)
641 : {
642 0 : wpi_dma_contig_free(&sc->fw_dma);
643 0 : }
644 :
645 : int
646 0 : wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
647 : {
648 : bus_size_t size;
649 : int i, error;
650 :
651 0 : ring->cur = 0;
652 :
653 : /* Allocate RX descriptors (16KB aligned.) */
654 : size = WPI_RX_RING_COUNT * sizeof (uint32_t);
655 0 : error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
656 0 : (void **)&ring->desc, size, 16 * 1024);
657 0 : if (error != 0) {
658 0 : printf("%s: could not allocate RX ring DMA memory\n",
659 0 : sc->sc_dev.dv_xname);
660 0 : goto fail;
661 : }
662 :
663 : /*
664 : * Allocate and map RX buffers.
665 : */
666 0 : for (i = 0; i < WPI_RX_RING_COUNT; i++) {
667 0 : struct wpi_rx_data *data = &ring->data[i];
668 :
669 0 : error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
670 : WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
671 0 : if (error != 0) {
672 0 : printf("%s: could not create RX buf DMA map\n",
673 0 : sc->sc_dev.dv_xname);
674 0 : goto fail;
675 : }
676 :
677 0 : data->m = MCLGETI(NULL, M_DONTWAIT, NULL, WPI_RBUF_SIZE);
678 0 : if (data->m == NULL) {
679 0 : printf("%s: could not allocate RX mbuf\n",
680 0 : sc->sc_dev.dv_xname);
681 : error = ENOBUFS;
682 0 : goto fail;
683 : }
684 :
685 0 : error = bus_dmamap_load(sc->sc_dmat, data->map,
686 : mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
687 : BUS_DMA_NOWAIT | BUS_DMA_READ);
688 0 : if (error != 0) {
689 0 : printf("%s: can't map mbuf (error %d)\n",
690 0 : sc->sc_dev.dv_xname, error);
691 0 : goto fail;
692 : }
693 :
694 : /* Set physical address of RX buffer. */
695 0 : ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr);
696 0 : }
697 :
698 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
699 : BUS_DMASYNC_PREWRITE);
700 :
701 0 : return 0;
702 :
703 0 : fail: wpi_free_rx_ring(sc, ring);
704 0 : return error;
705 0 : }
706 :
707 : void
708 0 : wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
709 : {
710 : int ntries;
711 :
712 0 : if (wpi_nic_lock(sc) == 0) {
713 0 : WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
714 0 : for (ntries = 0; ntries < 100; ntries++) {
715 0 : if (WPI_READ(sc, WPI_FH_RX_STATUS) &
716 : WPI_FH_RX_STATUS_IDLE)
717 : break;
718 0 : DELAY(10);
719 : }
720 0 : wpi_nic_unlock(sc);
721 0 : }
722 0 : ring->cur = 0;
723 0 : }
724 :
725 : void
726 0 : wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
727 : {
728 : int i;
729 :
730 0 : wpi_dma_contig_free(&ring->desc_dma);
731 :
732 0 : for (i = 0; i < WPI_RX_RING_COUNT; i++) {
733 0 : struct wpi_rx_data *data = &ring->data[i];
734 :
735 0 : if (data->m != NULL) {
736 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0,
737 : data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
738 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
739 0 : m_freem(data->m);
740 0 : }
741 0 : if (data->map != NULL)
742 0 : bus_dmamap_destroy(sc->sc_dmat, data->map);
743 : }
744 0 : }
745 :
746 : int
747 0 : wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
748 : {
749 : bus_addr_t paddr;
750 : bus_size_t size;
751 : int i, error;
752 :
753 0 : ring->qid = qid;
754 0 : ring->queued = 0;
755 0 : ring->cur = 0;
756 :
757 : /* Allocate TX descriptors (16KB aligned.) */
758 : size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
759 0 : error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
760 0 : (void **)&ring->desc, size, 16 * 1024);
761 0 : if (error != 0) {
762 0 : printf("%s: could not allocate TX ring DMA memory\n",
763 0 : sc->sc_dev.dv_xname);
764 0 : goto fail;
765 : }
766 :
767 : /* Update shared area with ring physical address. */
768 0 : sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
769 0 : bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
770 : sizeof (struct wpi_shared), BUS_DMASYNC_PREWRITE);
771 :
772 : /*
773 : * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
774 : * to allocate commands space for other rings.
775 : * XXX Do we really need to allocate descriptors for other rings?
776 : */
777 0 : if (qid > 4)
778 0 : return 0;
779 :
780 : size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
781 0 : error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
782 0 : (void **)&ring->cmd, size, 4);
783 0 : if (error != 0) {
784 0 : printf("%s: could not allocate TX cmd DMA memory\n",
785 0 : sc->sc_dev.dv_xname);
786 0 : goto fail;
787 : }
788 :
789 0 : paddr = ring->cmd_dma.paddr;
790 0 : for (i = 0; i < WPI_TX_RING_COUNT; i++) {
791 0 : struct wpi_tx_data *data = &ring->data[i];
792 :
793 0 : data->cmd_paddr = paddr;
794 0 : paddr += sizeof (struct wpi_tx_cmd);
795 :
796 0 : error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
797 : WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
798 : &data->map);
799 0 : if (error != 0) {
800 0 : printf("%s: could not create TX buf DMA map\n",
801 0 : sc->sc_dev.dv_xname);
802 0 : goto fail;
803 : }
804 0 : }
805 0 : return 0;
806 :
807 0 : fail: wpi_free_tx_ring(sc, ring);
808 0 : return error;
809 0 : }
810 :
811 : void
812 0 : wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
813 : {
814 : int i;
815 :
816 0 : for (i = 0; i < WPI_TX_RING_COUNT; i++) {
817 0 : struct wpi_tx_data *data = &ring->data[i];
818 :
819 0 : if (data->m != NULL) {
820 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0,
821 : data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
822 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
823 0 : m_freem(data->m);
824 0 : data->m = NULL;
825 0 : }
826 : }
827 : /* Clear TX descriptors. */
828 0 : memset(ring->desc, 0, ring->desc_dma.size);
829 0 : sc->qfullmsk &= ~(1 << ring->qid);
830 0 : ring->queued = 0;
831 0 : ring->cur = 0;
832 0 : }
833 :
834 : void
835 0 : wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
836 : {
837 : int i;
838 :
839 0 : wpi_dma_contig_free(&ring->desc_dma);
840 0 : wpi_dma_contig_free(&ring->cmd_dma);
841 :
842 0 : for (i = 0; i < WPI_TX_RING_COUNT; i++) {
843 0 : struct wpi_tx_data *data = &ring->data[i];
844 :
845 0 : if (data->m != NULL) {
846 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0,
847 : data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
848 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
849 0 : m_freem(data->m);
850 0 : }
851 0 : if (data->map != NULL)
852 0 : bus_dmamap_destroy(sc->sc_dmat, data->map);
853 : }
854 0 : }
855 :
856 : int
857 0 : wpi_read_eeprom(struct wpi_softc *sc)
858 : {
859 0 : struct ieee80211com *ic = &sc->sc_ic;
860 0 : char domain[4];
861 : int i;
862 :
863 0 : if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
864 0 : printf("%s: bad EEPROM signature\n", sc->sc_dev.dv_xname);
865 0 : return EIO;
866 : }
867 : /* Clear HW ownership of EEPROM. */
868 0 : WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
869 :
870 0 : wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
871 0 : wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
872 0 : wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
873 :
874 : DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, letoh16(sc->rev),
875 : sc->type));
876 :
877 : /* Read and print regulatory domain (4 ASCII characters.) */
878 0 : wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
879 0 : printf(", %.4s", domain);
880 :
881 : /* Read and print MAC address. */
882 0 : wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
883 0 : printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
884 :
885 : /* Read the list of authorized channels. */
886 0 : for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
887 0 : wpi_read_eeprom_channels(sc, i);
888 :
889 : /* Read the list of TX power groups. */
890 0 : for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
891 0 : wpi_read_eeprom_group(sc, i);
892 :
893 0 : return 0;
894 0 : }
895 :
896 : void
897 0 : wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
898 : {
899 0 : struct ieee80211com *ic = &sc->sc_ic;
900 0 : const struct wpi_chan_band *band = &wpi_bands[n];
901 0 : struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
902 : int chan, i;
903 :
904 0 : wpi_read_prom_data(sc, band->addr, channels,
905 0 : band->nchan * sizeof (struct wpi_eeprom_chan));
906 :
907 0 : for (i = 0; i < band->nchan; i++) {
908 0 : if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
909 : continue;
910 :
911 0 : chan = band->chan[i];
912 :
913 0 : if (n == 0) { /* 2GHz band */
914 0 : ic->ic_channels[chan].ic_freq =
915 0 : ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
916 0 : ic->ic_channels[chan].ic_flags =
917 : IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
918 : IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
919 :
920 0 : } else { /* 5GHz band */
921 : /*
922 : * Some adapters support channels 7, 8, 11 and 12
923 : * both in the 2GHz and 4.9GHz bands.
924 : * Because of limitations in our net80211 layer,
925 : * we don't support them in the 4.9GHz band.
926 : */
927 0 : if (chan <= 14)
928 : continue;
929 :
930 0 : ic->ic_channels[chan].ic_freq =
931 0 : ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
932 0 : ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
933 : /* We have at least one valid 5GHz channel. */
934 0 : sc->sc_flags |= WPI_FLAG_HAS_5GHZ;
935 : }
936 :
937 : /* Is active scan allowed on this channel? */
938 0 : if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
939 0 : ic->ic_channels[chan].ic_flags |=
940 : IEEE80211_CHAN_PASSIVE;
941 0 : }
942 :
943 : /* Save maximum allowed TX power for this channel. */
944 0 : sc->maxpwr[chan] = channels[i].maxpwr;
945 :
946 : DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
947 : chan, channels[i].flags, sc->maxpwr[chan]));
948 0 : }
949 0 : }
950 :
951 : void
952 0 : wpi_read_eeprom_group(struct wpi_softc *sc, int n)
953 : {
954 0 : struct wpi_power_group *group = &sc->groups[n];
955 0 : struct wpi_eeprom_group rgroup;
956 : int i;
957 :
958 0 : wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
959 : sizeof rgroup);
960 :
961 : /* Save TX power group information. */
962 0 : group->chan = rgroup.chan;
963 0 : group->maxpwr = rgroup.maxpwr;
964 : /* Retrieve temperature at which the samples were taken. */
965 0 : group->temp = (int16_t)letoh16(rgroup.temp);
966 :
967 : DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
968 : group->chan, group->maxpwr, group->temp));
969 :
970 0 : for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
971 0 : group->samples[i].index = rgroup.samples[i].index;
972 0 : group->samples[i].power = rgroup.samples[i].power;
973 :
974 : DPRINTF(("\tsample %d: index=%d power=%d\n", i,
975 : group->samples[i].index, group->samples[i].power));
976 : }
977 0 : }
978 :
979 : struct ieee80211_node *
980 0 : wpi_node_alloc(struct ieee80211com *ic)
981 : {
982 0 : return malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
983 : }
984 :
985 : void
986 0 : wpi_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
987 : {
988 0 : struct wpi_softc *sc = ic->ic_if.if_softc;
989 0 : struct wpi_node *wn = (void *)ni;
990 : uint8_t rate;
991 : int ridx, i;
992 :
993 0 : ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
994 : /* Start at lowest available bit-rate, AMRR will raise. */
995 0 : ni->ni_txrate = 0;
996 :
997 0 : for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
998 0 : rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
999 : /* Map 802.11 rate to HW rate index. */
1000 0 : for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
1001 0 : if (wpi_rates[ridx].rate == rate)
1002 : break;
1003 0 : wn->ridx[i] = ridx;
1004 : }
1005 0 : }
1006 :
1007 : int
1008 0 : wpi_media_change(struct ifnet *ifp)
1009 : {
1010 0 : struct wpi_softc *sc = ifp->if_softc;
1011 0 : struct ieee80211com *ic = &sc->sc_ic;
1012 : uint8_t rate, ridx;
1013 : int error;
1014 :
1015 0 : error = ieee80211_media_change(ifp);
1016 0 : if (error != ENETRESET)
1017 0 : return error;
1018 :
1019 0 : if (ic->ic_fixed_rate != -1) {
1020 0 : rate = ic->ic_sup_rates[ic->ic_curmode].
