Line data Source code
1 : /* $OpenBSD: if_rum.c,v 1.123 2017/10/26 15:00:28 mpi Exp $ */
2 :
3 : /*-
4 : * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5 : * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6 : *
7 : * Permission to use, copy, modify, and distribute this software for any
8 : * purpose with or without fee is hereby granted, provided that the above
9 : * copyright notice and this permission notice appear in all copies.
10 : *
11 : * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 : * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 : * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 : * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 : * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 : * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 : * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 : */
19 :
20 : /*-
21 : * Ralink Technology RT2501USB/RT2601USB chipset driver
22 : * http://www.ralinktech.com.tw/
23 : */
24 :
25 : #include "bpfilter.h"
26 :
27 : #include <sys/param.h>
28 : #include <sys/sockio.h>
29 : #include <sys/mbuf.h>
30 : #include <sys/kernel.h>
31 : #include <sys/socket.h>
32 : #include <sys/systm.h>
33 : #include <sys/timeout.h>
34 : #include <sys/conf.h>
35 : #include <sys/device.h>
36 : #include <sys/endian.h>
37 :
38 : #include <machine/intr.h>
39 :
40 : #if NBPFILTER > 0
41 : #include <net/bpf.h>
42 : #endif
43 : #include <net/if.h>
44 : #include <net/if_dl.h>
45 : #include <net/if_media.h>
46 :
47 : #include <netinet/in.h>
48 : #include <netinet/if_ether.h>
49 :
50 : #include <net80211/ieee80211_var.h>
51 : #include <net80211/ieee80211_amrr.h>
52 : #include <net80211/ieee80211_radiotap.h>
53 :
54 : #include <dev/usb/usb.h>
55 : #include <dev/usb/usbdi.h>
56 : #include <dev/usb/usbdi_util.h>
57 : #include <dev/usb/usbdevs.h>
58 :
59 : #include <dev/usb/if_rumreg.h>
60 : #include <dev/usb/if_rumvar.h>
61 :
62 : #ifdef RUM_DEBUG
63 : #define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
64 : #define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
65 : int rum_debug = 0;
66 : #else
67 : #define DPRINTF(x)
68 : #define DPRINTFN(n, x)
69 : #endif
70 :
71 : /* various supported device vendors/products */
72 : static const struct usb_devno rum_devs[] = {
73 : { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
74 : { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
75 : { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
76 : { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
77 : { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
78 : { USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
79 : { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_1 },
80 : { USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_2 },
81 : { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
82 : { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
83 : { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
84 : { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
85 : { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
86 : { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
87 : { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
88 : { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2573 },
89 : { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
90 : { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
91 : { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
92 : { USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
93 : { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
94 : { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
95 : { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
96 : { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
97 : { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
98 : { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
99 : { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
100 : { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
101 : { USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
102 : { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
103 : { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
104 : { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
105 : { USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_WUB320G },
106 : { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
107 : { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
108 : { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
109 : { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1 },
110 : { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
111 : { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
112 : { USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
113 : { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
114 : { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
115 : { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
116 : { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
117 : { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
118 : { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
119 : { USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
120 : { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
121 : { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2 },
122 : { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
123 : { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
124 : { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
125 : { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
126 : { USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
127 : { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
128 : };
129 :
130 : void rum_attachhook(struct device *);
131 : int rum_alloc_tx_list(struct rum_softc *);
132 : void rum_free_tx_list(struct rum_softc *);
133 : int rum_alloc_rx_list(struct rum_softc *);
134 : void rum_free_rx_list(struct rum_softc *);
135 : int rum_media_change(struct ifnet *);
136 : void rum_next_scan(void *);
137 : void rum_task(void *);
138 : int rum_newstate(struct ieee80211com *, enum ieee80211_state, int);
139 : void rum_txeof(struct usbd_xfer *, void *, usbd_status);
140 : void rum_rxeof(struct usbd_xfer *, void *, usbd_status);
141 : #if NBPFILTER > 0
142 : uint8_t rum_rxrate(const struct rum_rx_desc *);
143 : #endif
144 : int rum_ack_rate(struct ieee80211com *, int);
145 : uint16_t rum_txtime(int, int, uint32_t);
146 : uint8_t rum_plcp_signal(int);
147 : void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *,
148 : uint32_t, uint16_t, int, int);
149 : int rum_tx_data(struct rum_softc *, struct mbuf *,
150 : struct ieee80211_node *);
151 : void rum_start(struct ifnet *);
152 : void rum_watchdog(struct ifnet *);
153 : int rum_ioctl(struct ifnet *, u_long, caddr_t);
154 : void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int);
155 : uint32_t rum_read(struct rum_softc *, uint16_t);
156 : void rum_read_multi(struct rum_softc *, uint16_t, void *, int);
157 : void rum_write(struct rum_softc *, uint16_t, uint32_t);
158 : void rum_write_multi(struct rum_softc *, uint16_t, void *, size_t);
159 : void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
160 : uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
161 : void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
162 : void rum_select_antenna(struct rum_softc *);
163 : void rum_enable_mrr(struct rum_softc *);
164 : void rum_set_txpreamble(struct rum_softc *);
165 : void rum_set_basicrates(struct rum_softc *);
166 : void rum_select_band(struct rum_softc *,
167 : struct ieee80211_channel *);
168 : void rum_set_chan(struct rum_softc *, struct ieee80211_channel *);
169 : void rum_enable_tsf_sync(struct rum_softc *);
170 : void rum_update_slot(struct rum_softc *);
171 : void rum_set_bssid(struct rum_softc *, const uint8_t *);
172 : void rum_set_macaddr(struct rum_softc *, const uint8_t *);
173 : void rum_update_promisc(struct rum_softc *);
174 : const char *rum_get_rf(int);
175 : void rum_read_eeprom(struct rum_softc *);
176 : int rum_bbp_init(struct rum_softc *);
177 : int rum_init(struct ifnet *);
178 : void rum_stop(struct ifnet *, int);
179 : int rum_load_microcode(struct rum_softc *, const u_char *, size_t);
180 : #ifndef IEEE80211_STA_ONLY
181 : int rum_prepare_beacon(struct rum_softc *);
182 : #endif
183 : void rum_newassoc(struct ieee80211com *, struct ieee80211_node *,
184 : int);
185 : void rum_amrr_start(struct rum_softc *, struct ieee80211_node *);
186 : void rum_amrr_timeout(void *);
187 : void rum_amrr_update(struct usbd_xfer *, void *,
188 : usbd_status status);
189 :
190 : static const struct {
191 : uint32_t reg;
192 : uint32_t val;
193 : } rum_def_mac[] = {
194 : RT2573_DEF_MAC
195 : };
196 :
197 : static const struct {
198 : uint8_t reg;
199 : uint8_t val;
200 : } rum_def_bbp[] = {
201 : RT2573_DEF_BBP
202 : };
203 :
204 : static const struct rfprog {
205 : uint8_t chan;
206 : uint32_t r1, r2, r3, r4;
207 : } rum_rf5226[] = {
208 : RT2573_RF5226
209 : }, rum_rf5225[] = {
210 : RT2573_RF5225
211 : };
212 :
213 : int rum_match(struct device *, void *, void *);
214 : void rum_attach(struct device *, struct device *, void *);
215 : int rum_detach(struct device *, int);
216 :
217 : struct cfdriver rum_cd = {
218 : NULL, "rum", DV_IFNET
219 : };
220 :
221 : const struct cfattach rum_ca = {
222 : sizeof(struct rum_softc), rum_match, rum_attach, rum_detach
223 : };
224 :
225 : int
226 0 : rum_match(struct device *parent, void *match, void *aux)
227 : {
228 0 : struct usb_attach_arg *uaa = aux;
229 :
230 0 : if (uaa->iface == NULL || uaa->configno != 1)
231 0 : return UMATCH_NONE;
232 :
233 0 : return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
234 : UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE;
235 0 : }
236 :
237 : void
238 0 : rum_attachhook(struct device *self)
239 : {
240 0 : struct rum_softc *sc = (struct rum_softc *)self;
241 : const char *name = "rum-rt2573";
242 0 : u_char *ucode;
243 0 : size_t size;
244 : int error;
245 :
246 0 : if ((error = loadfirmware(name, &ucode, &size)) != 0) {
247 0 : printf("%s: failed loadfirmware of file %s (error %d)\n",
248 0 : sc->sc_dev.dv_xname, name, error);
249 0 : return;
250 : }
251 :
252 0 : if (rum_load_microcode(sc, ucode, size) != 0) {
253 0 : printf("%s: could not load 8051 microcode\n",
254 0 : sc->sc_dev.dv_xname);
255 0 : }
256 :
257 0 : free(ucode, M_DEVBUF, size);
258 0 : }
259 :
260 : void
261 0 : rum_attach(struct device *parent, struct device *self, void *aux)
262 : {
263 0 : struct rum_softc *sc = (struct rum_softc *)self;
264 0 : struct usb_attach_arg *uaa = aux;
265 0 : struct ieee80211com *ic = &sc->sc_ic;
266 0 : struct ifnet *ifp = &ic->ic_if;
267 : usb_interface_descriptor_t *id;
268 : usb_endpoint_descriptor_t *ed;
269 : int i, ntries;
270 : uint32_t tmp;
271 :
272 0 : sc->sc_udev = uaa->device;
273 0 : sc->sc_iface = uaa->iface;
274 :
275 : /*
276 : * Find endpoints.
