Line data Source code
1 : /* $OpenBSD: if_uath.c,v 1.82 2017/10/26 15:00:28 mpi Exp $ */
2 :
3 : /*-
4 : * Copyright (c) 2006
5 : * Damien Bergamini <damien.bergamini@free.fr>
6 : *
7 : * Permission to use, copy, modify, and distribute this software for any
8 : * purpose with or without fee is hereby granted, provided that the above
9 : * copyright notice and this permission notice appear in all copies.
10 : *
11 : * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 : * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 : * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 : * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 : * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 : * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 : * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 : */
19 :
20 : /*-
21 : * Driver for Atheros AR5005UG/AR5005UX chipsets.
22 : *
23 : * IMPORTANT NOTICE:
24 : * This driver was written without any documentation or support from Atheros
25 : * Communications. It is based on a black-box analysis of the Windows binary
26 : * driver. It handles both pre and post-firmware devices.
27 : */
28 :
29 : #include "bpfilter.h"
30 :
31 : #include <sys/param.h>
32 : #include <sys/sockio.h>
33 : #include <sys/mbuf.h>
34 : #include <sys/kernel.h>
35 : #include <sys/socket.h>
36 : #include <sys/systm.h>
37 : #include <sys/timeout.h>
38 : #include <sys/conf.h>
39 : #include <sys/device.h>
40 : #include <sys/endian.h>
41 :
42 : #include <machine/bus.h>
43 : #include <machine/intr.h>
44 :
45 : #if NBPFILTER > 0
46 : #include <net/bpf.h>
47 : #endif
48 : #include <net/if.h>
49 : #include <net/if_dl.h>
50 : #include <net/if_media.h>
51 :
52 : #include <netinet/in.h>
53 : #include <netinet/if_ether.h>
54 :
55 : #include <net80211/ieee80211_var.h>
56 : #include <net80211/ieee80211_radiotap.h>
57 :
58 : #include <dev/usb/usb.h>
59 : #include <dev/usb/usbdi.h>
60 : #include <dev/usb/usbdivar.h> /* needs_reattach() */
61 : #include <dev/usb/usbdi_util.h>
62 : #include <dev/usb/usbdevs.h>
63 :
64 : #include <dev/usb/if_uathreg.h>
65 : #include <dev/usb/if_uathvar.h>
66 :
67 : #ifdef UATH_DEBUG
68 : #define DPRINTF(x) do { if (uath_debug) printf x; } while (0)
69 : #define DPRINTFN(n, x) do { if (uath_debug >= (n)) printf x; } while (0)
70 : int uath_debug = 1;
71 : #else
72 : #define DPRINTF(x)
73 : #define DPRINTFN(n, x)
74 : #endif
75 :
76 : /*-
77 : * Various supported device vendors/products.
78 : * UB51: AR5005UG 802.11b/g, UB52: AR5005UX 802.11a/b/g
79 : */
80 : #define UATH_DEV(v, p, f) \
81 : { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, (f) }, \
82 : { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p##_NF }, \
83 : (f) | UATH_FLAG_PRE_FIRMWARE }
84 : #define UATH_DEV_UG(v, p) UATH_DEV(v, p, 0)
85 : #define UATH_DEV_UX(v, p) UATH_DEV(v, p, UATH_FLAG_ABG)
86 : static const struct uath_type {
87 : struct usb_devno dev;
88 : unsigned int flags;
89 : #define UATH_FLAG_PRE_FIRMWARE (1 << 0)
90 : #define UATH_FLAG_ABG (1 << 1)
91 : } uath_devs[] = {
92 : UATH_DEV_UG(ACCTON, SMCWUSBTG2),
93 : UATH_DEV_UG(ATHEROS, AR5523),
94 : UATH_DEV_UG(ATHEROS2, AR5523_1),
95 : UATH_DEV_UG(ATHEROS2, AR5523_2),
96 : UATH_DEV_UX(ATHEROS2, AR5523_3),
97 : UATH_DEV_UG(CONCEPTRONIC, AR5523_1),
98 : UATH_DEV_UX(CONCEPTRONIC, AR5523_2),
99 : UATH_DEV_UX(DLINK, DWLAG122),
100 : UATH_DEV_UX(DLINK, DWLAG132),
101 : UATH_DEV_UG(DLINK, DWLG132),
102 : UATH_DEV_UG(DLINK2, WUA2340),
103 : UATH_DEV_UG(GIGASET, AR5523),
104 : UATH_DEV_UG(GIGASET, SMCWUSBTG),
105 : UATH_DEV_UG(GLOBALSUN, AR5523_1),
106 : UATH_DEV_UX(GLOBALSUN, AR5523_2),
107 : UATH_DEV_UG(IODATA, USBWNG54US),
108 : UATH_DEV_UG(MELCO, WLIU2KAMG54),
109 : UATH_DEV_UX(NETGEAR, WG111U),
110 : UATH_DEV_UG(NETGEAR3, WG111T),
111 : UATH_DEV_UG(NETGEAR3, WPN111),
112 : UATH_DEV_UG(PHILIPS, SNU6500),
113 : UATH_DEV_UX(UMEDIA, AR5523_2),
114 : UATH_DEV_UG(UMEDIA, TEW444UBEU),
115 : UATH_DEV_UG(WISTRONNEWEB, AR5523_1),
116 : UATH_DEV_UX(WISTRONNEWEB, AR5523_2),
117 : UATH_DEV_UG(ZCOM, AR5523),
118 :
119 : /* Devices that share one of the IDs above. */
120 : { { USB_VENDOR_NETGEAR3, USB_PRODUCT_NETGEAR3_WG111T_1 }, 0 } \
121 : };
122 : #define uath_lookup(v, p) \
123 : ((const struct uath_type *)usb_lookup(uath_devs, v, p))
124 :
125 : void uath_attachhook(struct device *);
126 : int uath_open_pipes(struct uath_softc *);
127 : void uath_close_pipes(struct uath_softc *);
128 : int uath_alloc_tx_data_list(struct uath_softc *);
129 : void uath_free_tx_data_list(struct uath_softc *);
130 : int uath_alloc_rx_data_list(struct uath_softc *);
131 : void uath_free_rx_data_list(struct uath_softc *);
132 : int uath_alloc_tx_cmd_list(struct uath_softc *);
133 : void uath_free_tx_cmd_list(struct uath_softc *);
134 : int uath_alloc_rx_cmd_list(struct uath_softc *);
135 : void uath_free_rx_cmd_list(struct uath_softc *);
136 : int uath_media_change(struct ifnet *);
137 : void uath_stat(void *);
138 : void uath_next_scan(void *);
139 : void uath_task(void *);
140 : int uath_newstate(struct ieee80211com *, enum ieee80211_state, int);
141 : #ifdef UATH_DEBUG
142 : void uath_dump_cmd(const uint8_t *, int, char);
143 : #endif
144 : int uath_cmd(struct uath_softc *, uint32_t, const void *, int, void *,
145 : int);
146 : int uath_cmd_write(struct uath_softc *, uint32_t, const void *, int, int);
147 : int uath_cmd_read(struct uath_softc *, uint32_t, const void *, int, void *,
148 : int);
149 : int uath_write_reg(struct uath_softc *, uint32_t, uint32_t);
150 : int uath_write_multi(struct uath_softc *, uint32_t, const void *, int);
151 : int uath_read_reg(struct uath_softc *, uint32_t, uint32_t *);
152 : int uath_read_eeprom(struct uath_softc *, uint32_t, void *);
153 : void uath_cmd_rxeof(struct usbd_xfer *, void *, usbd_status);
154 : void uath_data_rxeof(struct usbd_xfer *, void *, usbd_status);
155 : void uath_data_txeof(struct usbd_xfer *, void *, usbd_status);
156 : int uath_tx_null(struct uath_softc *);
157 : int uath_tx_data(struct uath_softc *, struct mbuf *,
158 : struct ieee80211_node *);
159 : void uath_start(struct ifnet *);
160 : void uath_watchdog(struct ifnet *);
161 : int uath_ioctl(struct ifnet *, u_long, caddr_t);
162 : int uath_query_eeprom(struct uath_softc *);
163 : int uath_reset(struct uath_softc *);
164 : int uath_reset_tx_queues(struct uath_softc *);
165 : int uath_wme_init(struct uath_softc *);
166 : int uath_set_chan(struct uath_softc *, struct ieee80211_channel *);
167 : int uath_set_key(struct uath_softc *, const struct ieee80211_key *, int);
168 : int uath_set_keys(struct uath_softc *);
169 : int uath_set_rates(struct uath_softc *, const struct ieee80211_rateset *);
170 : int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t);
171 : int uath_set_led(struct uath_softc *, int, int);
172 : int uath_switch_channel(struct uath_softc *, struct ieee80211_channel *);
173 : int uath_init(struct ifnet *);
174 : void uath_stop(struct ifnet *, int);
175 : int uath_loadfirmware(struct uath_softc *, const u_char *, int);
176 :
177 : int uath_match(struct device *, void *, void *);
178 : void uath_attach(struct device *, struct device *, void *);
179 : int uath_detach(struct device *, int);
180 :
181 : struct cfdriver uath_cd = {
182 : NULL, "uath", DV_IFNET
183 : };
184 :
185 : const struct cfattach uath_ca = {
186 : sizeof(struct uath_softc), uath_match, uath_attach, uath_detach
187 : };
188 :
189 : int
190 0 : uath_match(struct device *parent, void *match, void *aux)
191 : {
192 0 : struct usb_attach_arg *uaa = aux;
193 :
194 0 : if (uaa->iface == NULL || uaa->configno != UATH_CONFIG_NO)
195 0 : return UMATCH_NONE;
196 :
197 0 : return (uath_lookup(uaa->vendor, uaa->product) != NULL) ?