1021 0 : rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1022 : /* Map 802.11 rate to HW rate index. */
1023 0 : for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
1024 0 : if (wpi_rates[ridx].rate == rate)
1025 : break;
1026 0 : sc->fixed_ridx = ridx;
1027 0 : }
1028 :
1029 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1030 : (IFF_UP | IFF_RUNNING)) {
1031 0 : wpi_stop(ifp, 0);
1032 0 : error = wpi_init(ifp);
1033 0 : }
1034 0 : return error;
1035 0 : }
1036 :
1037 : int
1038 0 : wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1039 : {
1040 0 : struct ifnet *ifp = &ic->ic_if;
1041 0 : struct wpi_softc *sc = ifp->if_softc;
1042 : int error;
1043 :
1044 0 : timeout_del(&sc->calib_to);
1045 :
1046 0 : switch (nstate) {
1047 : case IEEE80211_S_SCAN:
1048 : /* Make the link LED blink while we're scanning. */
1049 0 : wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1050 :
1051 0 : if ((error = wpi_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1052 0 : printf("%s: could not initiate scan\n",
1053 0 : sc->sc_dev.dv_xname);
1054 0 : return error;
1055 : }
1056 0 : if (ifp->if_flags & IFF_DEBUG)
1057 0 : printf("%s: %s -> %s\n", ifp->if_xname,
1058 0 : ieee80211_state_name[ic->ic_state],
1059 0 : ieee80211_state_name[nstate]);
1060 0 : ieee80211_set_link_state(ic, LINK_STATE_DOWN);
1061 0 : ieee80211_free_allnodes(ic, 1);
1062 0 : ic->ic_state = nstate;
1063 0 : return 0;
1064 :
1065 : case IEEE80211_S_ASSOC:
1066 0 : if (ic->ic_state != IEEE80211_S_RUN)
1067 : break;
1068 : /* FALLTHROUGH */
1069 : case IEEE80211_S_AUTH:
1070 : /* Reset state to handle reassociations correctly. */
1071 0 : sc->rxon.associd = 0;
1072 0 : sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1073 :
1074 0 : if ((error = wpi_auth(sc)) != 0) {
1075 0 : printf("%s: could not move to auth state\n",
1076 0 : sc->sc_dev.dv_xname);
1077 0 : return error;
1078 : }
1079 : break;
1080 :
1081 : case IEEE80211_S_RUN:
1082 0 : if ((error = wpi_run(sc)) != 0) {
1083 0 : printf("%s: could not move to run state\n",
1084 0 : sc->sc_dev.dv_xname);
1085 0 : return error;
1086 : }
1087 : break;
1088 :
1089 : case IEEE80211_S_INIT:
1090 : break;
1091 : }
1092 :
1093 0 : return sc->sc_newstate(ic, nstate, arg);
1094 0 : }
1095 :
1096 : void
1097 0 : wpi_iter_func(void *arg, struct ieee80211_node *ni)
1098 : {
1099 0 : struct wpi_softc *sc = arg;
1100 0 : struct wpi_node *wn = (struct wpi_node *)ni;
1101 :
1102 0 : ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1103 0 : }
1104 :
1105 : void
1106 0 : wpi_calib_timeout(void *arg)
1107 : {
1108 0 : struct wpi_softc *sc = arg;
1109 0 : struct ieee80211com *ic = &sc->sc_ic;
1110 : int s;
1111 :
1112 0 : s = splnet();
1113 : /* Automatic rate control triggered every 500ms. */
1114 0 : if (ic->ic_fixed_rate == -1) {
1115 0 : if (ic->ic_opmode == IEEE80211_M_STA)
1116 0 : wpi_iter_func(sc, ic->ic_bss);
1117 : else
1118 0 : ieee80211_iterate_nodes(ic, wpi_iter_func, sc);
1119 : }
1120 :
1121 : /* Force automatic TX power calibration every 60 secs. */
1122 0 : if (++sc->calib_cnt >= 120) {
1123 0 : wpi_power_calibration(sc);
1124 0 : sc->calib_cnt = 0;
1125 0 : }
1126 0 : splx(s);
1127 :
1128 : /* Automatic rate control triggered every 500ms. */
1129 0 : timeout_add_msec(&sc->calib_to, 500);
1130 0 : }
1131 :
1132 : int
1133 0 : wpi_ccmp_decap(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_key *k)
1134 : {
1135 : struct ieee80211_frame *wh;
1136 : uint64_t pn, *prsc;
1137 : uint8_t *ivp;
1138 : uint8_t tid;
1139 : int hdrlen;
1140 :
1141 0 : wh = mtod(m, struct ieee80211_frame *);
1142 0 : hdrlen = ieee80211_get_hdrlen(wh);
1143 0 : ivp = (uint8_t *)wh + hdrlen;
1144 :
1145 : /* Check that ExtIV bit is be set. */
1146 0 : if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1147 : DPRINTF(("CCMP decap ExtIV not set\n"));
1148 0 : return 1;
1149 : }
1150 0 : tid = ieee80211_has_qos(wh) ?
1151 0 : ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1152 0 : prsc = &k->k_rsc[tid];
1153 :
1154 : /* Extract the 48-bit PN from the CCMP header. */
1155 0 : pn = (uint64_t)ivp[0] |
1156 0 : (uint64_t)ivp[1] << 8 |
1157 0 : (uint64_t)ivp[4] << 16 |
1158 0 : (uint64_t)ivp[5] << 24 |
1159 0 : (uint64_t)ivp[6] << 32 |
1160 0 : (uint64_t)ivp[7] << 40;
1161 0 : if (pn <= *prsc) {
1162 : /*
1163 : * Not necessarily a replayed frame since we did not check
1164 : * the sequence number of the 802.11 header yet.
1165 : */
1166 : DPRINTF(("CCMP replayed\n"));
1167 0 : return 1;
1168 : }
1169 : /* Update last seen packet number. */
1170 0 : *prsc = pn;
1171 :
1172 : /* Clear Protected bit and strip IV. */
1173 0 : wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1174 0 : memmove(mtod(m, caddr_t) + IEEE80211_CCMP_HDRLEN, wh, hdrlen);
1175 0 : m_adj(m, IEEE80211_CCMP_HDRLEN);
1176 : /* Strip MIC. */
1177 0 : m_adj(m, -IEEE80211_CCMP_MICLEN);
1178 0 : return 0;
1179 0 : }
1180 :
1181 : void
1182 0 : wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1183 : struct wpi_rx_data *data)
1184 : {
1185 0 : struct ieee80211com *ic = &sc->sc_ic;
1186 0 : struct ifnet *ifp = &ic->ic_if;
1187 0 : struct wpi_rx_ring *ring = &sc->rxq;
1188 : struct wpi_rx_stat *stat;
1189 : struct wpi_rx_head *head;
1190 : struct wpi_rx_tail *tail;
1191 : struct ieee80211_frame *wh;
1192 0 : struct ieee80211_rxinfo rxi;
1193 : struct ieee80211_node *ni;
1194 : struct mbuf *m, *m1;
1195 : uint32_t flags;
1196 : int error;
1197 :
1198 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0, WPI_RBUF_SIZE,
1199 : BUS_DMASYNC_POSTREAD);
1200 0 : stat = (struct wpi_rx_stat *)(desc + 1);
1201 :
1202 0 : if (stat->len > WPI_STAT_MAXLEN) {
1203 0 : printf("%s: invalid RX statistic header\n",
1204 0 : sc->sc_dev.dv_xname);
1205 0 : ifp->if_ierrors++;
1206 0 : return;
1207 : }
1208 0 : head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1209 0 : tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + letoh16(head->len));
1210 0 : flags = letoh32(tail->flags);
1211 :
1212 : /* Discard frames with a bad FCS early. */
1213 0 : if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1214 : DPRINTFN(2, ("rx tail flags error %x\n", flags));
1215 0 : ifp->if_ierrors++;
1216 0 : return;
1217 : }
1218 : /* Discard frames that are too short. */
1219 0 : if (letoh16(head->len) < sizeof (*wh)) {
1220 : DPRINTF(("frame too short: %d\n", letoh16(head->len)));
1221 0 : ic->ic_stats.is_rx_tooshort++;
1222 0 : ifp->if_ierrors++;
1223 0 : return;
1224 : }
1225 :
1226 0 : m1 = MCLGETI(NULL, M_DONTWAIT, NULL, WPI_RBUF_SIZE);
1227 0 : if (m1 == NULL) {
1228 0 : ic->ic_stats.is_rx_nombuf++;
1229 0 : ifp->if_ierrors++;
1230 0 : return;
1231 : }
1232 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
1233 :
1234 0 : error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1235 : WPI_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1236 0 : if (error != 0) {
1237 0 : m_freem(m1);
1238 :
1239 : /* Try to reload the old mbuf. */
1240 0 : error = bus_dmamap_load(sc->sc_dmat, data->map,
1241 : mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1242 : BUS_DMA_NOWAIT | BUS_DMA_READ);
1243 0 : if (error != 0) {
1244 0 : panic("%s: could not load old RX mbuf",
1245 0 : sc->sc_dev.dv_xname);
1246 : }
1247 : /* Physical address may have changed. */
1248 0 : ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1249 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1250 : ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1251 : BUS_DMASYNC_PREWRITE);
1252 0 : ifp->if_ierrors++;
1253 0 : return;
1254 : }
1255 :
1256 0 : m = data->m;
1257 0 : data->m = m1;
1258 : /* Update RX descriptor. */
1259 0 : ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1260 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1261 : ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1262 : BUS_DMASYNC_PREWRITE);
1263 :
1264 : /* Finalize mbuf. */
1265 0 : m->m_data = (caddr_t)(head + 1);
1266 0 : m->m_pkthdr.len = m->m_len = letoh16(head->len);
1267 :
1268 : /* Grab a reference to the source node. */
1269 0 : wh = mtod(m, struct ieee80211_frame *);
1270 0 : ni = ieee80211_find_rxnode(ic, wh);
1271 :
1272 0 : rxi.rxi_flags = 0;
1273 0 : if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1274 0 : !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1275 0 : (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
1276 0 : ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
1277 0 : if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP) {
1278 0 : ic->ic_stats.is_ccmp_dec_errs++;
1279 0 : ifp->if_ierrors++;
1280 0 : m_freem(m);
1281 0 : return;
1282 : }
1283 : /* Check whether decryption was successful or not. */
1284 0 : if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1285 : DPRINTF(("CCMP decryption failed 0x%x\n", flags));
1286 0 : ic->ic_stats.is_ccmp_dec_errs++;
1287 0 : ifp->if_ierrors++;
1288 0 : m_freem(m);
1289 0 : return;
1290 : }
1291 0 : if (wpi_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
1292 0 : ifp->if_ierrors++;
1293 0 : m_freem(m);
1294 0 : return;
1295 : }
1296 0 : rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1297 0 : }
1298 :
1299 : #if NBPFILTER > 0
1300 0 : if (sc->sc_drvbpf != NULL) {
1301 0 : struct mbuf mb;
1302 0 : struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1303 :
1304 0 : tap->wr_flags = 0;
1305 0 : if (letoh16(head->flags) & 0x4)