277 : */
278 0 : id = usbd_get_interface_descriptor(sc->sc_iface);
279 :
280 0 : sc->sc_rx_no = sc->sc_tx_no = -1;
281 0 : for (i = 0; i < id->bNumEndpoints; i++) {
282 0 : ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
283 0 : if (ed == NULL) {
284 0 : printf("%s: no endpoint descriptor for iface %d\n",
285 0 : sc->sc_dev.dv_xname, i);
286 0 : return;
287 : }
288 :
289 0 : if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
290 0 : UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
291 0 : sc->sc_rx_no = ed->bEndpointAddress;
292 0 : else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
293 0 : UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
294 0 : sc->sc_tx_no = ed->bEndpointAddress;
295 : }
296 0 : if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
297 0 : printf("%s: missing endpoint\n", sc->sc_dev.dv_xname);
298 0 : return;
299 : }
300 :
301 0 : usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC);
302 0 : timeout_set(&sc->scan_to, rum_next_scan, sc);
303 :
304 0 : sc->amrr.amrr_min_success_threshold = 1;
305 0 : sc->amrr.amrr_max_success_threshold = 10;
306 0 : timeout_set(&sc->amrr_to, rum_amrr_timeout, sc);
307 :
308 : /* retrieve RT2573 rev. no */
309 0 : for (ntries = 0; ntries < 1000; ntries++) {
310 0 : if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
311 : break;
312 0 : DELAY(1000);
313 : }
314 0 : if (ntries == 1000) {
315 0 : printf("%s: timeout waiting for chip to settle\n",
316 0 : sc->sc_dev.dv_xname);
317 0 : return;
318 : }
319 :
320 : /* retrieve MAC address and various other things from EEPROM */
321 0 : rum_read_eeprom(sc);
322 :
323 0 : printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
324 0 : sc->sc_dev.dv_xname, sc->macbbp_rev, tmp,
325 0 : rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
326 :
327 0 : config_mountroot(self, rum_attachhook);
328 :
329 0 : ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
330 0 : ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
331 0 : ic->ic_state = IEEE80211_S_INIT;
332 :
333 : /* set device capabilities */
334 0 : ic->ic_caps =
335 : IEEE80211_C_MONITOR | /* monitor mode supported */
336 : #ifndef IEEE80211_STA_ONLY
337 : IEEE80211_C_IBSS | /* IBSS mode supported */
338 : IEEE80211_C_HOSTAP | /* HostAp mode supported */
339 : #endif
340 : IEEE80211_C_TXPMGT | /* tx power management */
341 : IEEE80211_C_SHPREAMBLE | /* short preamble supported */
342 : IEEE80211_C_SHSLOT | /* short slot time supported */
343 : IEEE80211_C_WEP | /* s/w WEP */
344 : IEEE80211_C_RSN; /* WPA/RSN */
345 :
346 0 : if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
347 : /* set supported .11a rates */
348 0 : ic->ic_sup_rates[IEEE80211_MODE_11A] =
349 0 : ieee80211_std_rateset_11a;
350 :
351 : /* set supported .11a channels */
352 0 : for (i = 34; i <= 46; i += 4) {
353 0 : ic->ic_channels[i].ic_freq =
354 0 : ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
355 0 : ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
356 : }
357 0 : for (i = 36; i <= 64; i += 4) {
358 0 : ic->ic_channels[i].ic_freq =
359 0 : ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
360 0 : ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
361 : }
362 0 : for (i = 100; i <= 140; i += 4) {
363 0 : ic->ic_channels[i].ic_freq =
364 0 : ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
365 0 : ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
366 : }
367 0 : for (i = 149; i <= 165; i += 4) {
368 0 : ic->ic_channels[i].ic_freq =
369 0 : ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
370 0 : ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
371 : }
372 : }
373 :
374 : /* set supported .11b and .11g rates */
375 0 : ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
376 0 : ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
377 :
378 : /* set supported .11b and .11g channels (1 through 14) */
379 0 : for (i = 1; i <= 14; i++) {
380 0 : ic->ic_channels[i].ic_freq =
381 0 : ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
382 0 : ic->ic_channels[i].ic_flags =
383 : IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
384 : IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
385 : }
386 :
387 0 : ifp->if_softc = sc;
388 0 : ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
389 0 : ifp->if_ioctl = rum_ioctl;
390 0 : ifp->if_start = rum_start;
391 0 : ifp->if_watchdog = rum_watchdog;
392 0 : memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
393 :
394 0 : if_attach(ifp);
395 0 : ieee80211_ifattach(ifp);
396 0 : ic->ic_newassoc = rum_newassoc;
397 :
398 : /* override state transition machine */
399 0 : sc->sc_newstate = ic->ic_newstate;
400 0 : ic->ic_newstate = rum_newstate;
401 0 : ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status);
402 :
403 : #if NBPFILTER > 0
404 0 : bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
405 : sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
406 :
407 0 : sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
408 0 : sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
409 0 : sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
410 :
411 0 : sc->sc_txtap_len = sizeof sc->sc_txtapu;
412 0 : sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
413 0 : sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
414 : #endif
415 0 : }
416 :
417 : int
418 0 : rum_detach(struct device *self, int flags)
419 : {
420 0 : struct rum_softc *sc = (struct rum_softc *)self;
421 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
422 : int s;
423 :
424 0 : s = splusb();
425 :
426 0 : if (timeout_initialized(&sc->scan_to))
427 0 : timeout_del(&sc->scan_to);
428 0 : if (timeout_initialized(&sc->amrr_to))
429 0 : timeout_del(&sc->amrr_to);
430 :
431 0 : usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
432 :
433 0 : usbd_ref_wait(sc->sc_udev);
434 :
435 0 : if (ifp->if_softc != NULL) {
436 0 : ieee80211_ifdetach(ifp); /* free all nodes */
437 0 : if_detach(ifp);
438 0 : }
439 :
440 0 : if (sc->amrr_xfer != NULL) {
441 0 : usbd_free_xfer(sc->amrr_xfer);
442 0 : sc->amrr_xfer = NULL;
443 0 : }
444 0 : if (sc->sc_rx_pipeh != NULL) {
445 0 : usbd_abort_pipe(sc->sc_rx_pipeh);
446 0 : usbd_close_pipe(sc->sc_rx_pipeh);
447 0 : }
448 0 : if (sc->sc_tx_pipeh != NULL) {
449 0 : usbd_abort_pipe(sc->sc_tx_pipeh);
450 0 : usbd_close_pipe(sc->sc_tx_pipeh);
451 0 : }
452 :
453 0 : rum_free_rx_list(sc);
454 0 : rum_free_tx_list(sc);
455 :
456 0 : splx(s);
457 :
458 0 : return 0;
459 : }
460 :
461 : int
462 0 : rum_alloc_tx_list(struct rum_softc *sc)
463 : {
464 : int i, error;
465 :
466 0 : sc->tx_cur = sc->tx_queued = 0;
467 :
468 0 : for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
469 0 : struct rum_tx_data *data = &sc->tx_data[i];
470 :
471 0 : data->sc = sc;
472 :
473 0 : data->xfer = usbd_alloc_xfer(sc->sc_udev);
474 0 : if (data->xfer == NULL) {
475 0 : printf("%s: could not allocate tx xfer\n",
476 0 : sc->sc_dev.dv_xname);
477 : error = ENOMEM;
478 0 : goto fail;
479 : }
480 0 : data->buf = usbd_alloc_buffer(data->xfer,
481 : RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
482 0 : if (data->buf == NULL) {
483 0 : printf("%s: could not allocate tx buffer\n",
484 0 : sc->sc_dev.dv_xname);
485 : error = ENOMEM;
486 0 : goto fail;
487 : }
488 : /* clean Tx descriptor */
489 0 : bzero(data->buf, RT2573_TX_DESC_SIZE);
490 0 : }
491 :
492 0 : return 0;
493 :
494 0 : fail: rum_free_tx_list(sc);
495 0 : return error;
496 0 : }
497 :
498 : void
499 0 : rum_free_tx_list(struct rum_softc *sc)
500 : {
501 : int i;
502 :
503 0 : for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
504 0 : struct rum_tx_data *data = &sc->tx_data[i];
505 :
506 0 : if (data->xfer != NULL) {
507 0 : usbd_free_xfer(data->xfer);
508 0 : data->xfer = NULL;
509 0 : }
510 : /*
511 : * The node has already been freed at that point so don't call
512 : * ieee80211_release_node() here.
513 : */
514 0 : data->ni = NULL;
515 : }
516 0 : }
517 :
518 : int
519 0 : rum_alloc_rx_list(struct rum_softc *sc)
520 : {
521 : int i, error;
522 :
523 0 : for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
524 0 : struct rum_rx_data *data = &sc->rx_data[i];
525 :
526 0 : data->sc = sc;
527 :
528 0 : data->xfer = usbd_alloc_xfer(sc->sc_udev);
529 0 : if (data->xfer == NULL) {
530 0 : printf("%s: could not allocate rx xfer\n",
531 0 : sc->sc_dev.dv_xname);
532 : error = ENOMEM;
533 0 : goto fail;
534 : }
535 0 : if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
536 0 : printf("%s: could not allocate rx buffer\n",
537 0 : sc->sc_dev.dv_xname);
538 : error = ENOMEM;
539 0 : goto fail;
540 : }
541 :
542 0 : MGETHDR(data->m, M_DONTWAIT, MT_DATA);
543 0 : if (data->m == NULL) {
544 0 : printf("%s: could not allocate rx mbuf\n",
545 0 : sc->sc_dev.dv_xname);
546 : error = ENOMEM;
547 0 : goto fail;
548 : }
549 0 : MCLGET(data->m, M_DONTWAIT);
550 0 : if (!(data->m->m_flags & M_EXT)) {
551 0 : printf("%s: could not allocate rx mbuf cluster\n",
552 0 : sc->sc_dev.dv_xname);
553 : error = ENOMEM;
554 0 : goto fail;
555 : }
556 0 : data->buf = mtod(data->m, uint8_t *);
557 0 : }
558 :
559 0 : return 0;
560 :
561 0 : fail: rum_free_rx_list(sc);
562 0 : return error;
563 0 : }
564 :
565 : void
566 0 : rum_free_rx_list(struct rum_softc *sc)
567 : {
568 : int i;
569 :
570 0 : for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
571 0 : struct rum_rx_data *data = &sc->rx_data[i];
572 :
573 0 : if (data->xfer != NULL) {
574 0 : usbd_free_xfer(data->xfer);
575 0 : data->xfer = NULL;
576 0 : }
577 0 : if (data->m != NULL) {
578 0 : m_freem(data->m);
579 0 : data->m = NULL;
580 0 : }
581 : }
582 0 : }
583 :
584 : int
585 0 : rum_media_change(struct ifnet *ifp)
586 : {
587 : int error;
588 :
589 0 : error = ieee80211_media_change(ifp);
590 0 : if (error != ENETRESET)
591 0 : return error;
592 :
593 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
594 0 : rum_init(ifp);
595 :
596 0 : return 0;
597 0 : }
598 :
599 : /*
600 : * This function is called periodically (every 200ms) during scanning to
601 : * switch from one channel to another.