198 : UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
199 0 : }
200 :
201 : void
202 0 : uath_attachhook(struct device *self)
203 : {
204 0 : struct uath_softc *sc = (struct uath_softc *)self;
205 0 : u_char *fw;
206 0 : size_t size;
207 : int error;
208 :
209 0 : if ((error = loadfirmware("uath-ar5523", &fw, &size)) != 0) {
210 0 : printf("%s: error %d, could not read firmware %s\n",
211 0 : sc->sc_dev.dv_xname, error, "uath-ar5523");
212 0 : return;
213 : }
214 :
215 0 : error = uath_loadfirmware(sc, fw, size);
216 0 : free(fw, M_DEVBUF, size);
217 :
218 0 : if (error == 0) {
219 : /*
220 : * Hack alert: the device doesn't always gracefully detach
221 : * from the bus after a firmware upload. We need to force
222 : * a port reset and a re-exploration on the parent hub.
223 : */
224 0 : usbd_reset_port(sc->sc_uhub, sc->sc_port);
225 0 : usb_needs_reattach(sc->sc_udev);
226 0 : } else {
227 0 : printf("%s: could not load firmware (error=%s)\n",
228 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
229 : }
230 0 : }
231 :
232 : void
233 0 : uath_attach(struct device *parent, struct device *self, void *aux)
234 : {
235 0 : struct uath_softc *sc = (struct uath_softc *)self;
236 0 : struct usb_attach_arg *uaa = aux;
237 0 : struct ieee80211com *ic = &sc->sc_ic;
238 0 : struct ifnet *ifp = &ic->ic_if;
239 : usbd_status error;
240 : int i;
241 :
242 0 : sc->sc_udev = uaa->device;
243 0 : sc->sc_uhub = uaa->device->myhub;
244 0 : sc->sc_port = uaa->port;
245 :
246 0 : sc->sc_flags = uath_lookup(uaa->vendor, uaa->product)->flags;
247 :
248 : /* get the first interface handle */
249 0 : error = usbd_device2interface_handle(sc->sc_udev, UATH_IFACE_INDEX,
250 0 : &sc->sc_iface);
251 0 : if (error != 0) {
252 0 : printf("%s: could not get interface handle\n",
253 0 : sc->sc_dev.dv_xname);
254 0 : return;
255 : }
256 :
257 : /*
258 : * We must open the pipes early because they're used to upload the
259 : * firmware (pre-firmware devices) or to send firmware commands.
260 : */
261 0 : if (uath_open_pipes(sc) != 0) {
262 0 : printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
263 0 : return;
264 : }
265 :
266 0 : if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
267 0 : config_mountroot(self, uath_attachhook);
268 0 : return;
269 : }
270 :
271 : /*
272 : * Only post-firmware devices here.
273 : */
274 0 : usb_init_task(&sc->sc_task, uath_task, sc, USB_TASK_TYPE_GENERIC);
275 0 : timeout_set(&sc->scan_to, uath_next_scan, sc);
276 0 : timeout_set(&sc->stat_to, uath_stat, sc);
277 :
278 : /*
279 : * Allocate xfers for firmware commands.
280 : */
281 0 : if (uath_alloc_tx_cmd_list(sc) != 0) {
282 0 : printf("%s: could not allocate Tx command list\n",
283 0 : sc->sc_dev.dv_xname);
284 0 : goto fail;
285 : }
286 0 : if (uath_alloc_rx_cmd_list(sc) != 0) {
287 0 : printf("%s: could not allocate Rx command list\n",
288 0 : sc->sc_dev.dv_xname);
289 0 : goto fail;
290 : }
291 :
292 : /*
293 : * Queue Rx command xfers.
294 : */
295 0 : for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
296 0 : struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
297 :
298 0 : usbd_setup_xfer(cmd->xfer, sc->cmd_rx_pipe, cmd, cmd->buf,
299 : UATH_MAX_RXCMDSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
300 : USBD_NO_TIMEOUT, uath_cmd_rxeof);
301 0 : error = usbd_transfer(cmd->xfer);
302 0 : if (error != USBD_IN_PROGRESS && error != 0) {
303 0 : printf("%s: could not queue Rx command xfer\n",
304 0 : sc->sc_dev.dv_xname);
305 0 : goto fail;
306 : }
307 0 : }
308 :
309 : /*
310 : * We're now ready to send/receive firmware commands.
311 : */
312 0 : if (uath_reset(sc) != 0) {
313 0 : printf("%s: could not initialize adapter\n",
314 0 : sc->sc_dev.dv_xname);
315 0 : goto fail;
316 : }
317 0 : if (uath_query_eeprom(sc) != 0) {
318 0 : printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
319 0 : goto fail;
320 : }
321 :
322 0 : printf("%s: MAC/BBP AR5523, RF AR%c112, address %s\n",
323 0 : sc->sc_dev.dv_xname, (sc->sc_flags & UATH_FLAG_ABG) ? '5': '2',
324 0 : ether_sprintf(ic->ic_myaddr));
325 :
326 : /*
327 : * Allocate xfers for Tx/Rx data pipes.