1306 0 : tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1307 0 : tap->wr_chan_freq =
1308 0 : htole16(ic->ic_channels[head->chan].ic_freq);
1309 0 : tap->wr_chan_flags =
1310 0 : htole16(ic->ic_channels[head->chan].ic_flags);
1311 0 : tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1312 0 : tap->wr_dbm_antnoise = (int8_t)letoh16(stat->noise);
1313 0 : tap->wr_tsft = tail->tstamp;
1314 0 : tap->wr_antenna = (letoh16(head->flags) >> 4) & 0xf;
1315 0 : switch (head->rate) {
1316 : /* CCK rates. */
1317 0 : case 10: tap->wr_rate = 2; break;
1318 0 : case 20: tap->wr_rate = 4; break;
1319 0 : case 55: tap->wr_rate = 11; break;
1320 0 : case 110: tap->wr_rate = 22; break;
1321 : /* OFDM rates. */
1322 0 : case 0xd: tap->wr_rate = 12; break;
1323 0 : case 0xf: tap->wr_rate = 18; break;
1324 0 : case 0x5: tap->wr_rate = 24; break;
1325 0 : case 0x7: tap->wr_rate = 36; break;
1326 0 : case 0x9: tap->wr_rate = 48; break;
1327 0 : case 0xb: tap->wr_rate = 72; break;
1328 0 : case 0x1: tap->wr_rate = 96; break;
1329 0 : case 0x3: tap->wr_rate = 108; break;
1330 : /* Unknown rate: should not happen. */
1331 0 : default: tap->wr_rate = 0;
1332 0 : }
1333 :
1334 0 : mb.m_data = (caddr_t)tap;
1335 0 : mb.m_len = sc->sc_rxtap_len;
1336 0 : mb.m_next = m;
1337 0 : mb.m_nextpkt = NULL;
1338 0 : mb.m_type = 0;
1339 0 : mb.m_flags = 0;
1340 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1341 0 : }
1342 : #endif
1343 :
1344 : /* Send the frame to the 802.11 layer. */
1345 0 : rxi.rxi_rssi = stat->rssi;
1346 0 : rxi.rxi_tstamp = 0; /* unused */
1347 0 : ieee80211_input(ifp, m, ni, &rxi);
1348 :
1349 : /* Node is no longer needed. */
1350 0 : ieee80211_release_node(ic, ni);
1351 0 : }
1352 :
1353 : void
1354 0 : wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1355 : {
1356 0 : struct ieee80211com *ic = &sc->sc_ic;
1357 0 : struct ifnet *ifp = &ic->ic_if;
1358 0 : struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1359 0 : struct wpi_tx_data *data = &ring->data[desc->idx];
1360 0 : struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1361 0 : struct wpi_node *wn = (struct wpi_node *)data->ni;
1362 :
1363 : /* Update rate control statistics. */
1364 0 : wn->amn.amn_txcnt++;
1365 0 : if (stat->retrycnt > 0)
1366 0 : wn->amn.amn_retrycnt++;
1367 :
1368 0 : if ((letoh32(stat->status) & 0xff) != 1)
1369 0 : ifp->if_oerrors++;
1370 :
1371 : /* Unmap and free mbuf. */
1372 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1373 : BUS_DMASYNC_POSTWRITE);
1374 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
1375 0 : m_freem(data->m);
1376 0 : data->m = NULL;
1377 0 : ieee80211_release_node(ic, data->ni);
1378 0 : data->ni = NULL;
1379 :
1380 0 : sc->sc_tx_timer = 0;
1381 0 : if (--ring->queued < WPI_TX_RING_LOMARK) {
1382 0 : sc->qfullmsk &= ~(1 << ring->qid);
1383 0 : if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
1384 0 : ifq_clr_oactive(&ifp->if_snd);
1385 0 : (*ifp->if_start)(ifp);
1386 0 : }
1387 : }
1388 0 : }
1389 :
1390 : void
1391 0 : wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1392 : {
1393 0 : struct wpi_tx_ring *ring = &sc->txq[4];
1394 : struct wpi_tx_data *data;
1395 :
1396 0 : if ((desc->qid & 7) != 4)
1397 0 : return; /* Not a command ack. */
1398 :
1399 0 : data = &ring->data[desc->idx];
1400 :
1401 : /* If the command was mapped in an mbuf, free it. */
1402 0 : if (data->m != NULL) {
1403 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1404 : data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1405 0 : bus_dmamap_unload(sc->sc_dmat, data->map);
1406 0 : m_freem(data->m);
1407 0 : data->m = NULL;
1408 0 : }
1409 0 : wakeup(&ring->cmd[desc->idx]);
1410 0 : }
1411 :
1412 : void
1413 0 : wpi_notif_intr(struct wpi_softc *sc)
1414 : {
1415 0 : struct ieee80211com *ic = &sc->sc_ic;
1416 0 : struct ifnet *ifp = &ic->ic_if;
1417 : uint32_t hw;
1418 :
1419 0 : bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1420 : sizeof (struct wpi_shared), BUS_DMASYNC_POSTREAD);
1421 :
1422 0 : hw = letoh32(sc->shared->next);
1423 0 : while (sc->rxq.cur != hw) {
1424 0 : struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1425 : struct wpi_rx_desc *desc;
1426 :
1427 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
1428 : BUS_DMASYNC_POSTREAD);
1429 0 : desc = mtod(data->m, struct wpi_rx_desc *);
1430 :
1431 : DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1432 : "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
1433 : letoh32(desc->len)));
1434 :
1435 0 : if (!(desc->qid & 0x80)) /* Reply to a command. */
1436 0 : wpi_cmd_done(sc, desc);
1437 :
1438 0 : switch (desc->type) {
1439 : case WPI_RX_DONE:
1440 : /* An 802.11 frame has been received. */
1441 0 : wpi_rx_done(sc, desc, data);
1442 0 : break;
1443 :
1444 : case WPI_TX_DONE:
1445 : /* An 802.11 frame has been transmitted. */
1446 0 : wpi_tx_done(sc, desc);
1447 0 : break;
1448 :
1449 : case WPI_UC_READY:
1450 : {
1451 : struct wpi_ucode_info *uc =
1452 0 : (struct wpi_ucode_info *)(desc + 1);
1453 :
1454 : /* The microcontroller is ready. */
1455 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1456 : sizeof (*uc), BUS_DMASYNC_POSTREAD);
1457 : DPRINTF(("microcode alive notification version %x "
1458 : "alive %x\n", letoh32(uc->version),
1459 : letoh32(uc->valid)));
1460 :
1461 0 : if (letoh32(uc->valid) != 1) {
1462 0 : printf("%s: microcontroller initialization "
1463 0 : "failed\n", sc->sc_dev.dv_xname);
1464 0 : }
1465 0 : if (uc->subtype != WPI_UCODE_INIT) {
1466 : /* Save the address of the error log. */
1467 0 : sc->errptr = letoh32(uc->errptr);
1468 0 : }
1469 : break;
1470 : }
1471 : case WPI_STATE_CHANGED:
1472 : {
1473 0 : uint32_t *status = (uint32_t *)(desc + 1);
1474 :
1475 : /* Enabled/disabled notification. */
1476 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1477 : sizeof (*status), BUS_DMASYNC_POSTREAD);
1478 : DPRINTF(("state changed to %x\n", letoh32(*status)));
1479 :
1480 0 : if (letoh32(*status) & 1) {
1481 : /* The radio button has to be pushed. */
1482 0 : printf("%s: Radio transmitter is off\n",
1483 0 : sc->sc_dev.dv_xname);
1484 : /* Turn the interface down. */
1485 0 : wpi_stop(ifp, 1);
1486 0 : return; /* No further processing. */
1487 : }
1488 0 : break;
1489 : }
1490 : case WPI_START_SCAN:
1491 : {
1492 : struct wpi_start_scan *scan =
1493 0 : (struct wpi_start_scan *)(desc + 1);
1494 :
1495 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1496 : sizeof (*scan), BUS_DMASYNC_POSTREAD);
1497 : DPRINTFN(2, ("scanning channel %d status %x\n",
1498 : scan->chan, letoh32(scan->status)));
1499 :
1500 : /* Fix current channel. */
1501 0 : ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1502 : break;
1503 : }
1504 : case WPI_STOP_SCAN:
1505 : {
1506 : struct wpi_stop_scan *scan =
1507 0 : (struct wpi_stop_scan *)(desc + 1);
1508 :
1509 0 : bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1510 : sizeof (*scan), BUS_DMASYNC_POSTREAD);
1511 : DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1512 : scan->nchan, scan->status, scan->chan));
1513 :
1514 0 : if (scan->status == 1 && scan->chan <= 14 &&
1515 0 : (sc->sc_flags & WPI_FLAG_HAS_5GHZ)) {
1516 : /*
1517 : * We just finished scanning 2GHz channels,
1518 : * start scanning 5GHz ones.
1519 : */
1520 0 : if (wpi_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
1521 0 : break;
1522 : }
1523 0 : ieee80211_end_scan(ifp);
1524 0 : break;
1525 : }
1526 : }
1527 :
1528 0 : sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1529 0 : }
1530 :
1531 : /* Tell the firmware what we have processed. */
1532 0 : hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1533 0 : WPI_WRITE(sc, WPI_FH_RX_WPTR, hw & ~7);
1534 0 : }
1535 :
1536 : #ifdef WPI_DEBUG
1537 : /*
1538 : * Dump the error log of the firmware when a firmware panic occurs. Although
1539 : * we can't debug the firmware because it is neither open source nor free, it
1540 : * can help us to identify certain classes of problems.
1541 : */
1542 : void
1543 : wpi_fatal_intr(struct wpi_softc *sc)
1544 : {
1545 : #define N(a) (sizeof (a) / sizeof ((a)[0]))
1546 : struct wpi_fwdump dump;
1547 : uint32_t i, offset, count;
1548 :
1549 : /* Check that the error log address is valid. */
1550 : if (sc->errptr < WPI_FW_DATA_BASE ||
1551 : sc->errptr + sizeof (dump) >
1552 : WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
1553 : printf("%s: bad firmware error log address 0x%08x\n",
1554 : sc->sc_dev.dv_xname, sc->errptr);
1555 : return;
1556 : }
1557 :
1558 : if (wpi_nic_lock(sc) != 0) {
1559 : printf("%s: could not read firmware error log\n",
1560 : sc->sc_dev.dv_xname);
1561 : return;
1562 : }
1563 : /* Read number of entries in the log. */
1564 : count = wpi_mem_read(sc, sc->errptr);
1565 : if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
1566 : printf("%s: invalid count field (count=%u)\n",
1567 : sc->sc_dev.dv_xname, count);
1568 : wpi_nic_unlock(sc);
1569 : return;
1570 : }
1571 : /* Skip "count" field. */
1572 : offset = sc->errptr + sizeof (uint32_t);
1573 : printf("firmware error log (count=%u):\n", count);
1574 : for (i = 0; i < count; i++) {
1575 : wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
1576 : sizeof (dump) / sizeof (uint32_t));
1577 :
1578 : printf(" error type = \"%s\" (0x%08X)\n",
1579 : (dump.desc < N(wpi_fw_errmsg)) ?