602 : */
603 : void
604 0 : rum_next_scan(void *arg)
605 : {
606 0 : struct rum_softc *sc = arg;
607 0 : struct ieee80211com *ic = &sc->sc_ic;
608 0 : struct ifnet *ifp = &ic->ic_if;
609 :
610 0 : if (usbd_is_dying(sc->sc_udev))
611 0 : return;
612 :
613 0 : usbd_ref_incr(sc->sc_udev);
614 :
615 0 : if (ic->ic_state == IEEE80211_S_SCAN)
616 0 : ieee80211_next_scan(ifp);
617 :
618 0 : usbd_ref_decr(sc->sc_udev);
619 0 : }
620 :
621 : void
622 0 : rum_task(void *arg)
623 : {
624 0 : struct rum_softc *sc = arg;
625 0 : struct ieee80211com *ic = &sc->sc_ic;
626 : enum ieee80211_state ostate;
627 : struct ieee80211_node *ni;
628 : uint32_t tmp;
629 :
630 0 : if (usbd_is_dying(sc->sc_udev))
631 0 : return;
632 :
633 0 : ostate = ic->ic_state;
634 :
635 0 : switch (sc->sc_state) {
636 : case IEEE80211_S_INIT:
637 0 : if (ostate == IEEE80211_S_RUN) {
638 : /* abort TSF synchronization */
639 0 : tmp = rum_read(sc, RT2573_TXRX_CSR9);
640 0 : rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
641 0 : }
642 : break;
643 :
644 : case IEEE80211_S_SCAN:
645 0 : rum_set_chan(sc, ic->ic_bss->ni_chan);
646 0 : if (!usbd_is_dying(sc->sc_udev))
647 0 : timeout_add_msec(&sc->scan_to, 200);
648 : break;
649 :
650 : case IEEE80211_S_AUTH:
651 0 : rum_set_chan(sc, ic->ic_bss->ni_chan);
652 0 : break;
653 :
654 : case IEEE80211_S_ASSOC:
655 0 : rum_set_chan(sc, ic->ic_bss->ni_chan);
656 0 : break;
657 :
658 : case IEEE80211_S_RUN:
659 0 : rum_set_chan(sc, ic->ic_bss->ni_chan);
660 :
661 0 : ni = ic->ic_bss;
662 :
663 0 : if (ic->ic_opmode != IEEE80211_M_MONITOR) {
664 0 : rum_update_slot(sc);
665 0 : rum_enable_mrr(sc);
666 0 : rum_set_txpreamble(sc);
667 0 : rum_set_basicrates(sc);
668 0 : rum_set_bssid(sc, ni->ni_bssid);
669 0 : }
670 :
671 : #ifndef IEEE80211_STA_ONLY
672 0 : if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
673 0 : ic->ic_opmode == IEEE80211_M_IBSS)
674 0 : rum_prepare_beacon(sc);
675 : #endif
676 :
677 0 : if (ic->ic_opmode != IEEE80211_M_MONITOR)
678 0 : rum_enable_tsf_sync(sc);
679 :
680 0 : if (ic->ic_opmode == IEEE80211_M_STA) {
681 : /* fake a join to init the tx rate */
682 0 : rum_newassoc(ic, ic->ic_bss, 1);
683 :
684 : /* enable automatic rate control in STA mode */
685 0 : if (ic->ic_fixed_rate == -1)
686 0 : rum_amrr_start(sc, ni);
687 : }
688 : break;
689 : }
690 :
691 0 : sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
692 0 : }
693 :
694 : int
695 0 : rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
696 : {
697 0 : struct rum_softc *sc = ic->ic_if.if_softc;
698 :
699 0 : usb_rem_task(sc->sc_udev, &sc->sc_task);
700 0 : timeout_del(&sc->scan_to);
701 0 : timeout_del(&sc->amrr_to);
702 :
703 : /* do it in a process context */
704 0 : sc->sc_state = nstate;
705 0 : sc->sc_arg = arg;
706 0 : usb_add_task(sc->sc_udev, &sc->sc_task);
707 0 : return 0;
708 : }
709 :
710 : /* quickly determine if a given rate is CCK or OFDM */
711 : #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
712 :
713 : #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
714 : #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
715 :
716 : void
717 0 : rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
718 : {
719 0 : struct rum_tx_data *data = priv;
720 0 : struct rum_softc *sc = data->sc;
721 0 : struct ieee80211com *ic = &sc->sc_ic;
722 0 : struct ifnet *ifp = &ic->ic_if;
723 : int s;
724 :
725 0 : if (status != USBD_NORMAL_COMPLETION) {
726 0 : if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
727 0 : return;
728 :
729 0 : printf("%s: could not transmit buffer: %s\n",
730 0 : sc->sc_dev.dv_xname, usbd_errstr(status));
731 :
732 0 : if (status == USBD_STALLED)
733 0 : usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
734 :
735 0 : ifp->if_oerrors++;
736 0 : return;
737 : }
738 :
739 0 : s = splnet();
740 :
741 0 : ieee80211_release_node(ic, data->ni);
742 0 : data->ni = NULL;
743 :
744 0 : sc->tx_queued--;
745 :
746 : DPRINTFN(10, ("tx done\n"));
747 :
748 0 : sc->sc_tx_timer = 0;
749 0 : ifq_clr_oactive(&ifp->if_snd);
750 0 : rum_start(ifp);
751 :
752 0 : splx(s);
753 0 : }
754 :
755 : void
756 0 : rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
757 : {
758 0 : struct rum_rx_data *data = priv;
759 0 : struct rum_softc *sc = data->sc;
760 0 : struct ieee80211com *ic = &sc->sc_ic;
761 0 : struct ifnet *ifp = &ic->ic_if;
762 : const struct rum_rx_desc *desc;
763 : struct ieee80211_frame *wh;
764 0 : struct ieee80211_rxinfo rxi;
765 : struct ieee80211_node *ni;
766 : struct mbuf *mnew, *m;
767 0 : int s, len;
768 :
769 0 : if (status != USBD_NORMAL_COMPLETION) {
770 0 : if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
771 0 : return;
772 :
773 0 : if (status == USBD_STALLED)
774 0 : usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
775 : goto skip;
776 : }
777 :
778 0 : usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
779 :
780 0 : if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
781 : DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname,
782 : len));
783 0 : ifp->if_ierrors++;
784 0 : goto skip;
785 : }
786 :
787 0 : desc = (const struct rum_rx_desc *)data->buf;
788 :
789 0 : if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) {
790 : /*
791 : * This should not happen since we did not request to receive
792 : * those frames when we filled RT2573_TXRX_CSR0.
793 : */
794 : DPRINTFN(5, ("CRC error\n"));
795 0 : ifp->if_ierrors++;
796 0 : goto skip;
797 : }
798 :
799 0 : MGETHDR(mnew, M_DONTWAIT, MT_DATA);
800 0 : if (mnew == NULL) {
801 0 : printf("%s: could not allocate rx mbuf\n",
802 0 : sc->sc_dev.dv_xname);
803 0 : ifp->if_ierrors++;
804 0 : goto skip;
805 : }
806 0 : MCLGET(mnew, M_DONTWAIT);
807 0 : if (!(mnew->m_flags & M_EXT)) {
808 0 : printf("%s: could not allocate rx mbuf cluster\n",
809 0 : sc->sc_dev.dv_xname);
810 0 : m_freem(mnew);
811 0 : ifp->if_ierrors++;
812 0 : goto skip;
813 : }
814 0 : m = data->m;
815 0 : data->m = mnew;
816 0 : data->buf = mtod(data->m, uint8_t *);
817 :
818 : /* finalize mbuf */
819 0 : m->m_data = (caddr_t)(desc + 1);
820 0 : m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff;
821 :
822 0 : s = splnet();
823 :
824 : #if NBPFILTER > 0
825 0 : if (sc->sc_drvbpf != NULL) {
826 0 : struct mbuf mb;
827 0 : struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
828 :
829 0 : tap->wr_flags = 0;
830 0 : tap->wr_rate = rum_rxrate(desc);
831 0 : tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
832 0 : tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
833 0 : tap->wr_antenna = sc->rx_ant;
834 0 : tap->wr_antsignal = desc->rssi;
835 :
836 0 : mb.m_data = (caddr_t)tap;
837 0 : mb.m_len = sc->sc_rxtap_len;
838 0 : mb.m_next = m;
839 0 : mb.m_nextpkt = NULL;
840 0 : mb.m_type = 0;
841 0 : mb.m_flags = 0;
842 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
843 0 : }
844 : #endif
845 :
846 0 : wh = mtod(m, struct ieee80211_frame *);
847 0 : ni = ieee80211_find_rxnode(ic, wh);
848 :
849 : /* send the frame to the 802.11 layer */
850 0 : rxi.rxi_flags = 0;
851 0 : rxi.rxi_rssi = desc->rssi;
852 0 : rxi.rxi_tstamp = 0; /* unused */
853 0 : ieee80211_input(ifp, m, ni, &rxi);
854 :
855 : /* node is no longer needed */
856 0 : ieee80211_release_node(ic, ni);
857 :
858 0 : splx(s);
859 :
860 : DPRINTFN(15, ("rx done\n"));
861 :
862 : skip: /* setup a new transfer */
863 0 : usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
864 : USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
865 0 : (void)usbd_transfer(xfer);
866 0 : }
867 :
868 : /*
869 : * This function is only used by the Rx radiotap code. It returns the rate at
870 : * which a given frame was received.