328 : */
329 0 : if (uath_alloc_tx_data_list(sc) != 0) {
330 0 : printf("%s: could not allocate Tx data list\n",
331 : sc->sc_dev.dv_xname);
332 0 : goto fail;
333 : }
334 0 : if (uath_alloc_rx_data_list(sc) != 0) {
335 0 : printf("%s: could not allocate Rx data list\n",
336 : sc->sc_dev.dv_xname);
337 0 : goto fail;
338 : }
339 :
340 0 : ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
341 0 : ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
342 0 : ic->ic_state = IEEE80211_S_INIT;
343 :
344 : /* set device capabilities */
345 0 : ic->ic_caps =
346 : IEEE80211_C_MONITOR | /* monitor mode supported */
347 : IEEE80211_C_TXPMGT | /* tx power management */
348 : IEEE80211_C_SHPREAMBLE | /* short preamble supported */
349 : IEEE80211_C_SHSLOT | /* short slot time supported */
350 : IEEE80211_C_WEP; /* h/w WEP */
351 :
352 : /* set supported .11b and .11g rates */
353 0 : ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
354 0 : ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
355 :
356 : /* set supported .11b and .11g channels (1 through 14) */
357 0 : for (i = 1; i <= 14; i++) {
358 0 : ic->ic_channels[i].ic_freq =
359 0 : ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
360 0 : ic->ic_channels[i].ic_flags =
361 : IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
362 : IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
363 : }
364 :
365 0 : ifp->if_softc = sc;
366 0 : ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 0 : ifp->if_ioctl = uath_ioctl;
368 0 : ifp->if_start = uath_start;
369 0 : ifp->if_watchdog = uath_watchdog;
370 0 : memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
371 :
372 0 : if_attach(ifp);
373 0 : ieee80211_ifattach(ifp);
374 :
375 : /* override state transition machine */
376 0 : sc->sc_newstate = ic->ic_newstate;
377 0 : ic->ic_newstate = uath_newstate;
378 0 : ieee80211_media_init(ifp, uath_media_change, ieee80211_media_status);
379 :
380 : #if NBPFILTER > 0
381 0 : bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
382 : sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
383 :
384 0 : sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
385 0 : sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
386 0 : sc->sc_rxtap.wr_ihdr.it_present = htole32(UATH_RX_RADIOTAP_PRESENT);
387 :
388 0 : sc->sc_txtap_len = sizeof sc->sc_txtapu;
389 0 : sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
390 0 : sc->sc_txtap.wt_ihdr.it_present = htole32(UATH_TX_RADIOTAP_PRESENT);
391 : #endif
392 :
393 0 : return;
394 :
395 0 : fail: uath_close_pipes(sc);
396 0 : uath_free_tx_data_list(sc);
397 0 : uath_free_rx_cmd_list(sc);
398 0 : uath_free_tx_cmd_list(sc);
399 0 : usbd_deactivate(sc->sc_udev);
400 0 : }
401 :
402 : int
403 0 : uath_detach(struct device *self, int flags)
404 : {
405 0 : struct uath_softc *sc = (struct uath_softc *)self;
406 0 : struct ifnet *ifp = &sc->sc_ic.ic_if;
407 : int s;
408 :
409 0 : s = splnet();
410 :
411 0 : if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
412 0 : uath_close_pipes(sc);
413 0 : splx(s);
414 0 : return 0;
415 : }
416 :
417 : /* post-firmware device */
418 :
419 0 : usb_rem_task(sc->sc_udev, &sc->sc_task);
420 0 : if (timeout_initialized(&sc->scan_to))
421 0 : timeout_del(&sc->scan_to);
422 0 : if (timeout_initialized(&sc->stat_to))
423 0 : timeout_del(&sc->stat_to);
424 :
425 : /* close Tx/Rx pipes */
426 0 : uath_close_pipes(sc);
427 :
428 : /* free xfers */
429 0 : uath_free_tx_data_list(sc);
430 0 : uath_free_rx_data_list(sc);
431 0 : uath_free_tx_cmd_list(sc);
432 0 : uath_free_rx_cmd_list(sc);
433 :
434 0 : if (ifp->if_softc != NULL) {
435 0 : ieee80211_ifdetach(ifp); /* free all nodes */
436 0 : if_detach(ifp);
437 0 : }
438 :
439 0 : splx(s);
440 :
441 0 : return 0;
442 0 : }
443 :
444 : int
445 0 : uath_open_pipes(struct uath_softc *sc)
446 : {
447 : int error;
448 :
449 : /*
450 : * XXX pipes numbers are hardcoded because we don't have any way
451 : * to distinguish the data pipes from the firmware command pipes
452 : * (both are bulk pipes) using the endpoints descriptors.
453 : */
454 0 : error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
455 0 : &sc->cmd_tx_pipe);
456 0 : if (error != 0) {
457 0 : printf("%s: could not open Tx command pipe: %s\n",
458 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
459 0 : goto fail;
460 : }
461 :
462 0 : error = usbd_open_pipe(sc->sc_iface, 0x02, USBD_EXCLUSIVE_USE,
463 0 : &sc->data_tx_pipe);
464 0 : if (error != 0) {
465 0 : printf("%s: could not open Tx data pipe: %s\n",
466 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
467 0 : goto fail;
468 : }
469 :
470 0 : error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
471 0 : &sc->cmd_rx_pipe);
472 0 : if (error != 0) {
473 0 : printf("%s: could not open Rx command pipe: %s\n",
474 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
475 0 : goto fail;
476 : }
477 :
478 0 : error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
479 0 : &sc->data_rx_pipe);
480 0 : if (error != 0) {
481 0 : printf("%s: could not open Rx data pipe: %s\n",
482 0 : sc->sc_dev.dv_xname, usbd_errstr(error));
483 0 : goto fail;
484 : }
485 :
486 0 : return 0;
487 :
488 0 : fail: uath_close_pipes(sc);
489 0 : return error;
490 0 : }
491 :
492 : void
493 0 : uath_close_pipes(struct uath_softc *sc)
494 : {
495 0 : if (sc->data_tx_pipe != NULL) {
496 0 : usbd_close_pipe(sc->data_tx_pipe);
497 0 : sc->data_tx_pipe = NULL;
498 0 : }
499 :
500 0 : if (sc->data_rx_pipe != NULL) {
501 0 : usbd_close_pipe(sc->data_rx_pipe);
502 0 : sc->data_rx_pipe = NULL;
503 0 : }
504 :
505 0 : if (sc->cmd_tx_pipe != NULL) {
506 0 : usbd_close_pipe(sc->cmd_tx_pipe);
507 0 : sc->cmd_tx_pipe = NULL;
508 0 : }
509 :
510 0 : if (sc->cmd_rx_pipe != NULL) {
511 0 : usbd_close_pipe(sc->cmd_rx_pipe);
512 0 : sc->cmd_rx_pipe = NULL;
513 0 : }
514 0 : }
515 :
516 : int
517 0 : uath_alloc_tx_data_list(struct uath_softc *sc)
518 : {
519 : int i, error;
520 :
521 0 : for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) {
522 0 : struct uath_tx_data *data = &sc->tx_data[i];
523 :
524 0 : data->sc = sc; /* backpointer for callbacks */
525 :
526 0 : data->xfer = usbd_alloc_xfer(sc->sc_udev);
527 0 : if (data->xfer == NULL) {
528 0 : printf("%s: could not allocate xfer\n",
529 0 : sc->sc_dev.dv_xname);
530 : error = ENOMEM;
531 0 : goto fail;
532 : }
533 0 : data->buf = usbd_alloc_buffer(data->xfer, UATH_MAX_TXBUFSZ);
534 0 : if (data->buf == NULL) {
535 0 : printf("%s: could not allocate xfer buffer\n",
536 0 : sc->sc_dev.dv_xname);
537 : error = ENOMEM;
538 0 : goto fail;
539 : }
540 0 : }
541 0 : return 0;
542 :
543 0 : fail: uath_free_tx_data_list(sc);
544 0 : return error;
545 0 : }
546 :
547 : void
548 0 : uath_free_tx_data_list(struct uath_softc *sc)
549 : {
550 : int i;
551 :
552 0 : for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++)
553 0 : if (sc->tx_data[i].xfer != NULL) {
554 0 : usbd_free_xfer(sc->tx_data[i].xfer);
555 0 : sc->tx_data[i].xfer = NULL;
556 0 : }
557 0 : }
558 :
559 : int
560 0 : uath_alloc_rx_data_list(struct uath_softc *sc)
561 : {
562 : int i, error;
563 :
564 0 : for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
565 0 : struct uath_rx_data *data = &sc->rx_data[i];
566 :
567 0 : data->sc = sc; /* backpointer for callbacks */
568 :
569 0 : data->xfer = usbd_alloc_xfer(sc->sc_udev);
570 0 : if (data->xfer == NULL) {
571 0 : printf("%s: could not allocate xfer\n",
572 0 : sc->sc_dev.dv_xname);
573 : error = ENOMEM;
574 0 : goto fail;
575 : }
576 0 : if (usbd_alloc_buffer(data->xfer, sc->rxbufsz) == NULL) {
577 0 : printf("%s: could not allocate xfer buffer\n",