1580 : wpi_fw_errmsg[dump.desc] : "UNKNOWN",
1581 : dump.desc);
1582 : printf(" error data = 0x%08X\n",
1583 : dump.data);
1584 : printf(" branch link = 0x%08X%08X\n",
1585 : dump.blink[0], dump.blink[1]);
1586 : printf(" interrupt link = 0x%08X%08X\n",
1587 : dump.ilink[0], dump.ilink[1]);
1588 : printf(" time = %u\n", dump.time);
1589 :
1590 : offset += sizeof (dump);
1591 : }
1592 : wpi_nic_unlock(sc);
1593 : /* Dump driver status (TX and RX rings) while we're here. */
1594 : printf("driver status:\n");
1595 : for (i = 0; i < 6; i++) {
1596 : struct wpi_tx_ring *ring = &sc->txq[i];
1597 : printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
1598 : i, ring->qid, ring->cur, ring->queued);
1599 : }
1600 : printf(" rx ring: cur=%d\n", sc->rxq.cur);
1601 : printf(" 802.11 state %d\n", sc->sc_ic.ic_state);
1602 : #undef N
1603 : }
1604 : #endif
1605 :
1606 : int
1607 0 : wpi_intr(void *arg)
1608 : {
1609 0 : struct wpi_softc *sc = arg;
1610 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
1611 : uint32_t r1, r2;
1612 :
1613 : /* Disable interrupts. */
1614 0 : WPI_WRITE(sc, WPI_MASK, 0);
1615 :
1616 0 : r1 = WPI_READ(sc, WPI_INT);
1617 0 : r2 = WPI_READ(sc, WPI_FH_INT);
1618 :
1619 0 : if (r1 == 0 && r2 == 0) {
1620 0 : if (ifp->if_flags & IFF_UP)
1621 0 : WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
1622 0 : return 0; /* Interrupt not for us. */
1623 : }
1624 0 : if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
1625 0 : return 0; /* Hardware gone! */
1626 :
1627 : /* Acknowledge interrupts. */
1628 0 : WPI_WRITE(sc, WPI_INT, r1);
1629 0 : WPI_WRITE(sc, WPI_FH_INT, r2);
1630 :
1631 0 : if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
1632 0 : printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1633 : /* Dump firmware error log and stop. */
1634 : #ifdef WPI_DEBUG
1635 : wpi_fatal_intr(sc);
1636 : #endif
1637 0 : wpi_stop(ifp, 1);
1638 0 : task_add(systq, &sc->init_task);
1639 0 : return 1;
1640 : }
1641 0 : if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
1642 0 : (r2 & WPI_FH_INT_RX))
1643 0 : wpi_notif_intr(sc);
1644 :
1645 0 : if (r1 & WPI_INT_ALIVE)
1646 0 : wakeup(sc); /* Firmware is alive. */
1647 :
1648 : /* Re-enable interrupts. */
1649 0 : if (ifp->if_flags & IFF_UP)
1650 0 : WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
1651 :
1652 0 : return 1;
1653 0 : }
1654 :
1655 : int
1656 0 : wpi_tx(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1657 : {
1658 0 : struct ieee80211com *ic = &sc->sc_ic;
1659 0 : struct wpi_node *wn = (void *)ni;
1660 : struct wpi_tx_ring *ring;
1661 : struct wpi_tx_desc *desc;
1662 : struct wpi_tx_data *data;
1663 : struct wpi_tx_cmd *cmd;
1664 : struct wpi_cmd_data *tx;
1665 : const struct wpi_rate *rinfo;
1666 : struct ieee80211_frame *wh;
1667 : struct ieee80211_key *k = NULL;
1668 : enum ieee80211_edca_ac ac;
1669 : uint32_t flags;
1670 : uint16_t qos;
1671 : u_int hdrlen;
1672 : uint8_t *ivp, tid, ridx, type;
1673 : int i, totlen, hasqos, error;
1674 :
1675 0 : wh = mtod(m, struct ieee80211_frame *);
1676 0 : hdrlen = ieee80211_get_hdrlen(wh);
1677 0 : type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1678 :
1679 : /* Select EDCA Access Category and TX ring for this frame. */
1680 0 : if ((hasqos = ieee80211_has_qos(wh))) {
1681 0 : qos = ieee80211_get_qos(wh);
1682 0 : tid = qos & IEEE80211_QOS_TID;
1683 0 : ac = ieee80211_up_to_ac(ic, tid);
1684 0 : } else {
1685 : tid = 0;
1686 : ac = EDCA_AC_BE;
1687 : }
1688 :
1689 0 : ring = &sc->txq[ac];
1690 0 : desc = &ring->desc[ring->cur];
1691 0 : data = &ring->data[ring->cur];
1692 :
1693 : /* Choose a TX rate index. */
1694 0 : if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1695 0 : type != IEEE80211_FC0_TYPE_DATA) {
1696 0 : ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1697 : WPI_RIDX_OFDM6 : WPI_RIDX_CCK1;
1698 0 : } else if (ic->ic_fixed_rate != -1) {
1699 0 : ridx = sc->fixed_ridx;
1700 0 : } else
1701 0 : ridx = wn->ridx[ni->ni_txrate];
1702 0 : rinfo = &wpi_rates[ridx];
1703 :
1704 : #if NBPFILTER > 0
1705 0 : if (sc->sc_drvbpf != NULL) {
1706 0 : struct mbuf mb;
1707 0 : struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1708 :
1709 0 : tap->wt_flags = 0;
1710 0 : tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1711 0 : tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1712 0 : tap->wt_rate = rinfo->rate;
1713 0 : tap->wt_hwqueue = ac;
1714 0 : if ((ic->ic_flags & IEEE80211_F_WEPON) &&
1715 0 : (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
1716 0 : tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1717 :
1718 0 : mb.m_data = (caddr_t)tap;
1719 0 : mb.m_len = sc->sc_txtap_len;
1720 0 : mb.m_next = m;
1721 0 : mb.m_nextpkt = NULL;
1722 0 : mb.m_type = 0;
1723 0 : mb.m_flags = 0;
1724 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1725 0 : }
1726 : #endif
1727 :
1728 0 : totlen = m->m_pkthdr.len;
1729 :
1730 : /* Encrypt the frame if need be. */
1731 0 : if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1732 : /* Retrieve key for TX. */
1733 0 : k = ieee80211_get_txkey(ic, wh, ni);
1734 0 : if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
1735 : /* Do software encryption. */
1736 0 : if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1737 0 : return ENOBUFS;
1738 : /* 802.11 header may have moved. */
1739 0 : wh = mtod(m, struct ieee80211_frame *);
1740 0 : totlen = m->m_pkthdr.len;
1741 :
1742 0 : } else /* HW appends CCMP MIC. */
1743 0 : totlen += IEEE80211_CCMP_HDRLEN;
1744 : }
1745 :
1746 : /* Prepare TX firmware command. */
1747 0 : cmd = &ring->cmd[ring->cur];
1748 0 : cmd->code = WPI_CMD_TX_DATA;
1749 0 : cmd->flags = 0;
1750 0 : cmd->qid = ring->qid;
1751 0 : cmd->idx = ring->cur;
1752 :
1753 0 : tx = (struct wpi_cmd_data *)cmd->data;
1754 : /* NB: No need to clear tx, all fields are reinitialized here. */
1755 :
1756 : flags = 0;
1757 0 : if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1758 : /* Unicast frame, check if an ACK is expected. */
1759 0 : if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
1760 : IEEE80211_QOS_ACK_POLICY_NOACK)
1761 0 : flags |= WPI_TX_NEED_ACK;
1762 : }
1763 :
1764 : /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1765 0 : if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1766 : /* NB: Group frames are sent using CCK in 802.11b/g. */
1767 0 : if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
1768 0 : flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
1769 0 : } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1770 0 : ridx <= WPI_RIDX_OFDM54) {
1771 0 : if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1772 0 : flags |= WPI_TX_NEED_CTS | WPI_TX_FULL_TXOP;
1773 0 : else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1774 0 : flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
1775 : }
1776 : }
1777 :
1778 0 : if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1779 0 : type != IEEE80211_FC0_TYPE_DATA)
1780 0 : tx->id = WPI_ID_BROADCAST;
1781 : else
1782 0 : tx->id = wn->id;
1783 :
1784 0 : if (type == IEEE80211_FC0_TYPE_MGT) {
1785 0 : uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1786 :
1787 : #ifndef IEEE80211_STA_ONLY
1788 : /* Tell HW to set timestamp in probe responses. */
1789 0 : if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1790 0 : flags |= WPI_TX_INSERT_TSTAMP;
1791 : #endif
1792 0 : if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1793 0 : subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1794 0 : tx->timeout = htole16(3);
1795 : else
1796 0 : tx->timeout = htole16(2);
1797 0 : } else
1798 0 : tx->timeout = htole16(0);
1799 :
1800 0 : tx->len = htole16(totlen);
1801 0 : tx->tid = tid;
1802 0 : tx->rts_ntries = 7;
1803 0 : tx->data_ntries = 15;
1804 0 : tx->ofdm_mask = 0xff;
1805 0 : tx->cck_mask = 0x0f;
1806 0 : tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1807 0 : tx->plcp = rinfo->plcp;
1808 :
1809 : /* Copy 802.11 header in TX command. */
1810 0 : memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1811 :
1812 0 : if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
1813 : /* Trim 802.11 header and prepend CCMP IV. */
1814 0 : m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
1815 0 : ivp = mtod(m, uint8_t *);
1816 0 : k->k_tsc++;
1817 0 : ivp[0] = k->k_tsc;
1818 0 : ivp[1] = k->k_tsc >> 8;
1819 0 : ivp[2] = 0;
1820 0 : ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
1821 0 : ivp[4] = k->k_tsc >> 16;
1822 0 : ivp[5] = k->k_tsc >> 24;
1823 0 : ivp[6] = k->k_tsc >> 32;
1824 0 : ivp[7] = k->k_tsc >> 40;
1825 :
1826 0 : tx->security = WPI_CIPHER_CCMP;
1827 0 : memcpy(tx->key, k->k_key, k->k_len);
1828 0 : } else {
1829 : /* Trim 802.11 header. */
1830 0 : m_adj(m, hdrlen);
1831 0 : tx->security = 0;
1832 : }
1833 0 : tx->flags = htole32(flags);
1834 :
1835 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1836 : BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1837 0 : if (error != 0 && error != EFBIG) {
1838 0 : printf("%s: can't map mbuf (error %d)\n",
1839 0 : sc->sc_dev.dv_xname, error);
1840 0 : m_freem(m);
1841 0 : return error;
1842 : }
1843 0 : if (error != 0) {
1844 : /* Too many DMA segments, linearize mbuf. */
1845 0 : if (m_defrag(m, M_DONTWAIT)) {
1846 0 : m_freem(m);
1847 0 : return ENOBUFS;
1848 : }
1849 0 : error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1850 : BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1851 0 : if (error != 0) {
1852 0 : printf("%s: can't map mbuf (error %d)\n",
1853 0 : sc->sc_dev.dv_xname, error);
1854 0 : m_freem(m);
1855 0 : return error;
1856 : }
1857 : }
1858 :
1859 0 : data->m = m;
1860 0 : data->ni = ni;
1861 :
1862 : DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1863 : ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
1864 :
1865 : /* Fill TX descriptor. */
1866 0 : desc->flags = htole32(WPI_PAD32(m->m_pkthdr.len) << 28 |
1867 : (1 + data->map->dm_nsegs) << 24);
1868 : /* First DMA segment is used by the TX command. */
1869 0 : desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1870 : ring->cur * sizeof (struct wpi_tx_cmd));
1871 0 : desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1872 : ((hdrlen + 3) & ~3));
1873 : /* Other DMA segments are for data payload. */
1874 0 : for (i = 1; i <= data->map->dm_nsegs; i++) {
1875 0 : desc->segs[i].addr =
1876 0 : htole32(data->map->dm_segs[i - 1].ds_addr);
1877 0 : desc->segs[i].len =
1878 0 : htole32(data->map->dm_segs[i - 1].ds_len);
1879 : }
1880 :
1881 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1882 : BUS_DMASYNC_PREWRITE);
1883 0 : bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
1884 : (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
1885 : BUS_DMASYNC_PREWRITE);
1886 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1887 : (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
1888 : BUS_DMASYNC_PREWRITE);
1889 :
1890 : /* Kick TX ring. */
1891 0 : ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1892 0 : WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1893 :
1894 : /* Mark TX ring as full if we reach a certain threshold. */
1895 0 : if (++ring->queued > WPI_TX_RING_HIMARK)
1896 0 : sc->qfullmsk |= 1 << ring->qid;
1897 :
1898 0 : return 0;
1899 0 : }
1900 :
1901 : void
1902 0 : wpi_start(struct ifnet *ifp)
1903 : {
1904 0 : struct wpi_softc *sc = ifp->if_softc;
1905 0 : struct ieee80211com *ic = &sc->sc_ic;
1906 0 : struct ieee80211_node *ni;
1907 : struct mbuf *m;
1908 :
1909 0 : if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1910 0 : return;
1911 :
1912 0 : for (;;) {
1913 0 : if (sc->qfullmsk != 0) {
1914 0 : ifq_set_oactive(&ifp->if_snd);
1915 0 : break;
1916 : }
1917 : /* Send pending management frames first. */
1918 0 : m = mq_dequeue(&ic->ic_mgtq);
1919 0 : if (m != NULL) {
1920 0 : ni = m->m_pkthdr.ph_cookie;
1921 0 : goto sendit;
1922 : }
1923 0 : if (ic->ic_state != IEEE80211_S_RUN)
1924 : break;
1925 :
1926 : /* Encapsulate and send data frames. */
1927 0 : IFQ_DEQUEUE(&ifp->if_snd, m);
1928 0 : if (m == NULL)
1929 : break;
1930 : #if NBPFILTER > 0
1931 0 : if (ifp->if_bpf != NULL)
1932 0 : bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1933 : #endif
1934 0 : if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1935 0 : continue;
1936 : sendit:
1937 : #if NBPFILTER > 0
1938 0 : if (ic->ic_rawbpf != NULL)
1939 0 : bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1940 : #endif
1941 0 : if (wpi_tx(sc, m, ni) != 0) {
1942 0 : ieee80211_release_node(ic, ni);
1943 0 : ifp->if_oerrors++;
1944 0 : continue;
1945 : }
1946 :
1947 0 : sc->sc_tx_timer = 5;
1948 0 : ifp->if_timer = 1;
1949 : }
1950 0 : }
1951 :
1952 : void
1953 0 : wpi_watchdog(struct ifnet *ifp)
1954 : {
1955 0 : struct wpi_softc *sc = ifp->if_softc;
1956 :
1957 0 : ifp->if_timer = 0;
1958 :
1959 0 : if (sc->sc_tx_timer > 0) {
1960 0 : if (--sc->sc_tx_timer == 0) {
1961 0 : printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1962 0 : wpi_stop(ifp, 1);
1963 0 : ifp->if_oerrors++;
1964 0 : return;
1965 : }
1966 0 : ifp->if_timer = 1;
1967 0 : }
1968 :
1969 0 : ieee80211_watchdog(ifp);
1970 0 : }
1971 :
1972 : int
1973 0 : wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1974 : {
1975 0 : struct wpi_softc *sc = ifp->if_softc;
1976 0 : struct ieee80211com *ic = &sc->sc_ic;
1977 : int s, error = 0;
1978 :
1979 0 : error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
1980 0 : if (error)
1981 0 : return error;
1982 0 : s = splnet();
1983 :
1984 0 : switch (cmd) {
1985 : case SIOCSIFADDR:
1986 0 : ifp->if_flags |= IFF_UP;
1987 : /* FALLTHROUGH */
1988 : case SIOCSIFFLAGS:
1989 0 : if (ifp->if_flags & IFF_UP) {
1990 0 : if (!(ifp->if_flags & IFF_RUNNING))
1991 0 : error = wpi_init(ifp);
1992 : } else {
1993 0 : if (ifp->if_flags & IFF_RUNNING)
1994 0 : wpi_stop(ifp, 1);
1995 : }
1996 : break;
1997 :
1998 : case SIOCS80211POWER:
1999 0 : error = ieee80211_ioctl(ifp, cmd, data);
2000 0 : if (error != ENETRESET)
2001 : break;
2002 0 : if (ic->ic_state == IEEE80211_S_RUN) {
2003 0 : if (ic->ic_flags & IEEE80211_F_PMGTON)
2004 0 : error = wpi_set_pslevel(sc, 0, 3, 0);
2005 : else /* back to CAM */
2006 0 : error = wpi_set_pslevel(sc, 0, 0, 0);
2007 : } else {
2008 : /* Defer until transition to IEEE80211_S_RUN. */
2009 : error = 0;
2010 : }
2011 : break;
2012 :
2013 : default:
2014 0 : error = ieee80211_ioctl(ifp, cmd, data);
2015 0 : }
2016 :
2017 0 : if (error == ENETRESET) {
2018 : error = 0;
2019 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2020 : (IFF_UP | IFF_RUNNING)) {
2021 0 : wpi_stop(ifp, 0);
2022 0 : error = wpi_init(ifp);
2023 0 : }
2024 : }
2025 :
2026 0 : splx(s);
2027 0 : rw_exit_write(&sc->sc_rwlock);
2028 0 : return error;
2029 0 : }
2030 :
2031 : /*
2032 : * Send a command to the firmware.