871 : */
872 : #if NBPFILTER > 0
873 : uint8_t
874 0 : rum_rxrate(const struct rum_rx_desc *desc)
875 : {
876 0 : if (letoh32(desc->flags) & RT2573_RX_OFDM) {
877 : /* reverse function of rum_plcp_signal */
878 0 : switch (desc->rate) {
879 0 : case 0xb: return 12;
880 0 : case 0xf: return 18;
881 0 : case 0xa: return 24;
882 0 : case 0xe: return 36;
883 0 : case 0x9: return 48;
884 0 : case 0xd: return 72;
885 0 : case 0x8: return 96;
886 0 : case 0xc: return 108;
887 : }
888 : } else {
889 0 : if (desc->rate == 10)
890 0 : return 2;
891 0 : if (desc->rate == 20)
892 0 : return 4;
893 0 : if (desc->rate == 55)
894 0 : return 11;
895 0 : if (desc->rate == 110)
896 0 : return 22;
897 : }
898 0 : return 2; /* should not get there */
899 0 : }
900 : #endif
901 :
902 : /*
903 : * Return the expected ack rate for a frame transmitted at rate `rate'.
904 : */
905 : int
906 0 : rum_ack_rate(struct ieee80211com *ic, int rate)
907 : {
908 0 : switch (rate) {
909 : /* CCK rates */
910 : case 2:
911 0 : return 2;
912 : case 4:
913 : case 11:
914 : case 22:
915 0 : return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
916 :
917 : /* OFDM rates */
918 : case 12:
919 : case 18:
920 0 : return 12;
921 : case 24:
922 : case 36:
923 0 : return 24;
924 : case 48:
925 : case 72:
926 : case 96:
927 : case 108:
928 0 : return 48;
929 : }
930 :
931 : /* default to 1Mbps */
932 0 : return 2;
933 0 : }
934 :
935 : /*
936 : * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
937 : * The function automatically determines the operating mode depending on the
938 : * given rate. `flags' indicates whether short preamble is in use or not.
939 : */
940 : uint16_t
941 0 : rum_txtime(int len, int rate, uint32_t flags)
942 : {
943 : uint16_t txtime;
944 :
945 0 : if (RUM_RATE_IS_OFDM(rate)) {
946 : /* IEEE Std 802.11a-1999, pp. 37 */
947 0 : txtime = (8 + 4 * len + 3 + rate - 1) / rate;
948 0 : txtime = 16 + 4 + 4 * txtime + 6;
949 0 : } else {
950 : /* IEEE Std 802.11b-1999, pp. 28 */
951 0 : txtime = (16 * len + rate - 1) / rate;
952 0 : if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
953 0 : txtime += 72 + 24;
954 : else
955 0 : txtime += 144 + 48;
956 : }
957 0 : return txtime;
958 : }
959 :
960 : uint8_t
961 0 : rum_plcp_signal(int rate)
962 : {
963 0 : switch (rate) {
964 : /* CCK rates (returned values are device-dependent) */
965 0 : case 2: return 0x0;
966 0 : case 4: return 0x1;
967 0 : case 11: return 0x2;
968 0 : case 22: return 0x3;
969 :
970 : /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
971 0 : case 12: return 0xb;
972 0 : case 18: return 0xf;
973 0 : case 24: return 0xa;
974 0 : case 36: return 0xe;
975 0 : case 48: return 0x9;
976 0 : case 72: return 0xd;
977 0 : case 96: return 0x8;
978 0 : case 108: return 0xc;
979 :
980 : /* unsupported rates (should not get there) */
981 0 : default: return 0xff;
982 : }
983 0 : }
984 :
985 : void
986 0 : rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
987 : uint32_t flags, uint16_t xflags, int len, int rate)
988 : {
989 0 : struct ieee80211com *ic = &sc->sc_ic;
990 : uint16_t plcp_length;
991 : int remainder;
992 :
993 0 : desc->flags = htole32(flags);
994 0 : desc->flags |= htole32(RT2573_TX_VALID);
995 0 : desc->flags |= htole32(len << 16);
996 :
997 0 : desc->xflags = htole16(xflags);
998 :
999 0 : desc->wme = htole16(
1000 : RT2573_QID(0) |
1001 : RT2573_AIFSN(2) |
1002 : RT2573_LOGCWMIN(4) |
1003 : RT2573_LOGCWMAX(10));
1004 :
1005 : /* setup PLCP fields */
1006 0 : desc->plcp_signal = rum_plcp_signal(rate);
1007 0 : desc->plcp_service = 4;
1008 :
1009 0 : len += IEEE80211_CRC_LEN;
1010 0 : if (RUM_RATE_IS_OFDM(rate)) {
1011 0 : desc->flags |= htole32(RT2573_TX_OFDM);
1012 :
1013 0 : plcp_length = len & 0xfff;
1014 0 : desc->plcp_length_hi = plcp_length >> 6;
1015 0 : desc->plcp_length_lo = plcp_length & 0x3f;
1016 0 : } else {
1017 0 : plcp_length = (16 * len + rate - 1) / rate;
1018 0 : if (rate == 22) {
1019 0 : remainder = (16 * len) % 22;
1020 0 : if (remainder != 0 && remainder < 7)
1021 0 : desc->plcp_service |= RT2573_PLCP_LENGEXT;
1022 : }
1023 0 : desc->plcp_length_hi = plcp_length >> 8;
1024 0 : desc->plcp_length_lo = plcp_length & 0xff;
1025 :
1026 0 : if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1027 0 : desc->plcp_signal |= 0x08;
1028 : }
1029 0 : }
1030 :
1031 : #define RUM_TX_TIMEOUT 5000
1032 :
1033 : int
1034 0 : rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1035 : {
1036 0 : struct ieee80211com *ic = &sc->sc_ic;
1037 : struct rum_tx_desc *desc;
1038 : struct rum_tx_data *data;
1039 : struct ieee80211_frame *wh;
1040 : struct ieee80211_key *k;
1041 : uint32_t flags = 0;
1042 : uint16_t dur;
1043 : usbd_status error;
1044 : int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1045 :
1046 0 : wh = mtod(m0, struct ieee80211_frame *);
1047 :
1048 0 : if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1049 0 : k = ieee80211_get_txkey(ic, wh, ni);
1050 :
1051 0 : if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1052 0 : return ENOBUFS;
1053 :
1054 : /* packet header may have moved, reset our local pointer */
1055 0 : wh = mtod(m0, struct ieee80211_frame *);
1056 0 : }
1057 :
1058 : /* compute actual packet length (including CRC and crypto overhead) */
1059 0 : pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1060 :
1061 : /* pickup a rate */
1062 0 : if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1063 0 : ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1064 : IEEE80211_FC0_TYPE_MGT)) {
1065 : /* mgmt/multicast frames are sent at the lowest avail. rate */
1066 0 : rate = ni->ni_rates.rs_rates[0];
1067 0 : } else if (ic->ic_fixed_rate != -1) {
1068 0 : rate = ic->ic_sup_rates[ic->ic_curmode].