578 0 : sc->sc_dev.dv_xname);
579 : error = ENOMEM;
580 0 : goto fail;
581 : }
582 :
583 0 : MGETHDR(data->m, M_DONTWAIT, MT_DATA);
584 0 : if (data->m == NULL) {
585 0 : printf("%s: could not allocate rx mbuf\n",
586 0 : sc->sc_dev.dv_xname);
587 : error = ENOMEM;
588 0 : goto fail;
589 : }
590 0 : MCLGETI(data->m, M_DONTWAIT, NULL, sc->rxbufsz);
591 0 : if (!(data->m->m_flags & M_EXT)) {
592 0 : printf("%s: could not allocate rx mbuf cluster\n",
593 0 : sc->sc_dev.dv_xname);
594 : error = ENOMEM;
595 0 : goto fail;
596 : }
597 :
598 0 : data->buf = mtod(data->m, uint8_t *);
599 0 : }
600 0 : return 0;
601 :
602 0 : fail: uath_free_rx_data_list(sc);
603 0 : return error;
604 0 : }
605 :
606 : void
607 0 : uath_free_rx_data_list(struct uath_softc *sc)
608 : {
609 : int i;
610 :
611 0 : for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
612 0 : struct uath_rx_data *data = &sc->rx_data[i];
613 :
614 0 : if (data->xfer != NULL) {
615 0 : usbd_free_xfer(data->xfer);
616 0 : data->xfer = NULL;
617 0 : }
618 :
619 0 : if (data->m != NULL) {
620 0 : m_freem(data->m);
621 0 : data->m = NULL;
622 0 : }
623 : }
624 0 : }
625 :
626 : int
627 0 : uath_alloc_tx_cmd_list(struct uath_softc *sc)
628 : {
629 : int i, error;
630 :
631 0 : for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++) {
632 0 : struct uath_tx_cmd *cmd = &sc->tx_cmd[i];
633 :
634 0 : cmd->sc = sc; /* backpointer for callbacks */
635 :
636 0 : cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
637 0 : if (cmd->xfer == NULL) {
638 0 : printf("%s: could not allocate xfer\n",
639 0 : sc->sc_dev.dv_xname);
640 : error = ENOMEM;
641 0 : goto fail;
642 : }
643 0 : cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_TXCMDSZ);
644 0 : if (cmd->buf == NULL) {
645 0 : printf("%s: could not allocate xfer buffer\n",
646 0 : sc->sc_dev.dv_xname);
647 : error = ENOMEM;
648 0 : goto fail;
649 : }
650 0 : }
651 0 : return 0;
652 :
653 0 : fail: uath_free_tx_cmd_list(sc);
654 0 : return error;
655 0 : }
656 :
657 : void
658 0 : uath_free_tx_cmd_list(struct uath_softc *sc)
659 : {
660 : int i;
661 :
662 0 : for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++)
663 0 : if (sc->tx_cmd[i].xfer != NULL) {
664 0 : usbd_free_xfer(sc->tx_cmd[i].xfer);
665 0 : sc->tx_cmd[i].xfer = NULL;
666 0 : }
667 0 : }
668 :
669 : int
670 0 : uath_alloc_rx_cmd_list(struct uath_softc *sc)
671 : {
672 : int i, error;
673 :
674 0 : for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
675 0 : struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
676 :
677 0 : cmd->sc = sc; /* backpointer for callbacks */
678 :
679 0 : cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
680 0 : if (cmd->xfer == NULL) {
681 0 : printf("%s: could not allocate xfer\n",
682 0 : sc->sc_dev.dv_xname);
683 : error = ENOMEM;
684 0 : goto fail;
685 : }
686 0 : cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_RXCMDSZ);
687 0 : if (cmd->buf == NULL) {
688 0 : printf("%s: could not allocate xfer buffer\n",
689 0 : sc->sc_dev.dv_xname);
690 : error = ENOMEM;
691 0 : goto fail;
692 : }
693 0 : }
694 0 : return 0;
695 :
696 0 : fail: uath_free_rx_cmd_list(sc);
697 0 : return error;
698 0 : }
699 :
700 : void
701 0 : uath_free_rx_cmd_list(struct uath_softc *sc)
702 : {
703 : int i;
704 :
705 0 : for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++)
706 0 : if (sc->rx_cmd[i].xfer != NULL) {
707 0 : usbd_free_xfer(sc->rx_cmd[i].xfer);
708 0 : sc->rx_cmd[i].xfer = NULL;
709 0 : }
710 0 : }
711 :
712 : int
713 0 : uath_media_change(struct ifnet *ifp)
714 : {
715 : int error;
716 :
717 0 : error = ieee80211_media_change(ifp);
718 0 : if (error != ENETRESET)
719 0 : return error;
720 :
721 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
722 0 : uath_init(ifp);
723 :
724 0 : return 0;
725 0 : }
726 :
727 : /*
728 : * This function is called periodically (every second) when associated to
729 : * query device statistics.
730 : */
731 : void
732 0 : uath_stat(void *arg)
733 : {
734 0 : struct uath_softc *sc = arg;
735 : int error;
736 :
737 : /*
738 : * Send request for statistics asynchronously. The timer will be
739 : * restarted when we'll get the stats notification.
740 : */
741 0 : error = uath_cmd_write(sc, UATH_CMD_STATS, NULL, 0,
742 : UATH_CMD_FLAG_ASYNC);
743 0 : if (error != 0) {
744 0 : printf("%s: could not query statistics (error=%d)\n",
745 0 : sc->sc_dev.dv_xname, error);
746 0 : }
747 0 : }
748 :
749 : /*
750 : * This function is called periodically (every 250ms) during scanning to
751 : * switch from one channel to another.
752 : */
753 : void
754 0 : uath_next_scan(void *arg)
755 : {
756 0 : struct uath_softc *sc = arg;
757 0 : struct ieee80211com *ic = &sc->sc_ic;
758 0 : struct ifnet *ifp = &ic->ic_if;
759 :
760 0 : if (ic->ic_state == IEEE80211_S_SCAN)
761 0 : ieee80211_next_scan(ifp);
762 0 : }
763 :
764 : void
765 0 : uath_task(void *arg)
766 : {
767 0 : struct uath_softc *sc = arg;
768 0 : struct ieee80211com *ic = &sc->sc_ic;
769 : enum ieee80211_state ostate;
770 :
771 0 : ostate = ic->ic_state;
772 :
773 0 : switch (sc->sc_state) {
774 : case IEEE80211_S_INIT:
775 0 : if (ostate == IEEE80211_S_RUN) {
776 : /* turn link and activity LEDs off */
777 0 : (void)uath_set_led(sc, UATH_LED_LINK, 0);
778 0 : (void)uath_set_led(sc, UATH_LED_ACTIVITY, 0);
779 0 : }
780 : break;
781 :
782 : case IEEE80211_S_SCAN:
783 0 : if (uath_switch_channel(sc, ic->ic_bss->ni_chan) != 0) {
784 0 : printf("%s: could not switch channel\n",
785 0 : sc->sc_dev.dv_xname);
786 0 : break;
787 : }
788 0 : timeout_add_msec(&sc->scan_to, 250);
789 0 : break;
790 :
791 : case IEEE80211_S_AUTH:
792 : {
793 0 : struct ieee80211_node *ni = ic->ic_bss;
794 0 : struct uath_cmd_bssid bssid;
795 0 : struct uath_cmd_0b cmd0b;
796 0 : struct uath_cmd_0c cmd0c;
797 :
798 0 : if (uath_switch_channel(sc, ni->ni_chan) != 0) {
799 0 : printf("%s: could not switch channel\n",
800 0 : sc->sc_dev.dv_xname);
801 0 : break;
802 : }
803 :
804 0 : (void)uath_cmd_write(sc, UATH_CMD_24, NULL, 0, 0);
805 :
806 0 : bzero(&bssid, sizeof bssid);
807 0 : bssid.len = htobe32(IEEE80211_ADDR_LEN);
808 0 : IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
809 0 : (void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
810 : sizeof bssid, 0);
811 :
812 0 : bzero(&cmd0b, sizeof cmd0b);
813 0 : cmd0b.code = htobe32(2);
814 0 : cmd0b.size = htobe32(sizeof (cmd0b.data));
815 0 : (void)uath_cmd_write(sc, UATH_CMD_0B, &cmd0b, sizeof cmd0b, 0);
816 :
817 0 : bzero(&cmd0c, sizeof cmd0c);
818 0 : cmd0c.magic1 = htobe32(2);
819 0 : cmd0c.magic2 = htobe32(7);
820 0 : cmd0c.magic3 = htobe32(1);
821 0 : (void)uath_cmd_write(sc, UATH_CMD_0C, &cmd0c, sizeof cmd0c, 0);
822 :
823 0 : if (uath_set_rates(sc, &ni->ni_rates) != 0) {
824 0 : printf("%s: could not set negotiated rate set\n",
825 0 : sc->sc_dev.dv_xname);
826 0 : break;
827 : }
828 0 : break;
829 0 : }
830 :
831 : case IEEE80211_S_ASSOC:
832 : break;
833 :
834 : case IEEE80211_S_RUN:
835 : {
836 0 : struct ieee80211_node *ni = ic->ic_bss;
837 0 : struct uath_cmd_bssid bssid;
838 0 : struct uath_cmd_xled xled;
839 0 : uint32_t val;
840 :
841 0 : if (ic->ic_opmode == IEEE80211_M_MONITOR) {
842 : /* make both LEDs blink while monitoring */
843 0 : bzero(&xled, sizeof xled);
844 0 : xled.which = htobe32(0);
845 0 : xled.rate = htobe32(1);
846 0 : xled.mode = htobe32(2);
847 0 : (void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled,
848 : sizeof xled, 0);
849 0 : break;
850 : }
851 :
852 : /*
853 : * Tx rate is controlled by firmware, report the maximum
854 : * negotiated rate in ifconfig output.