2033 : */
2034 : int
2035 0 : wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2036 : {
2037 0 : struct wpi_tx_ring *ring = &sc->txq[4];
2038 : struct wpi_tx_desc *desc;
2039 : struct wpi_tx_data *data;
2040 : struct wpi_tx_cmd *cmd;
2041 : struct mbuf *m;
2042 : bus_addr_t paddr;
2043 : int totlen, error;
2044 :
2045 0 : desc = &ring->desc[ring->cur];
2046 0 : data = &ring->data[ring->cur];
2047 0 : totlen = 4 + size;
2048 :
2049 0 : if (size > sizeof cmd->data) {
2050 : /* Command is too large to fit in a descriptor. */
2051 0 : if (totlen > MCLBYTES)
2052 0 : return EINVAL;
2053 0 : MGETHDR(m, M_DONTWAIT, MT_DATA);
2054 0 : if (m == NULL)
2055 0 : return ENOMEM;
2056 0 : if (totlen > MHLEN) {
2057 0 : MCLGET(m, M_DONTWAIT);
2058 0 : if (!(m->m_flags & M_EXT)) {
2059 0 : m_freem(m);
2060 0 : return ENOMEM;
2061 : }
2062 : }
2063 0 : cmd = mtod(m, struct wpi_tx_cmd *);
2064 0 : error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
2065 : NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2066 0 : if (error != 0) {
2067 0 : m_freem(m);
2068 0 : return error;
2069 : }
2070 0 : data->m = m;
2071 0 : paddr = data->map->dm_segs[0].ds_addr;
2072 0 : } else {
2073 0 : cmd = &ring->cmd[ring->cur];
2074 0 : paddr = data->cmd_paddr;
2075 : }
2076 :
2077 0 : cmd->code = code;
2078 0 : cmd->flags = 0;
2079 0 : cmd->qid = ring->qid;
2080 0 : cmd->idx = ring->cur;
2081 0 : memcpy(cmd->data, buf, size);
2082 :
2083 0 : desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2084 0 : desc->segs[0].addr = htole32(paddr);
2085 0 : desc->segs[0].len = htole32(totlen);
2086 :
2087 0 : if (size > sizeof cmd->data) {
2088 0 : bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
2089 : BUS_DMASYNC_PREWRITE);
2090 0 : } else {
2091 0 : bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2092 : (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
2093 : BUS_DMASYNC_PREWRITE);
2094 : }
2095 0 : bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2096 : (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
2097 : BUS_DMASYNC_PREWRITE);
2098 :
2099 : /* Kick command ring. */
2100 0 : ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2101 0 : WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2102 :
2103 0 : return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2104 0 : }
2105 :
2106 : /*
2107 : * Configure HW multi-rate retries.
2108 : */
2109 : int
2110 0 : wpi_mrr_setup(struct wpi_softc *sc)
2111 : {
2112 0 : struct ieee80211com *ic = &sc->sc_ic;
2113 0 : struct wpi_mrr_setup mrr;
2114 : int i, error;
2115 :
2116 : /* CCK rates (not used with 802.11a). */
2117 0 : for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2118 0 : mrr.rates[i].flags = 0;
2119 0 : mrr.rates[i].plcp = wpi_rates[i].plcp;
2120 : /* Fallback to the immediate lower CCK rate (if any.) */
2121 0 : mrr.rates[i].next =
2122 0 : (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2123 : /* Try one time at this rate before falling back to "next". */
2124 0 : mrr.rates[i].ntries = 1;
2125 : }
2126 : /* OFDM rates (not used with 802.11b). */
2127 0 : for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2128 0 : mrr.rates[i].flags = 0;
2129 0 : mrr.rates[i].plcp = wpi_rates[i].plcp;
2130 : /* Fallback to the immediate lower rate (if any.) */
2131 : /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2132 0 : mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2133 0 : ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2134 : WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2135 0 : i - 1;
2136 : /* Try one time at this rate before falling back to "next". */
2137 0 : mrr.rates[i].ntries = 1;
2138 : }
2139 : /* Setup MRR for control frames. */
2140 0 : mrr.which = htole32(WPI_MRR_CTL);
2141 0 : error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2142 0 : if (error != 0) {
2143 0 : printf("%s: could not setup MRR for control frames\n",
2144 0 : sc->sc_dev.dv_xname);
2145 0 : return error;
2146 : }
2147 : /* Setup MRR for data frames. */
2148 0 : mrr.which = htole32(WPI_MRR_DATA);
2149 0 : error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2150 0 : if (error != 0) {
2151 0 : printf("%s: could not setup MRR for data frames\n",
2152 0 : sc->sc_dev.dv_xname);
2153 0 : return error;
2154 : }
2155 0 : return 0;
2156 0 : }
2157 :
2158 : void
2159 0 : wpi_updateedca(struct ieee80211com *ic)
2160 : {
2161 : #define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
2162 0 : struct wpi_softc *sc = ic->ic_softc;
2163 0 : struct wpi_edca_params cmd;
2164 : int aci;
2165 :
2166 0 : memset(&cmd, 0, sizeof cmd);
2167 0 : cmd.flags = htole32(WPI_EDCA_UPDATE);
2168 0 : for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2169 : const struct ieee80211_edca_ac_params *ac =
2170 0 : &ic->ic_edca_ac[aci];
2171 0 : cmd.ac[aci].aifsn = ac->ac_aifsn;
2172 0 : cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->ac_ecwmin));
2173 0 : cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->ac_ecwmax));
2174 0 : cmd.ac[aci].txoplimit =
2175 0 : htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
2176 : }
2177 0 : (void)wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
2178 : #undef WPI_EXP2
2179 0 : }
2180 :
2181 : void
2182 0 : wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2183 : {
2184 0 : struct wpi_cmd_led led;
2185 :
2186 0 : led.which = which;
2187 0 : led.unit = htole32(100000); /* on/off in unit of 100ms */
2188 0 : led.off = off;
2189 0 : led.on = on;
2190 0 : (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2191 0 : }
2192 :
2193 : int
2194 0 : wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
2195 : {
2196 0 : struct wpi_cmd_timing cmd;
2197 : uint64_t val, mod;
2198 :
2199 0 : memset(&cmd, 0, sizeof cmd);
2200 0 : memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
2201 0 : cmd.bintval = htole16(ni->ni_intval);
2202 0 : cmd.lintval = htole16(10);
2203 :
2204 : /* Compute remaining time until next beacon. */
2205 0 : val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2206 0 : mod = letoh64(cmd.tstamp) % val;
2207 0 : cmd.binitval = htole32((uint32_t)(val - mod));
2208 :
2209 : DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
2210 : ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
2211 :
2212 0 : return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
2213 0 : }
2214 :
2215 : /*
2216 : * This function is called periodically (every minute) to adjust TX power
2217 : * based on temperature variation.
2218 : */
2219 : void
2220 0 : wpi_power_calibration(struct wpi_softc *sc)
2221 : {
2222 : int temp;
2223 :
2224 0 : temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
2225 : /* Sanity-check temperature. */
2226 0 : if (temp < -260 || temp > 25) {
2227 : /* This can't be correct, ignore. */
2228 : DPRINTF(("out-of-range temperature reported: %d\n", temp));
2229 0 : return;
2230 : }
2231 : DPRINTF(("temperature %d->%d\n", sc->temp, temp));
2232 : /* Adjust TX power if need be (delta > 6). */
2233 0 : if (abs(temp - sc->temp) > 6) {
2234 : /* Record temperature of last calibration. */
2235 0 : sc->temp = temp;
2236 0 : (void)wpi_set_txpower(sc, 1);
2237 0 : }
2238 0 : }
2239 :
2240 : /*
2241 : * Set TX power for current channel (each rate has its own power settings).
2242 : */
2243 : int
2244 0 : wpi_set_txpower(struct wpi_softc *sc, int async)
2245 : {
2246 0 : struct ieee80211com *ic = &sc->sc_ic;
2247 : struct ieee80211_channel *ch;
2248 : struct wpi_power_group *group;
2249 0 : struct wpi_cmd_txpower cmd;
2250 : u_int chan;
2251 : int idx, i;
2252 :
2253 : /* Retrieve current channel from last RXON. */
2254 0 : chan = sc->rxon.chan;
2255 : DPRINTF(("setting TX power for channel %d\n", chan));
2256 0 : ch = &ic->ic_channels[chan];
2257 :
2258 : /* Find the TX power group to which this channel belongs. */
2259 0 : if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2260 0 : for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2261 0 : if (chan <= group->chan)
2262 : break;
2263 : } else
2264 0 : group = &sc->groups[0];
2265 :
2266 0 : memset(&cmd, 0, sizeof cmd);
2267 0 : cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2268 0 : cmd.chan = htole16(chan);
2269 :
2270 : /* Set TX power for all OFDM and CCK rates. */
2271 0 : for (i = 0; i <= WPI_RIDX_MAX ; i++) {
2272 : /* Retrieve TX power for this channel/rate. */
2273 0 : idx = wpi_get_power_index(sc, group, ch, i);
2274 :
2275 0 : cmd.rates[i].plcp = wpi_rates[i].plcp;
2276 :
2277 0 : if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2278 0 : cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2279 0 : cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2280 0 : } else {
2281 0 : cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2282 0 : cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2283 : }
2284 : DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2285 : wpi_rates[i].rate, idx));
2286 : }
2287 0 : return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
2288 0 : }
2289 :
2290 : /*
2291 : * Determine TX power index for a given channel/rate combination.
2292 : * This takes into account the regulatory information from EEPROM and the
2293 : * current temperature.
2294 : */
2295 : int
2296 0 : wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2297 : struct ieee80211_channel *c, int ridx)
2298 : {
2299 : /* Fixed-point arithmetic division using a n-bit fractional part. */
2300 : #define fdivround(a, b, n) \
2301 : ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2302 :
2303 : /* Linear interpolation. */
2304 : #define interpolate(x, x1, y1, x2, y2, n) \
2305 : ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2306 :
2307 0 : struct ieee80211com *ic = &sc->sc_ic;
2308 : struct wpi_power_sample *sample;
2309 : int pwr, idx;
2310 : u_int chan;
2311 :
2312 : /* Get channel number. */
2313 0 : chan = ieee80211_chan2ieee(ic, c);
2314 :
2315 : /* Default TX power is group maximum TX power minus 3dB. */
2316 0 : pwr = group->maxpwr / 2;
2317 :
2318 : /* Decrease TX power for highest OFDM rates to reduce distortion. */
2319 0 : switch (ridx) {
2320 : case WPI_RIDX_OFDM36:
2321 0 : pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2322 0 : break;
2323 : case WPI_RIDX_OFDM48:
2324 0 : pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2325 0 : break;
2326 : case WPI_RIDX_OFDM54:
2327 0 : pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2328 0 : break;
2329 : }
2330 :
2331 : /* Never exceed the channel maximum allowed TX power. */
2332 0 : pwr = MIN(pwr, sc->maxpwr[chan]);
2333 :
2334 : /* Retrieve TX power index into gain tables from samples. */
2335 0 : for (sample = group->samples; sample < &group->samples[3]; sample++)
2336 0 : if (pwr > sample[1].power)
2337 : break;
2338 : /* Fixed-point linear interpolation using a 19-bit fractional part. */
2339 0 : idx = interpolate(pwr, sample[0].power, sample[0].index,
2340 : sample[1].power, sample[1].index, 19);
2341 :
2342 : /*-
2343 : * Adjust power index based on current temperature:
2344 : * - if cooler than factory-calibrated: decrease output power
2345 : * - if warmer than factory-calibrated: increase output power
2346 : */
2347 0 : idx -= (sc->temp - group->temp) * 11 / 100;
2348 :
2349 : /* Decrease TX power for CCK rates (-5dB). */
2350 0 : if (ridx >= WPI_RIDX_CCK1)
2351 0 : idx += 10;
2352 :
2353 : /* Make sure idx stays in a valid range. */
2354 0 : if (idx < 0)
2355 0 : idx = 0;
2356 0 : else if (idx > WPI_MAX_PWR_INDEX)
2357 0 : idx = WPI_MAX_PWR_INDEX;
2358 0 : return idx;
2359 :
2360 : #undef interpolate
2361 : #undef fdivround
2362 : }
2363 :
2364 : /*
2365 : * Set STA mode power saving level (between 0 and 5).