1069 0 : rs_rates[ic->ic_fixed_rate];
1070 0 : } else
1071 0 : rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1072 0 : if (rate == 0)
1073 0 : rate = 2; /* XXX should not happen */
1074 0 : rate &= IEEE80211_RATE_VAL;
1075 :
1076 : /* check if RTS/CTS or CTS-to-self protection must be used */
1077 0 : if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1078 : /* multicast frames are not sent at OFDM rates in 802.11b/g */
1079 0 : if (pktlen > ic->ic_rtsthreshold) {
1080 : needrts = 1; /* RTS/CTS based on frame length */
1081 0 : } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1082 0 : RUM_RATE_IS_OFDM(rate)) {
1083 0 : if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1084 0 : needcts = 1; /* CTS-to-self */
1085 0 : else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1086 0 : needrts = 1; /* RTS/CTS */
1087 : }
1088 : }
1089 0 : if (needrts || needcts) {
1090 : struct mbuf *mprot;
1091 : int protrate, ackrate;
1092 : uint16_t dur;
1093 :
1094 0 : protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1095 0 : ackrate = rum_ack_rate(ic, rate);
1096 :
1097 0 : dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1098 0 : rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1099 0 : 2 * sc->sifs;
1100 0 : if (needrts) {
1101 0 : dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1102 0 : protrate), ic->ic_flags) + sc->sifs;
1103 0 : mprot = ieee80211_get_rts(ic, wh, dur);
1104 0 : } else {
1105 0 : mprot = ieee80211_get_cts_to_self(ic, dur);
1106 : }
1107 0 : if (mprot == NULL) {
1108 0 : printf("%s: could not allocate protection frame\n",
1109 0 : sc->sc_dev.dv_xname);
1110 0 : m_freem(m0);
1111 0 : return ENOBUFS;
1112 : }
1113 :
1114 0 : data = &sc->tx_data[sc->tx_cur];
1115 0 : desc = (struct rum_tx_desc *)data->buf;
1116 :
1117 : /* avoid multiple free() of the same node for each fragment */
1118 0 : data->ni = ieee80211_ref_node(ni);
1119 :
1120 0 : m_copydata(mprot, 0, mprot->m_pkthdr.len,
1121 0 : data->buf + RT2573_TX_DESC_SIZE);
1122 0 : rum_setup_tx_desc(sc, desc,
1123 0 : (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1124 0 : 0, mprot->m_pkthdr.len, protrate);
1125 :
1126 : /* no roundup necessary here */
1127 0 : xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1128 :
1129 : /* XXX may want to pass the protection frame to BPF */
1130 :
1131 : /* mbuf is no longer needed */
1132 0 : m_freem(mprot);
1133 :
1134 0 : usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1135 : xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1136 : RUM_TX_TIMEOUT, rum_txeof);
1137 0 : error = usbd_transfer(data->xfer);
1138 0 : if (error != 0 && error != USBD_IN_PROGRESS) {
1139 0 : m_freem(m0);
1140 0 : return error;
1141 : }
1142 :
1143 0 : sc->tx_queued++;
1144 0 : sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1145 :
1146 : flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1147 0 : }
1148 :
1149 0 : data = &sc->tx_data[sc->tx_cur];
1150 0 : desc = (struct rum_tx_desc *)data->buf;
1151 :
1152 0 : data->ni = ni;
1153 :
1154 0 : if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1155 0 : flags |= RT2573_TX_NEED_ACK;
1156 :
1157 0 : dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1158 0 : ic->ic_flags) + sc->sifs;
1159 0 : *(uint16_t *)wh->i_dur = htole16(dur);
1160 :
1161 : #ifndef IEEE80211_STA_ONLY
1162 : /* tell hardware to set timestamp in probe responses */
1163 0 : if ((wh->i_fc[0] &
1164 0 : (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1165 : (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1166 0 : flags |= RT2573_TX_TIMESTAMP;
1167 : #endif
1168 : }
1169 :
1170 : #if NBPFILTER > 0
1171 0 : if (sc->sc_drvbpf != NULL) {
1172 0 : struct mbuf mb;
1173 0 : struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1174 :
1175 0 : tap->wt_flags = 0;
1176 0 : tap->wt_rate = rate;
1177 0 : tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1178 0 : tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1179 0 : tap->wt_antenna = sc->tx_ant;
1180 :
1181 0 : mb.m_data = (caddr_t)tap;
1182 0 : mb.m_len = sc->sc_txtap_len;
1183 0 : mb.m_next = m0;
1184 0 : mb.m_nextpkt = NULL;
1185 0 : mb.m_type = 0;
1186 0 : mb.m_flags = 0;
1187 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1188 0 : }
1189 : #endif
1190 :
1191 0 : m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1192 0 : rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1193 :
1194 : /* align end on a 4-bytes boundary */
1195 0 : xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1196 :
1197 : /*
1198 : * No space left in the last URB to store the extra 4 bytes, force
1199 : * sending of another URB.
1200 : */
1201 0 : if ((xferlen % 64) == 0)
1202 0 : xferlen += 4;
1203 :
1204 : DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1205 : m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1206 :
1207 : /* mbuf is no longer needed */
1208 0 : m_freem(m0);
1209 :
1210 0 : usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1211 : USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1212 0 : error = usbd_transfer(data->xfer);
1213 0 : if (error != 0 && error != USBD_IN_PROGRESS)
1214 0 : return error;
1215 :
1216 0 : sc->tx_queued++;
1217 0 : sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1218 :
1219 0 : return 0;
1220 0 : }
1221 :
1222 : void
1223 0 : rum_start(struct ifnet *ifp)
1224 : {
1225 0 : struct rum_softc *sc = ifp->if_softc;
1226 0 : struct ieee80211com *ic = &sc->sc_ic;
1227 0 : struct ieee80211_node *ni;
1228 : struct mbuf *m0;
1229 :
1230 : /*
1231 : * net80211 may still try to send management frames even if the
1232 : * IFF_RUNNING flag is not set...
1233 : */
1234 0 : if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1235 0 : return;
1236 :
1237 0 : for (;;) {
1238 0 : if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1239 0 : ifq_set_oactive(&ifp->if_snd);
1240 0 : break;
1241 : }
1242 :
1243 0 : m0 = mq_dequeue(&ic->ic_mgtq);
1244 0 : if (m0 != NULL) {
1245 0 : ni = m0->m_pkthdr.ph_cookie;
1246 : #if NBPFILTER > 0
1247 0 : if (ic->ic_rawbpf != NULL)
1248 0 : bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1249 : #endif
1250 0 : if (rum_tx_data(sc, m0, ni) != 0)
1251 : break;
1252 :
1253 : } else {
1254 0 : if (ic->ic_state != IEEE80211_S_RUN)
1255 : break;
1256 :
1257 0 : IFQ_DEQUEUE(&ifp->if_snd, m0);
1258 0 : if (m0 == NULL)
1259 : break;
1260 : #if NBPFILTER > 0
1261 0 : if (ifp->if_bpf != NULL)
1262 0 : bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1263 : #endif
1264 0 : m0 = ieee80211_encap(ifp, m0, &ni);
1265 0 : if (m0 == NULL)
1266 0 : continue;
1267 : #if NBPFILTER > 0
1268 0 : if (ic->ic_rawbpf != NULL)
1269 0 : bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1270 : #endif
1271 0 : if (rum_tx_data(sc, m0, ni) != 0) {
1272 0 : if (ni != NULL)
1273 0 : ieee80211_release_node(ic, ni);
1274 0 : ifp->if_oerrors++;
1275 0 : break;
1276 : }
1277 : }
1278 :
1279 0 : sc->sc_tx_timer = 5;
1280 0 : ifp->if_timer = 1;
1281 : }
1282 0 : }
1283 :
1284 : void
1285 0 : rum_watchdog(struct ifnet *ifp)
1286 : {
1287 0 : struct rum_softc *sc = ifp->if_softc;
1288 :
1289 0 : ifp->if_timer = 0;
1290 :
1291 0 : if (sc->sc_tx_timer > 0) {
1292 0 : if (--sc->sc_tx_timer == 0) {
1293 0 : printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1294 : /*rum_init(ifp); XXX needs a process context! */
1295 0 : ifp->if_oerrors++;
1296 0 : return;
1297 : }
1298 0 : ifp->if_timer = 1;
1299 0 : }
1300 :
1301 0 : ieee80211_watchdog(ifp);
1302 0 : }
1303 :
1304 : int
1305 0 : rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1306 : {
1307 0 : struct rum_softc *sc = ifp->if_softc;
1308 0 : struct ieee80211com *ic = &sc->sc_ic;
1309 : int s, error = 0;
1310 :
1311 0 : if (usbd_is_dying(sc->sc_udev))
1312 0 : return ENXIO;
1313 :
1314 0 : usbd_ref_incr(sc->sc_udev);
1315 :
1316 0 : s = splnet();
1317 :
1318 0 : switch (cmd) {
1319 : case SIOCSIFADDR:
1320 0 : ifp->if_flags |= IFF_UP;
1321 : /* FALLTHROUGH */
1322 : case SIOCSIFFLAGS:
1323 0 : if (ifp->if_flags & IFF_UP) {
1324 0 : if (ifp->if_flags & IFF_RUNNING)
1325 0 : rum_update_promisc(sc);
1326 : else
1327 0 : rum_init(ifp);
1328 : } else {
1329 0 : if (ifp->if_flags & IFF_RUNNING)
1330 0 : rum_stop(ifp, 1);
1331 : }
1332 : break;
1333 :
1334 : case SIOCS80211CHANNEL:
1335 : /*
1336 : * This allows for fast channel switching in monitor mode
1337 : * (used by kismet). In IBSS mode, we must explicitly reset
1338 : * the interface to generate a new beacon frame.