855 : */
856 0 : ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
857 :
858 0 : val = htobe32(1);
859 0 : (void)uath_cmd_write(sc, UATH_CMD_2E, &val, sizeof val, 0);
860 :
861 0 : bzero(&bssid, sizeof bssid);
862 0 : bssid.flags1 = htobe32(0xc004);
863 0 : bssid.flags2 = htobe32(0x003b);
864 0 : bssid.len = htobe32(IEEE80211_ADDR_LEN);
865 0 : IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
866 0 : (void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
867 : sizeof bssid, 0);
868 :
869 : /* turn link LED on */
870 0 : (void)uath_set_led(sc, UATH_LED_LINK, 1);
871 :
872 : /* make activity LED blink */
873 0 : bzero(&xled, sizeof xled);
874 0 : xled.which = htobe32(1);
875 0 : xled.rate = htobe32(1);
876 0 : xled.mode = htobe32(2);
877 0 : (void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled, sizeof xled,
878 : 0);
879 :
880 : /* set state to associated */
881 0 : val = htobe32(1);
882 0 : (void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val,
883 : 0);
884 :
885 : /* start statistics timer */
886 0 : timeout_add_sec(&sc->stat_to, 1);
887 0 : break;
888 0 : }
889 : }
890 0 : sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
891 0 : }
892 :
893 : int
894 0 : uath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
895 : {
896 0 : struct uath_softc *sc = ic->ic_softc;
897 :
898 0 : usb_rem_task(sc->sc_udev, &sc->sc_task);
899 0 : timeout_del(&sc->scan_to);
900 0 : timeout_del(&sc->stat_to);
901 :
902 : /* do it in a process context */
903 0 : sc->sc_state = nstate;
904 0 : sc->sc_arg = arg;
905 0 : usb_add_task(sc->sc_udev, &sc->sc_task);
906 0 : return 0;
907 : }
908 :
909 : #ifdef UATH_DEBUG
910 : void
911 : uath_dump_cmd(const uint8_t *buf, int len, char prefix)
912 : {
913 : int i;
914 :
915 : for (i = 0; i < len; i++) {
916 : if ((i % 16) == 0)
917 : printf("\n%c ", prefix);
918 : else if ((i % 4) == 0)
919 : printf(" ");
920 : printf("%02x", buf[i]);
921 : }
922 : printf("\n");
923 : }
924 : #endif
925 :
926 : /*
927 : * Low-level function to send read or write commands to the firmware.
928 : */
929 : int
930 0 : uath_cmd(struct uath_softc *sc, uint32_t code, const void *idata, int ilen,
931 : void *odata, int flags)
932 : {
933 : struct uath_cmd_hdr *hdr;
934 : struct uath_tx_cmd *cmd;
935 : uint16_t xferflags;
936 : int s, xferlen, error;
937 :
938 : /* grab a xfer */
939 0 : cmd = &sc->tx_cmd[sc->cmd_idx];
940 :
941 : /* always bulk-out a multiple of 4 bytes */
942 0 : xferlen = (sizeof (struct uath_cmd_hdr) + ilen + 3) & ~3;
943 :
944 0 : hdr = (struct uath_cmd_hdr *)cmd->buf;
945 0 : bzero(hdr, sizeof (struct uath_cmd_hdr));
946 0 : hdr->len = htobe32(xferlen);
947 0 : hdr->code = htobe32(code);
948 0 : hdr->priv = sc->cmd_idx; /* don't care about endianness */
949 0 : hdr->magic = htobe32((flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0);
950 0 : bcopy(idata, (uint8_t *)(hdr + 1), ilen);
951 :
952 : #ifdef UATH_DEBUG
953 : if (uath_debug >= 5) {
954 : printf("sending command code=0x%02x flags=0x%x index=%u",
955 : code, flags, sc->cmd_idx);
956 : uath_dump_cmd(cmd->buf, xferlen, '+');
957 : }
958 : #endif
959 : xferflags = USBD_FORCE_SHORT_XFER | USBD_NO_COPY;
960 0 : if (!(flags & UATH_CMD_FLAG_READ)) {
961 0 : if (!(flags & UATH_CMD_FLAG_ASYNC))
962 0 : xferflags |= USBD_SYNCHRONOUS;
963 : } else
964 0 : s = splusb();
965 :
966 0 : cmd->odata = odata;
967 :
968 0 : usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
969 : xferflags, UATH_CMD_TIMEOUT, NULL);
970 0 : error = usbd_transfer(cmd->xfer);
971 0 : if (error != USBD_IN_PROGRESS && error != 0) {
972 0 : if (flags & UATH_CMD_FLAG_READ)
973 0 : splx(s);
974 0 : printf("%s: could not send command 0x%x (error=%s)\n",
975 0 : sc->sc_dev.dv_xname, code, usbd_errstr(error));
976 0 : return error;
977 : }
978 0 : sc->cmd_idx = (sc->cmd_idx + 1) % UATH_TX_CMD_LIST_COUNT;
979 :
980 0 : if (!(flags & UATH_CMD_FLAG_READ))
981 0 : return 0; /* write: don't wait for reply */
982 :
983 : /* wait at most two seconds for command reply */
984 0 : error = tsleep(cmd, PCATCH, "uathcmd", 2 * hz);
985 0 : cmd->odata = NULL; /* in case answer is received too late */
986 0 : splx(s);
987 0 : if (error != 0) {
988 0 : printf("%s: timeout waiting for command reply\n",
989 0 : sc->sc_dev.dv_xname);
990 0 : }
991 0 : return error;
992 0 : }
993 :
994 : int
995 0 : uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len,
996 : int flags)
997 : {
998 0 : flags &= ~UATH_CMD_FLAG_READ;
999 0 : return uath_cmd(sc, code, data, len, NULL, flags);
1000 : }
1001 :
1002 : int
1003 0 : uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata,
1004 : int ilen, void *odata, int flags)
1005 : {
1006 0 : flags |= UATH_CMD_FLAG_READ;
1007 0 : return uath_cmd(sc, code, idata, ilen, odata, flags);
1008 : }
1009 :
1010 : int
1011 0 : uath_write_reg(struct uath_softc *sc, uint32_t reg, uint32_t val)
1012 : {
1013 0 : struct uath_write_mac write;
1014 : int error;
1015 :
1016 0 : write.reg = htobe32(reg);
1017 0 : write.len = htobe32(0); /* 0 = single write */
1018 0 : *(uint32_t *)write.data = htobe32(val);
1019 :
1020 0 : error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1021 : 3 * sizeof (uint32_t), 0);
1022 0 : if (error != 0) {
1023 0 : printf("%s: could not write register 0x%02x\n",
1024 0 : sc->sc_dev.dv_xname, reg);
1025 0 : }
1026 0 : return error;
1027 0 : }
1028 :
1029 : int
1030 0 : uath_write_multi(struct uath_softc *sc, uint32_t reg, const void *data,
1031 : int len)
1032 : {
1033 0 : struct uath_write_mac write;
1034 : int error;
1035 :
1036 0 : write.reg = htobe32(reg);
1037 0 : write.len = htobe32(len);
1038 0 : bcopy(data, write.data, len);
1039 :
1040 : /* properly handle the case where len is zero (reset) */
1041 0 : error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1042 0 : (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0);
1043 0 : if (error != 0) {