2366 : * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
2367 : */
2368 : int
2369 0 : wpi_set_pslevel(struct wpi_softc *sc, int dtim, int level, int async)
2370 : {
2371 0 : struct wpi_pmgt_cmd cmd;
2372 : const struct wpi_pmgt *pmgt;
2373 : uint32_t max, skip_dtim;
2374 : pcireg_t reg;
2375 : int i;
2376 :
2377 : /* Select which PS parameters to use. */
2378 0 : if (dtim <= 10)
2379 0 : pmgt = &wpi_pmgt[0][level];
2380 : else
2381 0 : pmgt = &wpi_pmgt[1][level];
2382 :
2383 0 : memset(&cmd, 0, sizeof cmd);
2384 0 : if (level != 0) /* not CAM */
2385 0 : cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
2386 : /* Retrieve PCIe Active State Power Management (ASPM). */
2387 0 : reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
2388 0 : sc->sc_cap_off + PCI_PCIE_LCSR);
2389 0 : if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
2390 0 : cmd.flags |= htole16(WPI_PS_PCI_PMGT);
2391 0 : cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
2392 0 : cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
2393 :
2394 0 : if (dtim == 0) {
2395 : dtim = 1;
2396 : skip_dtim = 0;
2397 0 : } else
2398 0 : skip_dtim = pmgt->skip_dtim;
2399 0 : if (skip_dtim != 0) {
2400 0 : cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
2401 0 : max = pmgt->intval[4];
2402 0 : if (max == (uint32_t)-1)
2403 0 : max = dtim * (skip_dtim + 1);
2404 0 : else if (max > dtim)
2405 0 : max = (max / dtim) * dtim;
2406 : } else
2407 : max = dtim;
2408 0 : for (i = 0; i < 5; i++)
2409 0 : cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
2410 :
2411 : DPRINTF(("setting power saving level to %d\n", level));
2412 0 : return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
2413 0 : }
2414 :
2415 : int
2416 0 : wpi_config(struct wpi_softc *sc)
2417 : {
2418 0 : struct ieee80211com *ic = &sc->sc_ic;
2419 0 : struct ifnet *ifp = &ic->ic_if;
2420 0 : struct wpi_bluetooth bluetooth;
2421 0 : struct wpi_node_info node;
2422 : int error;
2423 :
2424 : /* Set power saving level to CAM during initialization. */
2425 0 : if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
2426 0 : printf("%s: could not set power saving level\n",
2427 0 : sc->sc_dev.dv_xname);
2428 0 : return error;
2429 : }
2430 :
2431 : /* Configure bluetooth coexistence. */
2432 0 : memset(&bluetooth, 0, sizeof bluetooth);
2433 0 : bluetooth.flags = WPI_BT_COEX_MODE_4WIRE;
2434 0 : bluetooth.lead_time = WPI_BT_LEAD_TIME_DEF;
2435 0 : bluetooth.max_kill = WPI_BT_MAX_KILL_DEF;
2436 0 : error = wpi_cmd(sc, WPI_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
2437 0 : if (error != 0) {
2438 0 : printf("%s: could not configure bluetooth coexistence\n",
2439 0 : sc->sc_dev.dv_xname);
2440 0 : return error;
2441 : }
2442 :
2443 : /* Configure adapter. */
2444 0 : memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
2445 0 : IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2446 0 : IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
2447 : /* Set default channel. */
2448 0 : sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2449 0 : sc->rxon.flags = htole32(WPI_RXON_TSF);
2450 0 : if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
2451 0 : sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
2452 0 : switch (ic->ic_opmode) {
2453 : case IEEE80211_M_STA:
2454 0 : sc->rxon.mode = WPI_MODE_STA;
2455 0 : sc->rxon.filter = htole32(WPI_FILTER_MULTICAST);
2456 0 : break;
2457 : case IEEE80211_M_MONITOR:
2458 0 : sc->rxon.mode = WPI_MODE_MONITOR;
2459 0 : sc->rxon.filter = htole32(WPI_FILTER_MULTICAST |
2460 : WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2461 0 : break;
2462 : default:
2463 : /* Should not get there. */
2464 : break;
2465 : }
2466 0 : sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
2467 0 : sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
2468 : DPRINTF(("setting configuration\n"));
2469 0 : error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2470 : 0);
2471 0 : if (error != 0) {
2472 0 : printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2473 0 : return error;
2474 : }
2475 :
2476 : /* Configuration has changed, set TX power accordingly. */
2477 0 : if ((error = wpi_set_txpower(sc, 0)) != 0) {
2478 0 : printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2479 0 : return error;
2480 : }
2481 :
2482 : /* Add broadcast node. */
2483 0 : memset(&node, 0, sizeof node);
2484 0 : IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
2485 0 : node.id = WPI_ID_BROADCAST;
2486 0 : node.plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
2487 0 : node.action = htole32(WPI_ACTION_SET_RATE);
2488 0 : node.antenna = WPI_ANTENNA_BOTH;
2489 0 : error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2490 0 : if (error != 0) {
2491 0 : printf("%s: could not add broadcast node\n",
2492 0 : sc->sc_dev.dv_xname);
2493 0 : return error;
2494 : }
2495 :
2496 0 : if ((error = wpi_mrr_setup(sc)) != 0) {
2497 0 : printf("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2498 0 : return error;
2499 : }
2500 0 : return 0;
2501 0 : }
2502 :
2503 : int
2504 0 : wpi_scan(struct wpi_softc *sc, uint16_t flags)
2505 : {
2506 0 : struct ieee80211com *ic = &sc->sc_ic;
2507 : struct wpi_scan_hdr *hdr;
2508 : struct wpi_cmd_data *tx;
2509 : struct wpi_scan_essid *essid;
2510 : struct wpi_scan_chan *chan;
2511 : struct ieee80211_frame *wh;
2512 : struct ieee80211_rateset *rs;
2513 : struct ieee80211_channel *c;
2514 : uint8_t *buf, *frm;
2515 : int buflen, error;
2516 :
2517 0 : buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
2518 0 : if (buf == NULL) {
2519 0 : printf("%s: could not allocate buffer for scan command\n",
2520 0 : sc->sc_dev.dv_xname);
2521 0 : return ENOMEM;
2522 : }
2523 0 : hdr = (struct wpi_scan_hdr *)buf;
2524 : /*
2525 : * Move to the next channel if no frames are received within 10ms
2526 : * after sending the probe request.
2527 : */
2528 0 : hdr->quiet_time = htole16(10); /* timeout in milliseconds */
2529 0 : hdr->quiet_threshold = htole16(1); /* min # of packets */
2530 :
2531 0 : tx = (struct wpi_cmd_data *)(hdr + 1);
2532 0 : tx->flags = htole32(WPI_TX_AUTO_SEQ);
2533 0 : tx->id = WPI_ID_BROADCAST;
2534 0 : tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2535 :
2536 0 : if (flags & IEEE80211_CHAN_5GHZ) {
2537 0 : hdr->crc_threshold = htole16(1);
2538 : /* Send probe requests at 6Mbps. */
2539 0 : tx->plcp = wpi_rates[WPI_RIDX_OFDM6].plcp;
2540 0 : rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2541 0 : } else {
2542 0 : hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
2543 : /* Send probe requests at 1Mbps. */
2544 0 : tx->plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
2545 0 : rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2546 : }
2547 :
2548 0 : essid = (struct wpi_scan_essid *)(tx + 1);
2549 0 : if (ic->ic_des_esslen != 0) {
2550 0 : essid[0].id = IEEE80211_ELEMID_SSID;
2551 0 : essid[0].len = ic->ic_des_esslen;
2552 0 : memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2553 0 : }
2554 : /*
2555 : * Build a probe request frame. Most of the following code is a
2556 : * copy & paste of what is done in net80211.
2557 : */
2558 0 : wh = (struct ieee80211_frame *)(essid + 4);
2559 0 : wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2560 : IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2561 0 : wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2562 0 : IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2563 0 : IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2564 0 : IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2565 0 : *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
2566 0 : *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
2567 :
2568 0 : frm = (uint8_t *)(wh + 1);
2569 0 : frm = ieee80211_add_ssid(frm, NULL, 0);
2570 0 : frm = ieee80211_add_rates(frm, rs);
2571 0 : if (rs->rs_nrates > IEEE80211_RATE_SIZE)
2572 0 : frm = ieee80211_add_xrates(frm, rs);
2573 :
2574 : /* Set length of probe request. */
2575 0 : tx->len = htole16(frm - (uint8_t *)wh);
2576 :
2577 0 : chan = (struct wpi_scan_chan *)frm;
2578 0 : for (c = &ic->ic_channels[1];
2579 0 : c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2580 0 : if ((c->ic_flags & flags) != flags)
2581 : continue;
2582 :
2583 0 : chan->chan = ieee80211_chan2ieee(ic, c);
2584 : DPRINTFN(2, ("adding channel %d\n", chan->chan));
2585 0 : chan->flags = 0;
2586 0 : if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
2587 0 : chan->flags |= WPI_CHAN_ACTIVE;
2588 0 : if (ic->ic_des_esslen != 0)
2589 0 : chan->flags |= WPI_CHAN_NPBREQS(1);
2590 0 : chan->dsp_gain = 0x6e;
2591 0 : if (IEEE80211_IS_CHAN_5GHZ(c)) {
2592 0 : chan->rf_gain = 0x3b;
2593 0 : chan->active = htole16(24);
2594 0 : chan->passive = htole16(110);
2595 0 : } else {
2596 0 : chan->rf_gain = 0x28;
2597 0 : chan->active = htole16(36);
2598 0 : chan->passive = htole16(120);
2599 : }
2600 0 : hdr->nchan++;
2601 0 : chan++;
2602 0 : }
2603 :
2604 0 : buflen = (uint8_t *)chan - buf;
2605 0 : hdr->len = htole16(buflen);
2606 :
2607 : DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
2608 0 : error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
2609 0 : free(buf, M_DEVBUF, WPI_SCAN_MAXSZ);
2610 0 : return error;
2611 0 : }
2612 :
2613 : int
2614 0 : wpi_auth(struct wpi_softc *sc)
2615 : {
2616 0 : struct ieee80211com *ic = &sc->sc_ic;
2617 0 : struct ieee80211_node *ni = ic->ic_bss;
2618 0 : struct wpi_node_info node;
2619 : int error;
2620 :
2621 : /* Update adapter configuration. */
2622 0 : IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
2623 0 : sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2624 0 : sc->rxon.flags = htole32(WPI_RXON_TSF);
2625 0 : if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2626 0 : sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
2627 0 : if (ic->ic_flags & IEEE80211_F_SHSLOT)
2628 0 : sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
2629 0 : if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2630 0 : sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
2631 0 : switch (ic->ic_curmode) {
2632 : case IEEE80211_MODE_11A:
2633 0 : sc->rxon.cck_mask = 0;
2634 0 : sc->rxon.ofdm_mask = 0x15;
2635 0 : break;
2636 : case IEEE80211_MODE_11B:
2637 0 : sc->rxon.cck_mask = 0x03;
2638 0 : sc->rxon.ofdm_mask = 0;
2639 0 : break;
2640 : default: /* Assume 802.11b/g. */
2641 0 : sc->rxon.cck_mask = 0x0f;
2642 0 : sc->rxon.ofdm_mask = 0x15;
2643 0 : }
2644 : DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
2645 : sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
2646 0 : error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2647 : 1);
2648 0 : if (error != 0) {
2649 0 : printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2650 0 : return error;
2651 : }
2652 :
2653 : /* Configuration has changed, set TX power accordingly. */
2654 0 : if ((error = wpi_set_txpower(sc, 1)) != 0) {
2655 0 : printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2656 0 : return error;
2657 : }
2658 : /*
2659 : * Reconfiguring RXON clears the firmware nodes table so we must
2660 : * add the broadcast node again.