1339 : */
1340 0 : error = ieee80211_ioctl(ifp, cmd, data);
1341 0 : if (error == ENETRESET &&
1342 0 : ic->ic_opmode == IEEE80211_M_MONITOR) {
1343 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1344 : (IFF_UP | IFF_RUNNING))
1345 0 : rum_set_chan(sc, ic->ic_ibss_chan);
1346 : error = 0;
1347 0 : }
1348 : break;
1349 :
1350 : default:
1351 0 : error = ieee80211_ioctl(ifp, cmd, data);
1352 0 : }
1353 :
1354 0 : if (error == ENETRESET) {
1355 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1356 : (IFF_UP | IFF_RUNNING))
1357 0 : rum_init(ifp);
1358 : error = 0;
1359 0 : }
1360 :
1361 0 : splx(s);
1362 :
1363 0 : usbd_ref_decr(sc->sc_udev);
1364 :
1365 0 : return error;
1366 0 : }
1367 :
1368 : void
1369 0 : rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1370 : {
1371 0 : usb_device_request_t req;
1372 : usbd_status error;
1373 :
1374 0 : req.bmRequestType = UT_READ_VENDOR_DEVICE;
1375 0 : req.bRequest = RT2573_READ_EEPROM;
1376 0 : USETW(req.wValue, 0);
1377 0 : USETW(req.wIndex, addr);
1378 0 : USETW(req.wLength, len);
1379 :
1380 0 : error = usbd_do_request(sc->sc_udev, &req, buf);
1381 0 : if (error != 0) {
1382 0 : printf("%s: could not read EEPROM: %s\n",
1383 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
1384 0 : }
1385 0 : }
1386 :
1387 : uint32_t
1388 0 : rum_read(struct rum_softc *sc, uint16_t reg)
1389 : {
1390 0 : uint32_t val;
1391 :
1392 0 : rum_read_multi(sc, reg, &val, sizeof val);
1393 :
1394 0 : return letoh32(val);
1395 0 : }
1396 :
1397 : void
1398 0 : rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1399 : {
1400 0 : usb_device_request_t req;
1401 : usbd_status error;
1402 :
1403 0 : req.bmRequestType = UT_READ_VENDOR_DEVICE;
1404 0 : req.bRequest = RT2573_READ_MULTI_MAC;
1405 0 : USETW(req.wValue, 0);
1406 0 : USETW(req.wIndex, reg);
1407 0 : USETW(req.wLength, len);
1408 :
1409 0 : error = usbd_do_request(sc->sc_udev, &req, buf);
1410 0 : if (error != 0) {
1411 0 : printf("%s: could not multi read MAC register: %s\n",
1412 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
1413 0 : }
1414 0 : }
1415 :
1416 : void
1417 0 : rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1418 : {
1419 0 : uint32_t tmp = htole32(val);
1420 :
1421 0 : rum_write_multi(sc, reg, &tmp, sizeof tmp);
1422 0 : }
1423 :
1424 : void
1425 0 : rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1426 : {
1427 0 : usb_device_request_t req;
1428 : usbd_status error;
1429 : int offset;
1430 :
1431 0 : req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1432 0 : req.bRequest = RT2573_WRITE_MULTI_MAC;
1433 0 : USETW(req.wValue, 0);
1434 :
1435 : /* write at most 64 bytes at a time */
1436 0 : for (offset = 0; offset < len; offset += 64) {
1437 0 : USETW(req.wIndex, reg + offset);
1438 0 : USETW(req.wLength, MIN(len - offset, 64));
1439 :
1440 0 : error = usbd_do_request(sc->sc_udev, &req, buf + offset);
1441 0 : if (error != 0) {
1442 0 : printf("%s: could not multi write MAC register: %s\n",
1443 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
1444 0 : }
1445 : }
1446 0 : }
1447 :
1448 : void
1449 0 : rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1450 : {
1451 : uint32_t tmp;
1452 : int ntries;
1453 :
1454 0 : for (ntries = 0; ntries < 5; ntries++) {
1455 0 : if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1456 : break;
1457 : }
1458 0 : if (ntries == 5) {
1459 0 : printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
1460 0 : return;
1461 : }
1462 :
1463 0 : tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1464 0 : rum_write(sc, RT2573_PHY_CSR3, tmp);
1465 0 : }
1466 :
1467 : uint8_t
1468 0 : rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1469 : {
1470 : uint32_t val;
1471 : int ntries;
1472 :
1473 0 : for (ntries = 0; ntries < 5; ntries++) {
1474 0 : if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1475 : break;
1476 : }
1477 0 : if (ntries == 5) {
1478 0 : printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1479 0 : return 0;
1480 : }
1481 :
1482 0 : val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1483 0 : rum_write(sc, RT2573_PHY_CSR3, val);
1484 :
1485 0 : for (ntries = 0; ntries < 100; ntries++) {
1486 0 : val = rum_read(sc, RT2573_PHY_CSR3);
1487 0 : if (!(val & RT2573_BBP_BUSY))
1488 0 : return val & 0xff;
1489 0 : DELAY(1);
1490 : }
1491 :
1492 0 : printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1493 0 : return 0;
1494 0 : }
1495 :
1496 : void
1497 0 : rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1498 : {
1499 : uint32_t tmp;
1500 : int ntries;
1501 :
1502 0 : for (ntries = 0; ntries < 5; ntries++) {
1503 0 : if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1504 : break;
1505 : }
1506 0 : if (ntries == 5) {
1507 0 : printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
1508 0 : return;
1509 : }
1510 :
1511 0 : tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1512 0 : (reg & 3);
1513 0 : rum_write(sc, RT2573_PHY_CSR4, tmp);
1514 :
1515 : /* remember last written value in sc */
1516 0 : sc->rf_regs[reg] = val;
1517 :
1518 : DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1519 0 : }
1520 :
1521 : void
1522 0 : rum_select_antenna(struct rum_softc *sc)
1523 : {
1524 : uint8_t bbp4, bbp77;
1525 : uint32_t tmp;
1526 :
1527 0 : bbp4 = rum_bbp_read(sc, 4);
1528 0 : bbp77 = rum_bbp_read(sc, 77);
1529 :
1530 : /* TBD */
1531 :
1532 : /* make sure Rx is disabled before switching antenna */
1533 0 : tmp = rum_read(sc, RT2573_TXRX_CSR0);
1534 0 : rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1535 :
1536 0 : rum_bbp_write(sc, 4, bbp4);
1537 0 : rum_bbp_write(sc, 77, bbp77);
1538 :
1539 0 : rum_write(sc, RT2573_TXRX_CSR0, tmp);
1540 0 : }
1541 :
1542 : /*
1543 : * Enable multi-rate retries for frames sent at OFDM rates.
1544 : * In 802.11b/g mode, allow fallback to CCK rates.
1545 : */
1546 : void
1547 0 : rum_enable_mrr(struct rum_softc *sc)
1548 : {
1549 0 : struct ieee80211com *ic = &sc->sc_ic;
1550 : uint32_t tmp;
1551 :
1552 0 : tmp = rum_read(sc, RT2573_TXRX_CSR4);
1553 :
1554 0 : tmp &= ~RT2573_MRR_CCK_FALLBACK;
1555 0 : if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
1556 0 : tmp |= RT2573_MRR_CCK_FALLBACK;
1557 0 : tmp |= RT2573_MRR_ENABLED;
1558 :
1559 0 : rum_write(sc, RT2573_TXRX_CSR4, tmp);
1560 0 : }
1561 :
1562 : void
1563 0 : rum_set_txpreamble(struct rum_softc *sc)
1564 : {
1565 : uint32_t tmp;
1566 :
1567 0 : tmp = rum_read(sc, RT2573_TXRX_CSR4);
1568 :
1569 0 : tmp &= ~RT2573_SHORT_PREAMBLE;
1570 0 : if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1571 0 : tmp |= RT2573_SHORT_PREAMBLE;
1572 :
1573 0 : rum_write(sc, RT2573_TXRX_CSR4, tmp);
1574 0 : }
1575 :
1576 : void
1577 0 : rum_set_basicrates(struct rum_softc *sc)
1578 : {
1579 0 : struct ieee80211com *ic = &sc->sc_ic;
1580 :
1581 : /* update basic rate set */
1582 0 : if (ic->ic_curmode == IEEE80211_MODE_11B) {
1583 : /* 11b basic rates: 1, 2Mbps */
1584 0 : rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1585 0 : } else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1586 : /* 11a basic rates: 6, 12, 24Mbps */
1587 0 : rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1588 0 : } else {
1589 : /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1590 0 : rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1591 : }
1592 0 : }
1593 :
1594 : /*
1595 : * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1596 : * driver.
1597 : */
1598 : void
1599 0 : rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1600 : {
1601 : uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1602 : uint32_t tmp;
1603 :
1604 : /* update all BBP registers that depend on the band */
1605 : bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1606 : bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1607 0 : if (IEEE80211_IS_CHAN_5GHZ(c)) {
1608 : bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1609 : bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1610 0 : }
1611 0 : if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1612 0 : (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1613 0 : bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1614 0 : }
1615 :
1616 0 : sc->bbp17 = bbp17;
1617 0 : rum_bbp_write(sc, 17, bbp17);
1618 0 : rum_bbp_write(sc, 96, bbp96);
1619 0 : rum_bbp_write(sc, 104, bbp104);
1620 :
1621 0 : if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1622 0 : (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1623 0 : rum_bbp_write(sc, 75, 0x80);
1624 0 : rum_bbp_write(sc, 86, 0x80);
1625 0 : rum_bbp_write(sc, 88, 0x80);
1626 0 : }
1627 :
1628 0 : rum_bbp_write(sc, 35, bbp35);
1629 0 : rum_bbp_write(sc, 97, bbp97);
1630 0 : rum_bbp_write(sc, 98, bbp98);
1631 :
1632 0 : tmp = rum_read(sc, RT2573_PHY_CSR0);
1633 0 : tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1634 0 : if (IEEE80211_IS_CHAN_2GHZ(c))
1635 0 : tmp |= RT2573_PA_PE_2GHZ;
1636 : else
1637 0 : tmp |= RT2573_PA_PE_5GHZ;
1638 0 : rum_write(sc, RT2573_PHY_CSR0, tmp);
1639 :
1640 : /* 802.11a uses a 16 microseconds short interframe space */
1641 0 : sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1642 0 : }
1643 :
1644 : void
1645 0 : rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1646 : {
1647 0 : struct ieee80211com *ic = &sc->sc_ic;
1648 : const struct rfprog *rfprog;
1649 : uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1650 : int8_t power;
1651 : u_int i, chan;
1652 :
1653 0 : chan = ieee80211_chan2ieee(ic, c);
1654 0 : if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1655 0 : return;
1656 :
1657 : /* select the appropriate RF settings based on what EEPROM says */
1658 0 : rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1659 0 : sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1660 :
1661 : /* find the settings for this channel (we know it exists) */
1662 0 : for (i = 0; rfprog[i].chan != chan; i++);
1663 :
1664 0 : power = sc->txpow[i];
1665 0 : if (power < 0) {
1666 0 : bbp94 += power;
1667 : power = 0;
1668 0 : } else if (power > 31) {
1669 0 : bbp94 += power - 31;
1670 : power = 31;
1671 0 : }
1672 :
1673 : /*
1674 : * If we are switching from the 2GHz band to the 5GHz band or
1675 : * vice-versa, BBP registers need to be reprogrammed.
1676 : */
1677 0 : if (c->ic_flags != sc->sc_curchan->ic_flags) {
1678 0 : rum_select_band(sc, c);
1679 0 : rum_select_antenna(sc);
1680 0 : }
1681 0 : sc->sc_curchan = c;
1682 :
1683 0 : rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1684 0 : rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1685 0 : rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1686 0 : rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1687 :
1688 0 : rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1689 0 : rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1690 0 : rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1691 0 : rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1692 :
1693 0 : rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1694 0 : rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1695 0 : rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1696 0 : rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1697 :
1698 0 : DELAY(10);
1699 :
1700 : /* enable smart mode for MIMO-capable RFs */
1701 0 : bbp3 = rum_bbp_read(sc, 3);
1702 :
1703 0 : bbp3 &= ~RT2573_SMART_MODE;
1704 0 : if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1705 0 : bbp3 |= RT2573_SMART_MODE;
1706 :
1707 0 : rum_bbp_write(sc, 3, bbp3);
1708 :
1709 0 : if (bbp94 != RT2573_BBPR94_DEFAULT)
1710 0 : rum_bbp_write(sc, 94, bbp94);
1711 0 : }
1712 :
1713 : /*
1714 : * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1715 : * and HostAP operating modes.