1044 0 : printf("%s: could not write %d bytes to register 0x%02x\n",
1045 0 : sc->sc_dev.dv_xname, len, reg);
1046 0 : }
1047 0 : return error;
1048 0 : }
1049 :
1050 : int
1051 0 : uath_read_reg(struct uath_softc *sc, uint32_t reg, uint32_t *val)
1052 : {
1053 0 : struct uath_read_mac read;
1054 : int error;
1055 :
1056 0 : reg = htobe32(reg);
1057 0 : error = uath_cmd_read(sc, UATH_CMD_READ_MAC, ®, sizeof reg, &read,
1058 : 0);
1059 0 : if (error != 0) {
1060 0 : printf("%s: could not read register 0x%02x\n",
1061 0 : sc->sc_dev.dv_xname, betoh32(reg));
1062 0 : return error;
1063 : }
1064 0 : *val = betoh32(*(uint32_t *)read.data);
1065 0 : return error;
1066 0 : }
1067 :
1068 : int
1069 0 : uath_read_eeprom(struct uath_softc *sc, uint32_t reg, void *odata)
1070 : {
1071 0 : struct uath_read_mac read;
1072 : int len, error;
1073 :
1074 0 : reg = htobe32(reg);
1075 0 : error = uath_cmd_read(sc, UATH_CMD_READ_EEPROM, ®, sizeof reg,
1076 : &read, 0);
1077 0 : if (error != 0) {
1078 0 : printf("%s: could not read EEPROM offset 0x%02x\n",
1079 0 : sc->sc_dev.dv_xname, betoh32(reg));
1080 0 : return error;
1081 : }
1082 0 : len = betoh32(read.len);
1083 0 : bcopy(read.data, odata, (len == 0) ? sizeof (uint32_t) : len);
1084 0 : return error;
1085 0 : }
1086 :
1087 : void
1088 0 : uath_cmd_rxeof(struct usbd_xfer *xfer, void *priv,
1089 : usbd_status status)
1090 : {
1091 0 : struct uath_rx_cmd *cmd = priv;
1092 0 : struct uath_softc *sc = cmd->sc;
1093 : struct uath_cmd_hdr *hdr;
1094 :
1095 0 : if (status != USBD_NORMAL_COMPLETION) {
1096 0 : if (status == USBD_STALLED)
1097 0 : usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
1098 0 : return;
1099 : }
1100 :
1101 0 : hdr = (struct uath_cmd_hdr *)cmd->buf;
1102 :
1103 : #ifdef UATH_DEBUG
1104 : if (uath_debug >= 5) {
1105 : printf("received command code=0x%x index=%u len=%u",
1106 : betoh32(hdr->code), hdr->priv, betoh32(hdr->len));
1107 : uath_dump_cmd(cmd->buf, betoh32(hdr->len), '-');
1108 : }
1109 : #endif
1110 :
1111 0 : switch (betoh32(hdr->code) & 0xff) {
1112 : /* reply to a read command */
1113 : default:
1114 : {
1115 0 : struct uath_tx_cmd *txcmd = &sc->tx_cmd[hdr->priv];
1116 :
1117 0 : if (txcmd->odata != NULL) {
1118 : /* copy answer into caller's supplied buffer */
1119 0 : bcopy((uint8_t *)(hdr + 1), txcmd->odata,
1120 0 : betoh32(hdr->len) - sizeof (struct uath_cmd_hdr));
1121 0 : }
1122 0 : wakeup(txcmd); /* wake up caller */
1123 : break;
1124 : }
1125 : /* spontaneous firmware notifications */
1126 : case UATH_NOTIF_READY:
1127 : DPRINTF(("received device ready notification\n"));
1128 0 : wakeup(UATH_COND_INIT(sc));
1129 0 : break;
1130 :
1131 : case UATH_NOTIF_TX:
1132 : /* this notification is sent when UATH_TX_NOTIFY is set */
1133 : DPRINTF(("received Tx notification\n"));
1134 : break;
1135 :
1136 : case UATH_NOTIF_STATS:
1137 : DPRINTFN(2, ("received device statistics\n"));
1138 0 : timeout_add_sec(&sc->stat_to, 1);
1139 0 : break;
1140 : }
1141 :
1142 : /* setup a new transfer */
1143 0 : usbd_setup_xfer(xfer, sc->cmd_rx_pipe, cmd, cmd->buf, UATH_MAX_RXCMDSZ,
1144 : USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT,
1145 : uath_cmd_rxeof);
1146 0 : (void)usbd_transfer(xfer);
1147 0 : }
1148 :
1149 : void
1150 0 : uath_data_rxeof(struct usbd_xfer *xfer, void *priv,
1151 : usbd_status status)
1152 : {
1153 0 : struct uath_rx_data *data = priv;
1154 0 : struct uath_softc *sc = data->sc;
1155 0 : struct ieee80211com *ic = &sc->sc_ic;
1156 0 : struct ifnet *ifp = &ic->ic_if;
1157 : struct ieee80211_frame *wh;
1158 0 : struct ieee80211_rxinfo rxi;
1159 : struct ieee80211_node *ni;
1160 : struct uath_rx_desc *desc;
1161 : struct mbuf *mnew, *m;
1162 : uint32_t hdr;
1163 0 : int s, len;
1164 :
1165 0 : if (status != USBD_NORMAL_COMPLETION) {
1166 0 : if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1167 0 : return;
1168 :
1169 0 : if (status == USBD_STALLED)
1170 0 : usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1171 :
1172 0 : ifp->if_ierrors++;
1173 0 : return;
1174 : }
1175 0 : usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1176 :
1177 0 : if (len < UATH_MIN_RXBUFSZ) {
1178 : DPRINTF(("wrong xfer size (len=%d)\n", len));
1179 0 : ifp->if_ierrors++;
1180 0 : goto skip;
1181 : }
1182 :
1183 0 : hdr = betoh32(*(uint32_t *)data->buf);
1184 :
1185 : /* Rx descriptor is located at the end, 32-bit aligned */
1186 0 : desc = (struct uath_rx_desc *)
1187 0 : (data->buf + len - sizeof (struct uath_rx_desc));
1188 :
1189 0 : if (betoh32(desc->len) > sc->rxbufsz) {
1190 : DPRINTF(("bad descriptor (len=%d)\n", betoh32(desc->len)));
1191 0 : ifp->if_ierrors++;
1192 0 : goto skip;
1193 : }
1194 :
1195 : /* there's probably a "bad CRC" flag somewhere in the descriptor.. */
1196 :
1197 0 : MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1198 0 : if (mnew == NULL) {
1199 0 : printf("%s: could not allocate rx mbuf\n",
1200 0 : sc->sc_dev.dv_xname);
1201 0 : ifp->if_ierrors++;
1202 0 : goto skip;
1203 : }
1204 0 : MCLGETI(mnew, M_DONTWAIT, NULL, sc->rxbufsz);
1205 0 : if (!(mnew->m_flags & M_EXT)) {
1206 0 : printf("%s: could not allocate rx mbuf cluster\n",
1207 0 : sc->sc_dev.dv_xname);
1208 0 : m_freem(mnew);
1209 0 : ifp->if_ierrors++;
1210 0 : goto skip;
1211 : }
1212 :
1213 0 : m = data->m;
1214 0 : data->m = mnew;
1215 :
1216 : /* finalize mbuf */
1217 0 : m->m_data = data->buf + sizeof (uint32_t);
1218 0 : m->m_pkthdr.len = m->m_len = betoh32(desc->len) -
1219 0 : sizeof (struct uath_rx_desc) - IEEE80211_CRC_LEN;
1220 :
1221 0 : data->buf = mtod(data->m, uint8_t *);
1222 :
1223 0 : wh = mtod(m, struct ieee80211_frame *);
1224 0 : rxi.rxi_flags = 0;
1225 0 : if ((wh->i_fc[1] & IEEE80211_FC1_WEP) &&
1226 0 : ic->ic_opmode != IEEE80211_M_MONITOR) {
1227 : /*
1228 : * Hardware decrypts the frame itself but leaves the WEP bit
1229 : * set in the 802.11 header and doesn't remove the IV and CRC
1230 : * fields.