2661 : */
2662 0 : memset(&node, 0, sizeof node);
2663 0 : IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
2664 0 : node.id = WPI_ID_BROADCAST;
2665 0 : node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2666 : wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
2667 0 : node.action = htole32(WPI_ACTION_SET_RATE);
2668 0 : node.antenna = WPI_ANTENNA_BOTH;
2669 0 : error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2670 0 : if (error != 0) {
2671 0 : printf("%s: could not add broadcast node\n",
2672 0 : sc->sc_dev.dv_xname);
2673 0 : return error;
2674 : }
2675 0 : return 0;
2676 0 : }
2677 :
2678 : int
2679 0 : wpi_run(struct wpi_softc *sc)
2680 : {
2681 0 : struct ieee80211com *ic = &sc->sc_ic;
2682 0 : struct ieee80211_node *ni = ic->ic_bss;
2683 0 : struct wpi_node_info node;
2684 : int error;
2685 :
2686 0 : if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2687 : /* Link LED blinks while monitoring. */
2688 0 : wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2689 0 : return 0;
2690 : }
2691 0 : if ((error = wpi_set_timing(sc, ni)) != 0) {
2692 0 : printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
2693 0 : return error;
2694 : }
2695 :
2696 : /* Update adapter configuration. */
2697 0 : sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
2698 : /* Short preamble and slot time are negotiated when associating. */
2699 0 : sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
2700 0 : if (ic->ic_flags & IEEE80211_F_SHSLOT)
2701 0 : sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
2702 0 : if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2703 0 : sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
2704 0 : sc->rxon.filter |= htole32(WPI_FILTER_BSS);
2705 : DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
2706 0 : error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2707 : 1);
2708 0 : if (error != 0) {
2709 0 : printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2710 0 : return error;
2711 : }
2712 :
2713 : /* Configuration has changed, set TX power accordingly. */
2714 0 : if ((error = wpi_set_txpower(sc, 1)) != 0) {
2715 0 : printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2716 0 : return error;
2717 : }
2718 :
2719 : /* Fake a join to init the TX rate. */
2720 0 : ((struct wpi_node *)ni)->id = WPI_ID_BSS;
2721 0 : wpi_newassoc(ic, ni, 1);
2722 :
2723 : /* Add BSS node. */
2724 0 : memset(&node, 0, sizeof node);
2725 0 : IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid);
2726 0 : node.id = WPI_ID_BSS;
2727 0 : node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2728 : wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
2729 0 : node.action = htole32(WPI_ACTION_SET_RATE);
2730 0 : node.antenna = WPI_ANTENNA_BOTH;
2731 : DPRINTF(("adding BSS node\n"));
2732 0 : error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2733 0 : if (error != 0) {
2734 0 : printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2735 0 : return error;
2736 : }
2737 :
2738 : /* Start periodic calibration timer. */
2739 0 : sc->calib_cnt = 0;
2740 0 : timeout_add_msec(&sc->calib_to, 500);
2741 :
2742 : /* Link LED always on while associated. */
2743 0 : wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2744 :
2745 : /* Enable power-saving mode if requested by user. */
2746 0 : if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
2747 0 : (void)wpi_set_pslevel(sc, 0, 3, 1);
2748 :
2749 0 : return 0;
2750 0 : }
2751 :
2752 : /*
2753 : * We support CCMP hardware encryption/decryption of unicast frames only.
2754 : * HW support for TKIP really sucks. We should let TKIP die anyway.
2755 : */
2756 : int
2757 0 : wpi_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2758 : struct ieee80211_key *k)
2759 : {
2760 0 : struct wpi_softc *sc = ic->ic_softc;
2761 0 : struct wpi_node *wn = (void *)ni;
2762 0 : struct wpi_node_info node;
2763 : uint16_t kflags;
2764 :
2765 0 : if ((k->k_flags & IEEE80211_KEY_GROUP) ||
2766 0 : k->k_cipher != IEEE80211_CIPHER_CCMP)
2767 0 : return ieee80211_set_key(ic, ni, k);
2768 :
2769 0 : kflags = WPI_KFLAG_CCMP | WPI_KFLAG_KID(k->k_id);
2770 0 : memset(&node, 0, sizeof node);
2771 0 : node.id = wn->id;
2772 0 : node.control = WPI_NODE_UPDATE;
2773 0 : node.flags = WPI_FLAG_SET_KEY;
2774 0 : node.kflags = htole16(kflags);
2775 0 : memcpy(node.key, k->k_key, k->k_len);
2776 : DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
2777 0 : return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2778 0 : }
2779 :
2780 : void
2781 0 : wpi_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2782 : struct ieee80211_key *k)
2783 : {
2784 0 : struct wpi_softc *sc = ic->ic_softc;
2785 0 : struct wpi_node *wn = (void *)ni;
2786 0 : struct wpi_node_info node;
2787 :
2788 0 : if ((k->k_flags & IEEE80211_KEY_GROUP) ||
2789 0 : k->k_cipher != IEEE80211_CIPHER_CCMP) {
2790 : /* See comment about other ciphers above. */
2791 0 : ieee80211_delete_key(ic, ni, k);
2792 0 : return;
2793 : }
2794 0 : if (ic->ic_state != IEEE80211_S_RUN)
2795 0 : return; /* Nothing to do. */
2796 0 : memset(&node, 0, sizeof node);
2797 0 : node.id = wn->id;
2798 0 : node.control = WPI_NODE_UPDATE;
2799 0 : node.flags = WPI_FLAG_SET_KEY;
2800 0 : node.kflags = 0;
2801 : DPRINTF(("delete keys for node %d\n", node.id));
2802 0 : (void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2803 0 : }
2804 :
2805 : int
2806 0 : wpi_post_alive(struct wpi_softc *sc)
2807 : {
2808 : int ntries, error;
2809 :
2810 : /* Check (again) that the radio is not disabled. */
2811 0 : if ((error = wpi_nic_lock(sc)) != 0)
2812 0 : return error;
2813 : /* NB: Runtime firmware must be up and running. */
2814 0 : if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
2815 0 : printf("%s: radio is disabled by hardware switch\n",
2816 0 : sc->sc_dev.dv_xname);
2817 0 : wpi_nic_unlock(sc);
2818 0 : return EPERM; /* :-) */
2819 : }
2820 0 : wpi_nic_unlock(sc);
2821 :
2822 : /* Wait for thermal sensor to calibrate. */
2823 0 : for (ntries = 0; ntries < 1000; ntries++) {
2824 0 : if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
2825 : break;
2826 0 : DELAY(10);
2827 : }
2828 0 : if (ntries == 1000) {
2829 0 : printf("%s: timeout waiting for thermal sensor calibration\n",
2830 0 : sc->sc_dev.dv_xname);
2831 0 : return ETIMEDOUT;
2832 : }
2833 : DPRINTF(("temperature %d\n", sc->temp));
2834 0 : return 0;
2835 0 : }
2836 :
2837 : /*
2838 : * The firmware boot code is small and is intended to be copied directly into
2839 : * the NIC internal memory (no DMA transfer.)
2840 : */
2841 : int
2842 0 : wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
2843 : {
2844 : int error, ntries;
2845 :
2846 0 : size /= sizeof (uint32_t);
2847 :
2848 0 : if ((error = wpi_nic_lock(sc)) != 0)
2849 0 : return error;
2850 :
2851 : /* Copy microcode image into NIC memory. */
2852 0 : wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
2853 0 : (const uint32_t *)ucode, size);
2854 :
2855 0 : wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
2856 0 : wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
2857 0 : wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
2858 :
2859 : /* Start boot load now. */
2860 0 : wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
2861 :
2862 : /* Wait for transfer to complete. */
2863 0 : for (ntries = 0; ntries < 1000; ntries++) {
2864 0 : if (!(wpi_prph_read(sc, WPI_BSM_WR_CTRL) &
2865 : WPI_BSM_WR_CTRL_START))
2866 : break;
2867 0 : DELAY(10);
2868 : }
2869 0 : if (ntries == 1000) {
2870 0 : printf("%s: could not load boot firmware\n",
2871 0 : sc->sc_dev.dv_xname);
2872 0 : wpi_nic_unlock(sc);
2873 0 : return ETIMEDOUT;
2874 : }
2875 :
2876 : /* Enable boot after power up. */
2877 0 : wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
2878 :
2879 0 : wpi_nic_unlock(sc);
2880 0 : return 0;
2881 0 : }
2882 :
2883 : int
2884 0 : wpi_load_firmware(struct wpi_softc *sc)
2885 : {
2886 0 : struct wpi_fw_info *fw = &sc->fw;
2887 0 : struct wpi_dma_info *dma = &sc->fw_dma;
2888 : int error;
2889 :
2890 : /* Copy initialization sections into pre-allocated DMA-safe memory. */
2891 0 : memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
2892 0 : bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
2893 : BUS_DMASYNC_PREWRITE);
2894 0 : memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
2895 : fw->init.text, fw->init.textsz);
2896 0 : bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
2897 : fw->init.textsz, BUS_DMASYNC_PREWRITE);
2898 :
2899 : /* Tell adapter where to find initialization sections. */
2900 0 : if ((error = wpi_nic_lock(sc)) != 0)
2901 0 : return error;
2902 0 : wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
2903 0 : wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
2904 0 : wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
2905 0 : dma->paddr + WPI_FW_DATA_MAXSZ);
2906 0 : wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
2907 0 : wpi_nic_unlock(sc);
2908 :
2909 : /* Load firmware boot code. */
2910 0 : error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
2911 0 : if (error != 0) {
2912 0 : printf("%s: could not load boot firmware\n",
2913 0 : sc->sc_dev.dv_xname);
2914 0 : return error;
2915 : }
2916 : /* Now press "execute". */
2917 0 : WPI_WRITE(sc, WPI_RESET, 0);
2918 :
2919 : /* Wait at most one second for first alive notification. */
2920 0 : if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
2921 0 : printf("%s: timeout waiting for adapter to initialize\n",
2922 0 : sc->sc_dev.dv_xname);
2923 0 : return error;
2924 : }
2925 :
2926 : /* Copy runtime sections into pre-allocated DMA-safe memory. */
2927 0 : memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
2928 0 : bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
2929 : BUS_DMASYNC_PREWRITE);
2930 0 : memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
2931 : fw->main.text, fw->main.textsz);
2932 0 : bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
2933 : fw->main.textsz, BUS_DMASYNC_PREWRITE);
2934 :
2935 : /* Tell adapter where to find runtime sections. */
2936 0 : if ((error = wpi_nic_lock(sc)) != 0)
2937 0 : return error;
2938 0 : wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
2939 0 : wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
2940 0 : wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
2941 0 : dma->paddr + WPI_FW_DATA_MAXSZ);
2942 0 : wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
2943 0 : WPI_FW_UPDATED | fw->main.textsz);
2944 0 : wpi_nic_unlock(sc);
2945 :
2946 0 : return 0;
2947 0 : }
2948 :
2949 : int
2950 0 : wpi_read_firmware(struct wpi_softc *sc)
2951 : {
2952 0 : struct wpi_fw_info *fw = &sc->fw;
2953 : const struct wpi_firmware_hdr *hdr;
2954 : int error;
2955 :
2956 : /* Read firmware image from filesystem. */
2957 0 : if ((error = loadfirmware("wpi-3945abg", &fw->data, &fw->datalen)) != 0) {
2958 0 : printf("%s: error, %d, could not read firmware %s\n",
2959 0 : sc->sc_dev.dv_xname, error, "wpi-3945abg");
2960 0 : return error;
2961 : }
2962 0 : if (fw->datalen < sizeof (*hdr)) {
2963 0 : printf("%s: truncated firmware header: %zu bytes\n",
2964 0 : sc->sc_dev.dv_xname, fw->datalen);
2965 0 : free(fw->data, M_DEVBUF, fw->datalen);
2966 0 : return EINVAL;
2967 : }
2968 : /* Extract firmware header information. */
2969 0 : hdr = (struct wpi_firmware_hdr *)fw->data;
2970 0 : fw->main.textsz = letoh32(hdr->main_textsz);
2971 0 : fw->main.datasz = letoh32(hdr->main_datasz);
2972 0 : fw->init.textsz = letoh32(hdr->init_textsz);
2973 0 : fw->init.datasz = letoh32(hdr->init_datasz);
2974 0 : fw->boot.textsz = letoh32(hdr->boot_textsz);
2975 0 : fw->boot.datasz = 0;
2976 :
2977 : /* Sanity-check firmware header. */
2978 0 : if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
2979 0 : fw->main.datasz > WPI_FW_DATA_MAXSZ ||
2980 0 : fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