1716 : */
1717 : void
1718 0 : rum_enable_tsf_sync(struct rum_softc *sc)
1719 : {
1720 0 : struct ieee80211com *ic = &sc->sc_ic;
1721 : uint32_t tmp;
1722 :
1723 : #ifndef IEEE80211_STA_ONLY
1724 0 : if (ic->ic_opmode != IEEE80211_M_STA) {
1725 : /*
1726 : * Change default 16ms TBTT adjustment to 8ms.
1727 : * Must be done before enabling beacon generation.
1728 : */
1729 0 : rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1730 0 : }
1731 : #endif
1732 :
1733 0 : tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1734 :
1735 : /* set beacon interval (in 1/16ms unit) */
1736 0 : tmp |= ic->ic_bss->ni_intval * 16;
1737 :
1738 0 : tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1739 0 : if (ic->ic_opmode == IEEE80211_M_STA)
1740 0 : tmp |= RT2573_TSF_MODE(1);
1741 : #ifndef IEEE80211_STA_ONLY
1742 : else
1743 0 : tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1744 : #endif
1745 0 : rum_write(sc, RT2573_TXRX_CSR9, tmp);
1746 0 : }
1747 :
1748 : void
1749 0 : rum_update_slot(struct rum_softc *sc)
1750 : {
1751 0 : struct ieee80211com *ic = &sc->sc_ic;
1752 : uint8_t slottime;
1753 : uint32_t tmp;
1754 :
1755 0 : slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ?
1756 : IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT;
1757 :
1758 0 : tmp = rum_read(sc, RT2573_MAC_CSR9);
1759 0 : tmp = (tmp & ~0xff) | slottime;
1760 0 : rum_write(sc, RT2573_MAC_CSR9, tmp);
1761 :
1762 : DPRINTF(("setting slot time to %uus\n", slottime));
1763 0 : }
1764 :
1765 : void
1766 0 : rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1767 : {
1768 : uint32_t tmp;
1769 :
1770 0 : tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1771 0 : rum_write(sc, RT2573_MAC_CSR4, tmp);
1772 :
1773 0 : tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1774 0 : rum_write(sc, RT2573_MAC_CSR5, tmp);
1775 0 : }
1776 :
1777 : void
1778 0 : rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1779 : {
1780 : uint32_t tmp;
1781 :
1782 0 : tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1783 0 : rum_write(sc, RT2573_MAC_CSR2, tmp);
1784 :
1785 0 : tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1786 0 : rum_write(sc, RT2573_MAC_CSR3, tmp);
1787 0 : }
1788 :
1789 : void
1790 0 : rum_update_promisc(struct rum_softc *sc)
1791 : {
1792 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
1793 : uint32_t tmp;
1794 :
1795 0 : tmp = rum_read(sc, RT2573_TXRX_CSR0);
1796 :
1797 0 : tmp &= ~RT2573_DROP_NOT_TO_ME;
1798 0 : if (!(ifp->if_flags & IFF_PROMISC))
1799 0 : tmp |= RT2573_DROP_NOT_TO_ME;
1800 :
1801 0 : rum_write(sc, RT2573_TXRX_CSR0, tmp);
1802 :
1803 : DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1804 : "entering" : "leaving"));
1805 0 : }
1806 :
1807 : const char *
1808 0 : rum_get_rf(int rev)
1809 : {
1810 0 : switch (rev) {
1811 0 : case RT2573_RF_2527: return "RT2527 (MIMO XR)";
1812 0 : case RT2573_RF_2528: return "RT2528";
1813 0 : case RT2573_RF_5225: return "RT5225 (MIMO XR)";
1814 0 : case RT2573_RF_5226: return "RT5226";
1815 0 : default: return "unknown";
1816 : }
1817 0 : }
1818 :
1819 : void
1820 0 : rum_read_eeprom(struct rum_softc *sc)
1821 : {
1822 0 : struct ieee80211com *ic = &sc->sc_ic;
1823 0 : uint16_t val;
1824 : #ifdef RUM_DEBUG
1825 : int i;
1826 : #endif
1827 :
1828 : /* read MAC/BBP type */
1829 0 : rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1830 0 : sc->macbbp_rev = letoh16(val);
1831 :
1832 : /* read MAC address */
1833 0 : rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1834 :
1835 0 : rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1836 0 : val = letoh16(val);
1837 0 : sc->rf_rev = (val >> 11) & 0x1f;
1838 0 : sc->hw_radio = (val >> 10) & 0x1;
1839 0 : sc->rx_ant = (val >> 4) & 0x3;
1840 0 : sc->tx_ant = (val >> 2) & 0x3;
1841 0 : sc->nb_ant = val & 0x3;
1842 :
1843 : DPRINTF(("RF revision=%d\n", sc->rf_rev));
1844 :
1845 0 : rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1846 0 : val = letoh16(val);
1847 0 : sc->ext_5ghz_lna = (val >> 6) & 0x1;
1848 0 : sc->ext_2ghz_lna = (val >> 4) & 0x1;
1849 :
1850 : DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1851 : sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1852 :
1853 0 : rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1854 0 : val = letoh16(val);
1855 0 : if ((val & 0xff) != 0xff)
1856 0 : sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1857 :
1858 0 : rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1859 0 : val = letoh16(val);
1860 0 : if ((val & 0xff) != 0xff)
1861 0 : sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1862 :
1863 : DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1864 : sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1865 :
1866 0 : rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1867 0 : val = letoh16(val);
1868 0 : if ((val & 0xff) != 0xff)
1869 0 : sc->rffreq = val & 0xff;
1870 :
1871 : DPRINTF(("RF freq=%d\n", sc->rffreq));
1872 :
1873 : /* read Tx power for all a/b/g channels */
1874 0 : rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1875 : /* XXX default Tx power for 802.11a channels */
1876 0 : memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1877 : #ifdef RUM_DEBUG
1878 : for (i = 0; i < 14; i++)
1879 : DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
1880 : #endif
1881 :
1882 : /* read default values for BBP registers */
1883 0 : rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1884 : #ifdef RUM_DEBUG
1885 : for (i = 0; i < 14; i++) {
1886 : if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1887 : continue;
1888 : DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1889 : sc->bbp_prom[i].val));
1890 : }
1891 : #endif
1892 0 : }
1893 :
1894 : int
1895 0 : rum_bbp_init(struct rum_softc *sc)
1896 : {
1897 : int i, ntries;
1898 :
1899 : /* wait for BBP to be ready */
1900 0 : for (ntries = 0; ntries < 100; ntries++) {
1901 0 : const uint8_t val = rum_bbp_read(sc, 0);
1902 0 : if (val != 0 && val != 0xff)
1903 0 : break;
1904 0 : DELAY(1000);
1905 0 : }
1906 0 : if (ntries == 100) {
1907 0 : printf("%s: timeout waiting for BBP\n",
1908 0 : sc->sc_dev.dv_xname);
1909 0 : return EIO;
1910 : }
1911 :
1912 : /* initialize BBP registers to default values */
1913 0 : for (i = 0; i < nitems(rum_def_bbp); i++)
1914 0 : rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1915 :
1916 : /* write vendor-specific BBP values (from EEPROM) */
1917 0 : for (i = 0; i < 16; i++) {
1918 0 : if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1919 : continue;
1920 0 : rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1921 0 : }
1922 :
1923 0 : return 0;
1924 0 : }
1925 :
1926 : int
1927 0 : rum_init(struct ifnet *ifp)
1928 : {
1929 0 : struct rum_softc *sc = ifp->if_softc;
1930 0 : struct ieee80211com *ic = &sc->sc_ic;
1931 : uint32_t tmp;
1932 : usbd_status error;
1933 : int i, ntries;
1934 :
1935 0 : rum_stop(ifp, 0);
1936 :
1937 : /* initialize MAC registers to default values */
1938 0 : for (i = 0; i < nitems(rum_def_mac); i++)
1939 0 : rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1940 :
1941 : /* set host ready */
1942 0 : rum_write(sc, RT2573_MAC_CSR1, 3);
1943 0 : rum_write(sc, RT2573_MAC_CSR1, 0);
1944 :
1945 : /* wait for BBP/RF to wakeup */
1946 0 : for (ntries = 0; ntries < 1000; ntries++) {
1947 0 : if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1948 : break;
1949 0 : rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1950 0 : DELAY(1000);
1951 : }
1952 0 : if (ntries == 1000) {
1953 0 : printf("%s: timeout waiting for BBP/RF to wakeup\n",
1954 0 : sc->sc_dev.dv_xname);
1955 : error = ENODEV;
1956 0 : goto fail;
1957 : }
1958 :
1959 0 : if ((error = rum_bbp_init(sc)) != 0)
1960 : goto fail;
1961 :
1962 : /* select default channel */
1963 0 : sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1964 0 : rum_select_band(sc, sc->sc_curchan);
1965 0 : rum_select_antenna(sc);
1966 0 : rum_set_chan(sc, sc->sc_curchan);
1967 :
1968 : /* clear STA registers */
1969 0 : rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1970 :
1971 0 : IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1972 0 : rum_set_macaddr(sc, ic->ic_myaddr);
1973 :
1974 : /* initialize ASIC */
1975 0 : rum_write(sc, RT2573_MAC_CSR1, 4);
1976 :
1977 : /*
1978 : * Allocate xfer for AMRR statistics requests.
1979 : */
1980 0 : sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
1981 0 : if (sc->amrr_xfer == NULL) {
1982 0 : printf("%s: could not allocate AMRR xfer\n",
1983 0 : sc->sc_dev.dv_xname);
1984 0 : goto fail;
1985 : }
1986 :
1987 : /*
1988 : * Open Tx and Rx USB bulk pipes.