1231 : */
1232 0 : wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1233 0 : memmove((caddr_t)wh + IEEE80211_WEP_IVLEN +
1234 : IEEE80211_WEP_KIDLEN, wh, sizeof (struct ieee80211_frame));
1235 0 : m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1236 0 : m_adj(m, -IEEE80211_WEP_CRCLEN);
1237 0 : wh = mtod(m, struct ieee80211_frame *);
1238 :
1239 0 : rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1240 0 : }
1241 :
1242 : #if NBPFILTER > 0
1243 : /* there are a lot more fields in the Rx descriptor */
1244 0 : if (sc->sc_drvbpf != NULL) {
1245 0 : struct mbuf mb;
1246 0 : struct uath_rx_radiotap_header *tap = &sc->sc_rxtap;
1247 :
1248 0 : tap->wr_flags = 0;
1249 0 : tap->wr_chan_freq = htole16(betoh32(desc->freq));
1250 0 : tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1251 0 : tap->wr_dbm_antsignal = (int8_t)betoh32(desc->rssi);
1252 :
1253 0 : mb.m_data = (caddr_t)tap;
1254 0 : mb.m_len = sc->sc_rxtap_len;
1255 0 : mb.m_next = m;
1256 0 : mb.m_nextpkt = NULL;
1257 0 : mb.m_type = 0;
1258 0 : mb.m_flags = 0;
1259 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1260 0 : }
1261 : #endif
1262 :
1263 0 : s = splnet();
1264 0 : ni = ieee80211_find_rxnode(ic, wh);
1265 0 : rxi.rxi_rssi = (int)betoh32(desc->rssi);
1266 0 : rxi.rxi_tstamp = 0; /* unused */
1267 0 : ieee80211_input(ifp, m, ni, &rxi);
1268 :
1269 : /* node is no longer needed */
1270 0 : ieee80211_release_node(ic, ni);
1271 0 : splx(s);
1272 :
1273 : skip: /* setup a new transfer */
1274 0 : usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, sc->rxbufsz,
1275 : USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, uath_data_rxeof);
1276 0 : (void)usbd_transfer(data->xfer);
1277 0 : }
1278 :
1279 : int
1280 0 : uath_tx_null(struct uath_softc *sc)
1281 : {
1282 : struct uath_tx_data *data;
1283 : struct uath_tx_desc *desc;
1284 :
1285 0 : data = &sc->tx_data[sc->data_idx];
1286 :
1287 0 : data->ni = NULL;
1288 :
1289 0 : *(uint32_t *)data->buf = UATH_MAKECTL(1, sizeof (struct uath_tx_desc));
1290 0 : desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1291 :
1292 0 : bzero(desc, sizeof (struct uath_tx_desc));
1293 0 : desc->len = htobe32(sizeof (struct uath_tx_desc));
1294 0 : desc->type = htobe32(UATH_TX_NULL);
1295 :
1296 0 : usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf,
1297 : sizeof (uint32_t) + sizeof (struct uath_tx_desc), USBD_NO_COPY |
1298 : USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, UATH_DATA_TIMEOUT, NULL);
1299 0 : if (usbd_transfer(data->xfer) != 0)
1300 0 : return EIO;
1301 :
1302 0 : sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1303 :
1304 0 : return uath_cmd_write(sc, UATH_CMD_0F, NULL, 0, UATH_CMD_FLAG_ASYNC);
1305 0 : }
1306 :
1307 : void
1308 0 : uath_data_txeof(struct usbd_xfer *xfer, void *priv,
1309 : usbd_status status)
1310 : {
1311 0 : struct uath_tx_data *data = priv;
1312 0 : struct uath_softc *sc = data->sc;
1313 0 : struct ieee80211com *ic = &sc->sc_ic;
1314 0 : struct ifnet *ifp = &ic->ic_if;
1315 : int s;
1316 :
1317 0 : if (status != USBD_NORMAL_COMPLETION) {
1318 0 : if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1319 0 : return;
1320 :
1321 0 : printf("%s: could not transmit buffer: %s\n",
1322 0 : sc->sc_dev.dv_xname, usbd_errstr(status));
1323 :
1324 0 : if (status == USBD_STALLED)
1325 0 : usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1326 :
1327 0 : ifp->if_oerrors++;
1328 0 : return;
1329 : }
1330 :
1331 0 : s = splnet();
1332 :
1333 0 : ieee80211_release_node(ic, data->ni);
1334 0 : data->ni = NULL;
1335 :
1336 0 : sc->tx_queued--;
1337 :
1338 0 : sc->sc_tx_timer = 0;
1339 0 : ifq_clr_oactive(&ifp->if_snd);
1340 0 : uath_start(ifp);
1341 :
1342 0 : splx(s);
1343 0 : }
1344 :
1345 : int
1346 0 : uath_tx_data(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1347 : {
1348 0 : struct ieee80211com *ic = &sc->sc_ic;
1349 : struct uath_tx_data *data;
1350 : struct uath_tx_desc *desc;
1351 : const struct ieee80211_frame *wh;
1352 : int paylen, totlen, xferlen, error;
1353 :
1354 0 : data = &sc->tx_data[sc->data_idx];
1355 0 : desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1356 :
1357 0 : data->ni = ni;
1358 :
1359 : #if NBPFILTER > 0
1360 0 : if (sc->sc_drvbpf != NULL) {
1361 0 : struct mbuf mb;
1362 0 : struct uath_tx_radiotap_header *tap = &sc->sc_txtap;
1363 :
1364 0 : tap->wt_flags = 0;
1365 0 : tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1366 0 : tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1367 :
1368 0 : mb.m_data = (caddr_t)tap;
1369 0 : mb.m_len = sc->sc_txtap_len;
1370 0 : mb.m_next = m0;
1371 0 : mb.m_nextpkt = NULL;
1372 0 : mb.m_type = 0;
1373 0 : mb.m_flags = 0;
1374 0 : bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1375 0 : }
1376 : #endif
1377 :
1378 0 : paylen = m0->m_pkthdr.len;
1379 0 : xferlen = sizeof (uint32_t) + sizeof (struct uath_tx_desc) + paylen;
1380 :
1381 0 : wh = mtod(m0, struct ieee80211_frame *);
1382 0 : if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1383 0 : uint8_t *frm = (uint8_t *)(desc + 1);
1384 : uint32_t iv;
1385 :
1386 : /* h/w WEP: it's up to the host to fill the IV field */
1387 0 : bcopy(wh, frm, sizeof (struct ieee80211_frame));
1388 0 : frm += sizeof (struct ieee80211_frame);
1389 :
1390 : /* insert IV: code copied from net80211 */
1391 0 : iv = (ic->ic_iv != 0) ? ic->ic_iv : arc4random();
1392 0 : if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1393 0 : iv += 0x000100;
1394 0 : ic->ic_iv = iv + 1;
1395 :
1396 0 : *frm++ = iv & 0xff;
1397 0 : *frm++ = (iv >> 8) & 0xff;