2981 0 : fw->init.datasz > WPI_FW_DATA_MAXSZ ||
2982 0 : fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
2983 0 : (fw->boot.textsz & 3) != 0) {
2984 0 : printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
2985 0 : free(fw->data, M_DEVBUF, fw->datalen);
2986 0 : return EINVAL;
2987 : }
2988 :
2989 : /* Check that all firmware sections fit. */
2990 0 : if (fw->datalen < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
2991 0 : fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
2992 0 : printf("%s: firmware file too short: %zu bytes\n",
2993 0 : sc->sc_dev.dv_xname, fw->datalen);
2994 0 : free(fw->data, M_DEVBUF, fw->datalen);
2995 0 : return EINVAL;
2996 : }
2997 :
2998 : /* Get pointers to firmware sections. */
2999 0 : fw->main.text = (const uint8_t *)(hdr + 1);
3000 0 : fw->main.data = fw->main.text + fw->main.textsz;
3001 0 : fw->init.text = fw->main.data + fw->main.datasz;
3002 0 : fw->init.data = fw->init.text + fw->init.textsz;
3003 0 : fw->boot.text = fw->init.data + fw->init.datasz;
3004 :
3005 0 : return 0;
3006 0 : }
3007 :
3008 : int
3009 0 : wpi_clock_wait(struct wpi_softc *sc)
3010 : {
3011 : int ntries;
3012 :
3013 : /* Set "initialization complete" bit. */
3014 0 : WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
3015 :
3016 : /* Wait for clock stabilization. */
3017 0 : for (ntries = 0; ntries < 25000; ntries++) {
3018 0 : if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
3019 0 : return 0;
3020 0 : DELAY(100);
3021 : }
3022 0 : printf("%s: timeout waiting for clock stabilization\n",
3023 0 : sc->sc_dev.dv_xname);
3024 0 : return ETIMEDOUT;
3025 0 : }
3026 :
3027 : int
3028 0 : wpi_apm_init(struct wpi_softc *sc)
3029 : {
3030 : int error;
3031 :
3032 0 : WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
3033 : /* Disable L0s. */
3034 0 : WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
3035 :
3036 0 : if ((error = wpi_clock_wait(sc)) != 0)
3037 0 : return error;
3038 :
3039 0 : if ((error = wpi_nic_lock(sc)) != 0)
3040 0 : return error;
3041 : /* Enable DMA. */
3042 0 : wpi_prph_write(sc, WPI_APMG_CLK_ENA,
3043 : WPI_APMG_CLK_DMA_CLK_RQT | WPI_APMG_CLK_BSM_CLK_RQT);
3044 0 : DELAY(20);
3045 : /* Disable L1. */
3046 0 : wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
3047 0 : wpi_nic_unlock(sc);
3048 :
3049 0 : return 0;
3050 0 : }
3051 :
3052 : void
3053 0 : wpi_apm_stop_master(struct wpi_softc *sc)
3054 : {
3055 : int ntries;
3056 :
3057 0 : WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
3058 :
3059 0 : if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
3060 : WPI_GP_CNTRL_MAC_PS)
3061 0 : return; /* Already asleep. */
3062 :
3063 0 : for (ntries = 0; ntries < 100; ntries++) {
3064 0 : if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
3065 0 : return;
3066 0 : DELAY(10);
3067 : }
3068 0 : printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
3069 0 : }
3070 :
3071 : void
3072 0 : wpi_apm_stop(struct wpi_softc *sc)
3073 : {
3074 0 : wpi_apm_stop_master(sc);
3075 0 : WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
3076 0 : }
3077 :
3078 : void
3079 0 : wpi_nic_config(struct wpi_softc *sc)
3080 : {
3081 : pcireg_t reg;
3082 : uint8_t rev;
3083 :
3084 : /* Voodoo from the reference driver. */
3085 0 : reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3086 0 : rev = PCI_REVISION(reg);
3087 0 : if ((rev & 0xc0) == 0x40)
3088 0 : WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
3089 0 : else if (!(rev & 0x80))
3090 0 : WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
3091 :
3092 0 : if (sc->cap == 0x80)
3093 0 : WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
3094 :
3095 0 : if ((letoh16(sc->rev) & 0xf0) == 0xd0)
3096 0 : WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
3097 : else
3098 0 : WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
3099 :
3100 0 : if (sc->type > 1)
3101 0 : WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
3102 0 : }
3103 :
3104 : int
3105 0 : wpi_hw_init(struct wpi_softc *sc)
3106 : {
3107 : int chnl, ntries, error;
3108 :
3109 : /* Clear pending interrupts. */
3110 0 : WPI_WRITE(sc, WPI_INT, 0xffffffff);
3111 :
3112 0 : if ((error = wpi_apm_init(sc)) != 0) {
3113 0 : printf("%s: could not power ON adapter\n",
3114 0 : sc->sc_dev.dv_xname);
3115 0 : return error;
3116 : }
3117 :
3118 : /* Select VMAIN power source. */
3119 0 : if ((error = wpi_nic_lock(sc)) != 0)
3120 0 : return error;
3121 0 : wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
3122 0 : wpi_nic_unlock(sc);
3123 : /* Spin until VMAIN gets selected. */
3124 0 : for (ntries = 0; ntries < 5000; ntries++) {
3125 0 : if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
3126 : break;
3127 0 : DELAY(10);
3128 : }
3129 0 : if (ntries == 5000) {
3130 0 : printf("%s: timeout selecting power source\n",
3131 0 : sc->sc_dev.dv_xname);
3132 0 : return ETIMEDOUT;
3133 : }
3134 :
3135 : /* Perform adapter initialization. */
3136 0 : (void)wpi_nic_config(sc);
3137 :
3138 : /* Initialize RX ring. */
3139 0 : if ((error = wpi_nic_lock(sc)) != 0)
3140 0 : return error;
3141 : /* Set physical address of RX ring. */
3142 0 : WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
3143 : /* Set physical address of RX read pointer. */
3144 0 : WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
3145 : offsetof(struct wpi_shared, next));
3146 0 : WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
3147 : /* Enable RX. */
3148 0 : WPI_WRITE(sc, WPI_FH_RX_CONFIG,
3149 : WPI_FH_RX_CONFIG_DMA_ENA |
3150 : WPI_FH_RX_CONFIG_RDRBD_ENA |
3151 : WPI_FH_RX_CONFIG_WRSTATUS_ENA |
3152 : WPI_FH_RX_CONFIG_MAXFRAG |
3153 : WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
3154 : WPI_FH_RX_CONFIG_IRQ_DST_HOST |
3155 : WPI_FH_RX_CONFIG_IRQ_RBTH(1));
3156 0 : (void)WPI_READ(sc, WPI_FH_RSSR_TBL); /* barrier */
3157 0 : WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
3158 0 : wpi_nic_unlock(sc);
3159 :
3160 : /* Initialize TX rings. */
3161 0 : if ((error = wpi_nic_lock(sc)) != 0)
3162 0 : return error;
3163 0 : wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2); /* bypass mode */
3164 0 : wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1); /* enable RA0 */
3165 : /* Enable all 6 TX rings. */
3166 0 : wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
3167 0 : wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
3168 0 : wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
3169 0 : wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
3170 0 : wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
3171 : /* Set physical address of TX rings. */
3172 0 : WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
3173 0 : WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
3174 :
3175 : /* Enable all DMA channels. */
3176 0 : for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
3177 0 : WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
3178 0 : WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
3179 0 : WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
3180 : }
3181 0 : wpi_nic_unlock(sc);
3182 0 : (void)WPI_READ(sc, WPI_FH_TX_BASE); /* barrier */
3183 :
3184 : /* Clear "radio off" and "commands blocked" bits. */
3185 0 : WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3186 0 : WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
3187 :
3188 : /* Clear pending interrupts. */
3189 0 : WPI_WRITE(sc, WPI_INT, 0xffffffff);
3190 : /* Enable interrupts. */
3191 0 : WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
3192 :
3193 : /* _Really_ make sure "radio off" bit is cleared! */
3194 0 : WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3195 0 : WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3196 :
3197 0 : if ((error = wpi_load_firmware(sc)) != 0) {
3198 0 : printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
3199 0 : return error;
3200 : }
3201 : /* Wait at most one second for firmware alive notification. */
3202 0 : if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
3203 0 : printf("%s: timeout waiting for adapter to initialize\n",
3204 0 : sc->sc_dev.dv_xname);
3205 0 : return error;
3206 : }
3207 : /* Do post-firmware initialization. */
3208 0 : return wpi_post_alive(sc);
3209 0 : }
3210 :
3211 : void
3212 0 : wpi_hw_stop(struct wpi_softc *sc)
3213 : {
3214 : int chnl, qid, ntries;
3215 : uint32_t tmp;
3216 :
3217 0 : WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
3218 :
3219 : /* Disable interrupts. */
3220 0 : WPI_WRITE(sc, WPI_MASK, 0);
3221 0 : WPI_WRITE(sc, WPI_INT, 0xffffffff);
3222 0 : WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
3223 :
3224 : /* Make sure we no longer hold the NIC lock. */
3225 0 : wpi_nic_unlock(sc);
3226 :
3227 0 : if (wpi_nic_lock(sc) == 0) {
3228 : /* Stop TX scheduler. */
3229 0 : wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
3230 0 : wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
3231 :
3232 : /* Stop all DMA channels. */
3233 0 : for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
3234 0 : WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
3235 0 : for (ntries = 0; ntries < 100; ntries++) {
3236 0 : tmp = WPI_READ(sc, WPI_FH_TX_STATUS);
3237 0 : if ((tmp & WPI_FH_TX_STATUS_IDLE(chnl)) ==
3238 : WPI_FH_TX_STATUS_IDLE(chnl))
3239 : break;
3240 0 : DELAY(10);
3241 : }
3242 : }
3243 0 : wpi_nic_unlock(sc);
3244 0 : }
3245 :
3246 : /* Stop RX ring. */
3247 0 : wpi_reset_rx_ring(sc, &sc->rxq);
3248 :
3249 : /* Reset all TX rings. */
3250 0 : for (qid = 0; qid < WPI_NTXQUEUES; qid++)
3251 0 : wpi_reset_tx_ring(sc, &sc->txq[qid]);
3252 :
3253 0 : if (wpi_nic_lock(sc) == 0) {
3254 0 : wpi_prph_write(sc, WPI_APMG_CLK_DIS, WPI_APMG_CLK_DMA_CLK_RQT);
3255 0 : wpi_nic_unlock(sc);
3256 0 : }
3257 0 : DELAY(5);
3258 : /* Power OFF adapter. */
3259 0 : wpi_apm_stop(sc);
3260 0 : }
3261 :
3262 : int
3263 0 : wpi_init(struct ifnet *ifp)
3264 : {
3265 0 : struct wpi_softc *sc = ifp->if_softc;
3266 0 : struct ieee80211com *ic = &sc->sc_ic;
3267 : int error;
3268 :
3269 : #ifdef notyet
3270 : /* Check that the radio is not disabled by hardware switch. */
3271 : if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
3272 : printf("%s: radio is disabled by hardware switch\n",
3273 : sc->sc_dev.dv_xname);
3274 : error = EPERM; /* :-) */
3275 : goto fail;
3276 : }
3277 : #endif
3278 : /* Read firmware images from the filesystem. */
3279 0 : if ((error = wpi_read_firmware(sc)) != 0) {
3280 0 : printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
3281 0 : goto fail;
3282 : }
3283 :
3284 : /* Initialize hardware and upload firmware. */
3285 0 : error = wpi_hw_init(sc);
3286 0 : free(sc->fw.data, M_DEVBUF, sc->fw.datalen);
3287 0 : if (error != 0) {
3288 0 : printf("%s: could not initialize hardware\n",
3289 0 : sc->sc_dev.dv_xname);
3290 0 : goto fail;
3291 : }
3292 :
3293 : /* Configure adapter now that it is ready. */
3294 0 : if ((error = wpi_config(sc)) != 0) {
3295 0 : printf("%s: could not configure device\n",
3296 0 : sc->sc_dev.dv_xname);
3297 0 : goto fail;
3298 : }
3299 :
3300 0 : ifq_clr_oactive(&ifp->if_snd);
3301 0 : ifp->if_flags |= IFF_RUNNING;
3302 :
3303 0 : if (ic->ic_opmode != IEEE80211_M_MONITOR)
3304 0 : ieee80211_begin_scan(ifp);
3305 : else
3306 0 : ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3307 :
3308 0 : return 0;
3309 :
3310 0 : fail: wpi_stop(ifp, 1);
3311 0 : return error;
3312 0 : }
3313 :
3314 : void
3315 0 : wpi_stop(struct ifnet *ifp, int disable)
3316 : {
3317 0 : struct wpi_softc *sc = ifp->if_softc;
3318 0 : struct ieee80211com *ic = &sc->sc_ic;
3319 :
3320 0 : ifp->if_timer = sc->sc_tx_timer = 0;
3321 0 : ifp->if_flags &= ~IFF_RUNNING;
3322 0 : ifq_clr_oactive(&ifp->if_snd);
3323 :
3324 0 : ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3325 :
3326 : /* Power OFF hardware. */
3327 0 : wpi_hw_stop(sc);
3328 0 : }
|