1989 : */
1990 0 : error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1991 0 : &sc->sc_tx_pipeh);
1992 0 : if (error != 0) {
1993 0 : printf("%s: could not open Tx pipe: %s\n",
1994 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
1995 0 : goto fail;
1996 : }
1997 0 : error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1998 0 : &sc->sc_rx_pipeh);
1999 0 : if (error != 0) {
2000 0 : printf("%s: could not open Rx pipe: %s\n",
2001 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
2002 0 : goto fail;
2003 : }
2004 :
2005 : /*
2006 : * Allocate Tx and Rx xfer queues.
2007 : */
2008 0 : error = rum_alloc_tx_list(sc);
2009 0 : if (error != 0) {
2010 0 : printf("%s: could not allocate Tx list\n",
2011 0 : sc->sc_dev.dv_xname);
2012 0 : goto fail;
2013 : }
2014 0 : error = rum_alloc_rx_list(sc);
2015 0 : if (error != 0) {
2016 0 : printf("%s: could not allocate Rx list\n",
2017 0 : sc->sc_dev.dv_xname);
2018 0 : goto fail;
2019 : }
2020 :
2021 : /*
2022 : * Start up the receive pipe.
2023 : */
2024 0 : for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2025 0 : struct rum_rx_data *data = &sc->rx_data[i];
2026 :
2027 0 : usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2028 : MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2029 0 : error = usbd_transfer(data->xfer);
2030 0 : if (error != 0 && error != USBD_IN_PROGRESS) {
2031 0 : printf("%s: could not queue Rx transfer\n",
2032 0 : sc->sc_dev.dv_xname);
2033 0 : goto fail;
2034 : }
2035 0 : }
2036 :
2037 : /* update Rx filter */
2038 0 : tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2039 :
2040 0 : tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2041 0 : if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2042 0 : tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2043 : RT2573_DROP_ACKCTS;
2044 : #ifndef IEEE80211_STA_ONLY
2045 0 : if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2046 : #endif
2047 0 : tmp |= RT2573_DROP_TODS;
2048 0 : if (!(ifp->if_flags & IFF_PROMISC))
2049 0 : tmp |= RT2573_DROP_NOT_TO_ME;
2050 : }
2051 0 : rum_write(sc, RT2573_TXRX_CSR0, tmp);
2052 :
2053 0 : ifq_clr_oactive(&ifp->if_snd);
2054 0 : ifp->if_flags |= IFF_RUNNING;
2055 :
2056 0 : if (ic->ic_opmode == IEEE80211_M_MONITOR)
2057 0 : ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2058 : else
2059 0 : ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2060 :
2061 0 : return 0;
2062 :
2063 0 : fail: rum_stop(ifp, 1);
2064 0 : return error;
2065 0 : }
2066 :
2067 : void
2068 0 : rum_stop(struct ifnet *ifp, int disable)
2069 : {
2070 0 : struct rum_softc *sc = ifp->if_softc;
2071 0 : struct ieee80211com *ic = &sc->sc_ic;
2072 : uint32_t tmp;
2073 :
2074 0 : sc->sc_tx_timer = 0;
2075 0 : ifp->if_timer = 0;
2076 0 : ifp->if_flags &= ~IFF_RUNNING;
2077 0 : ifq_clr_oactive(&ifp->if_snd);
2078 :
2079 0 : ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2080 :
2081 : /* disable Rx */
2082 0 : tmp = rum_read(sc, RT2573_TXRX_CSR0);
2083 0 : rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2084 :
2085 : /* reset ASIC */
2086 0 : rum_write(sc, RT2573_MAC_CSR1, 3);
2087 0 : rum_write(sc, RT2573_MAC_CSR1, 0);
2088 :
2089 0 : if (sc->amrr_xfer != NULL) {
2090 0 : usbd_free_xfer(sc->amrr_xfer);
2091 0 : sc->amrr_xfer = NULL;
2092 0 : }
2093 0 : if (sc->sc_rx_pipeh != NULL) {
2094 0 : usbd_abort_pipe(sc->sc_rx_pipeh);
2095 0 : usbd_close_pipe(sc->sc_rx_pipeh);
2096 0 : sc->sc_rx_pipeh = NULL;
2097 0 : }
2098 0 : if (sc->sc_tx_pipeh != NULL) {
2099 0 : usbd_abort_pipe(sc->sc_tx_pipeh);
2100 0 : usbd_close_pipe(sc->sc_tx_pipeh);
2101 0 : sc->sc_tx_pipeh = NULL;
2102 0 : }
2103 :
2104 0 : rum_free_rx_list(sc);
2105 0 : rum_free_tx_list(sc);
2106 0 : }
2107 :
2108 : int
2109 0 : rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2110 : {
2111 0 : usb_device_request_t req;
2112 : uint16_t reg = RT2573_MCU_CODE_BASE;
2113 : usbd_status error;
2114 :
2115 : /* copy firmware image into NIC */
2116 0 : for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2117 0 : rum_write(sc, reg, UGETDW(ucode));
2118 :
2119 0 : req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2120 0 : req.bRequest = RT2573_MCU_CNTL;
2121 0 : USETW(req.wValue, RT2573_MCU_RUN);
2122 0 : USETW(req.wIndex, 0);
2123 0 : USETW(req.wLength, 0);
2124 :
2125 0 : error = usbd_do_request(sc->sc_udev, &req, NULL);
2126 0 : if (error != 0) {
2127 0 : printf("%s: could not run firmware: %s\n",
2128 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
2129 0 : }
2130 0 : return error;
2131 0 : }
2132 :
2133 : #ifndef IEEE80211_STA_ONLY
2134 : int
2135 0 : rum_prepare_beacon(struct rum_softc *sc)
2136 : {
2137 0 : struct ieee80211com *ic = &sc->sc_ic;
2138 0 : struct rum_tx_desc desc;
2139 : struct mbuf *m0;
2140 : int rate;
2141 :
2142 0 : m0 = ieee80211_beacon_alloc(ic, ic->ic_bss);
2143 0 : if (m0 == NULL) {
2144 0 : printf("%s: could not allocate beacon frame\n",
2145 0 : sc->sc_dev.dv_xname);
2146 0 : return ENOBUFS;
2147 : }
2148 :
2149 : /* send beacons at the lowest available rate */
2150 0 : rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2151 :
2152 0 : rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2153 0 : m0->m_pkthdr.len, rate);
2154 :
2155 : /* copy the first 24 bytes of Tx descriptor into NIC memory */
2156 0 : rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2157 :
2158 : /* copy beacon header and payload into NIC memory */
2159 0 : rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2160 0 : m0->m_pkthdr.len);
2161 :
2162 0 : m_freem(m0);
2163 :
2164 0 : return 0;
2165 0 : }
2166 : #endif
2167 :
2168 : void
2169 0 : rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2170 : {
2171 : /* start with lowest Tx rate */
2172 0 : ni->ni_txrate = 0;
2173 0 : }
2174 :
2175 : void
2176 0 : rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2177 : {
2178 : int i;
2179 :
2180 : /* clear statistic registers (STA_CSR0 to STA_CSR5) */
2181 0 : rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2182 :
2183 0 : ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2184 :
2185 : /* set rate to some reasonable initial value */
2186 0 : for (i = ni->ni_rates.rs_nrates - 1;
2187 0 : i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2188 0 : i--);
2189 0 : ni->ni_txrate = i;
2190 :
2191 0 : if (!usbd_is_dying(sc->sc_udev))
2192 0 : timeout_add_sec(&sc->amrr_to, 1);
2193 0 : }
2194 :
2195 : void
2196 0 : rum_amrr_timeout(void *arg)
2197 : {
2198 0 : struct rum_softc *sc = arg;
2199 0 : usb_device_request_t req;
2200 :
2201 0 : if (usbd_is_dying(sc->sc_udev))
2202 0 : return;
2203 :
2204 : /*
2205 : * Asynchronously read statistic registers (cleared by read).
2206 : */
2207 0 : req.bmRequestType = UT_READ_VENDOR_DEVICE;
2208 0 : req.bRequest = RT2573_READ_MULTI_MAC;
2209 0 : USETW(req.wValue, 0);
2210 0 : USETW(req.wIndex, RT2573_STA_CSR0);
2211 0 : USETW(req.wLength, sizeof sc->sta);
2212 :
2213 0 : usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2214 0 : USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2215 : rum_amrr_update);
2216 0 : (void)usbd_transfer(sc->amrr_xfer);
2217 0 : }
2218 :
2219 : void
2220 0 : rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2221 : usbd_status status)
2222 : {
2223 0 : struct rum_softc *sc = (struct rum_softc *)priv;
2224 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
2225 :
2226 0 : if (status != USBD_NORMAL_COMPLETION) {
2227 0 : printf("%s: could not retrieve Tx statistics - cancelling "
2228 0 : "automatic rate control\n", sc->sc_dev.dv_xname);
2229 0 : return;
2230 : }
2231 :
2232 : /* count TX retry-fail as Tx errors */
2233 0 : ifp->if_oerrors += letoh32(sc->sta[5]) >> 16;
2234 :
2235 0 : sc->amn.amn_retrycnt =
2236 0 : (letoh32(sc->sta[4]) >> 16) + /* TX one-retry ok count */
2237 0 : (letoh32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
2238 0 : (letoh32(sc->sta[5]) >> 16); /* TX retry-fail count */
2239 :
2240 0 : sc->amn.amn_txcnt =
2241 0 : sc->amn.amn_retrycnt +
2242 0 : (letoh32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
2243 :
2244 0 : ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2245 :
2246 0 : if (!usbd_is_dying(sc->sc_udev))
2247 0 : timeout_add_sec(&sc->amrr_to, 1);
2248 0 : }
|