1398 0 : *frm++ = (iv >> 16) & 0xff;
1399 0 : *frm++ = ic->ic_wep_txkey << 6;
1400 :
1401 0 : m_copydata(m0, sizeof (struct ieee80211_frame),
1402 0 : m0->m_pkthdr.len - sizeof (struct ieee80211_frame), frm);
1403 :
1404 0 : paylen += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1405 0 : xferlen += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1406 0 : totlen = xferlen + IEEE80211_WEP_CRCLEN;
1407 0 : } else {
1408 0 : m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1));
1409 : totlen = xferlen;
1410 : }
1411 :
1412 : /* fill Tx descriptor */
1413 0 : *(uint32_t *)data->buf = UATH_MAKECTL(1, xferlen - sizeof (uint32_t));
1414 :
1415 0 : desc->len = htobe32(totlen);
1416 0 : desc->priv = sc->data_idx; /* don't care about endianness */
1417 0 : desc->paylen = htobe32(paylen);
1418 0 : desc->type = htobe32(UATH_TX_DATA);
1419 0 : desc->flags = htobe32(0);
1420 0 : if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1421 0 : desc->dest = htobe32(UATH_ID_BROADCAST);
1422 0 : desc->magic = htobe32(3);
1423 0 : } else {
1424 0 : desc->dest = htobe32(UATH_ID_BSS);
1425 0 : desc->magic = htobe32(1);
1426 : }
1427 :
1428 0 : m_freem(m0); /* mbuf is no longer needed */
1429 :
1430 : #ifdef UATH_DEBUG
1431 : if (uath_debug >= 6) {
1432 : printf("sending frame index=%u len=%d xferlen=%d",
1433 : sc->data_idx, paylen, xferlen);
1434 : uath_dump_cmd(data->buf, xferlen, '+');
1435 : }
1436 : #endif
1437 0 : usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1438 : USBD_FORCE_SHORT_XFER | USBD_NO_COPY, UATH_DATA_TIMEOUT,
1439 : uath_data_txeof);
1440 0 : error = usbd_transfer(data->xfer);
1441 0 : if (error != USBD_IN_PROGRESS && error != 0) {
1442 0 : ic->ic_if.if_oerrors++;
1443 0 : return error;
1444 : }
1445 0 : sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1446 0 : sc->tx_queued++;
1447 :
1448 0 : return 0;
1449 0 : }
1450 :
1451 : void
1452 0 : uath_start(struct ifnet *ifp)
1453 : {
1454 0 : struct uath_softc *sc = ifp->if_softc;
1455 0 : struct ieee80211com *ic = &sc->sc_ic;
1456 0 : struct ieee80211_node *ni;
1457 : struct mbuf *m0;
1458 :
1459 : /*
1460 : * net80211 may still try to send management frames even if the
1461 : * IFF_RUNNING flag is not set...
1462 : */
1463 0 : if (!(ifp->if_flags & IFF_RUNNING) && ifq_is_oactive(&ifp->if_snd))
1464 0 : return;
1465 :
1466 0 : for (;;) {
1467 0 : if (sc->tx_queued >= UATH_TX_DATA_LIST_COUNT) {
1468 0 : ifq_set_oactive(&ifp->if_snd);
1469 0 : break;
1470 : }
1471 :
1472 0 : m0 = mq_dequeue(&ic->ic_mgtq);
1473 0 : if (m0 != NULL) {
1474 0 : ni = m0->m_pkthdr.ph_cookie;
1475 : #if NBPFILTER > 0
1476 0 : if (ic->ic_rawbpf != NULL)
1477 0 : bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1478 : #endif
1479 0 : if (uath_tx_data(sc, m0, ni) != 0)
1480 : break;
1481 : } else {
1482 0 : if (ic->ic_state != IEEE80211_S_RUN)
1483 : break;
1484 :
1485 0 : IFQ_DEQUEUE(&ifp->if_snd, m0);
1486 0 : if (m0 == NULL)
1487 : break;
1488 : #if NBPFILTER > 0
1489 0 : if (ifp->if_bpf != NULL)
1490 0 : bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1491 : #endif
1492 0 : m0 = ieee80211_encap(ifp, m0, &ni);
1493 0 : if (m0 == NULL)
1494 0 : continue;
1495 : #if NBPFILTER > 0
1496 0 : if (ic->ic_rawbpf != NULL)
1497 0 : bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1498 : #endif
1499 0 : if (uath_tx_data(sc, m0, ni) != 0) {
1500 0 : if (ni != NULL)
1501 0 : ieee80211_release_node(ic, ni);
1502 0 : ifp->if_oerrors++;
1503 0 : break;
1504 : }
1505 : }
1506 :
1507 0 : sc->sc_tx_timer = 5;
1508 0 : ifp->if_timer = 1;
1509 : }
1510 0 : }
1511 :
1512 : void
1513 0 : uath_watchdog(struct ifnet *ifp)
1514 : {
1515 0 : struct uath_softc *sc = ifp->if_softc;
1516 :
1517 0 : ifp->if_timer = 0;
1518 :
1519 0 : if (sc->sc_tx_timer > 0) {
1520 0 : if (--sc->sc_tx_timer == 0) {
1521 0 : printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1522 : /*uath_init(ifp); XXX needs a process context! */
1523 0 : ifp->if_oerrors++;
1524 0 : return;
1525 : }
1526 0 : ifp->if_timer = 1;
1527 0 : }
1528 :
1529 0 : ieee80211_watchdog(ifp);
1530 0 : }
1531 :
1532 : int
1533 0 : uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1534 : {
1535 : int s, error = 0;
1536 :
1537 0 : s = splnet();
1538 :
1539 0 : switch (cmd) {
1540 : case SIOCSIFADDR:
1541 0 : ifp->if_flags |= IFF_UP;
1542 : /* FALLTHROUGH */
1543 : case SIOCSIFFLAGS:
1544 0 : if (ifp->if_flags & IFF_UP) {
1545 0 : if (!(ifp->if_flags & IFF_RUNNING))
1546 0 : uath_init(ifp);
1547 : } else {
1548 0 : if (ifp->if_flags & IFF_RUNNING)
1549 0 : uath_stop(ifp, 1);
1550 : }
1551 : break;
1552 :
1553 : default:
1554 0 : error = ieee80211_ioctl(ifp, cmd, data);
1555 0 : }
1556 :
1557 0 : if (error == ENETRESET) {
1558 0 : if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1559 : (IFF_UP | IFF_RUNNING))
1560 0 : uath_init(ifp);
1561 : error = 0;
1562 0 : }
1563 :
1564 0 : splx(s);
1565 :
1566 0 : return error;
1567 : }
1568 :
1569 : int
1570 0 : uath_query_eeprom(struct uath_softc *sc)
1571 : {
1572 0 : uint32_t tmp;
1573 : int error;
1574 :
1575 : /* retrieve MAC address */
1576 0 : error = uath_read_eeprom(sc, UATH_EEPROM_MACADDR, sc->sc_ic.ic_myaddr);
1577 0 : if (error != 0) {
1578 0 : printf("%s: could not read MAC address\n",
1579 0 : sc->sc_dev.dv_xname);
1580 0 : return error;
1581 : }
1582 :
1583 : /* retrieve the maximum frame size that the hardware can receive */
1584 0 : error = uath_read_eeprom(sc, UATH_EEPROM_RXBUFSZ, &tmp);
1585 0 : if (error != 0) {
1586 0 : printf("%s: could not read maximum Rx buffer size\n",
1587 0 : sc->sc_dev.dv_xname);
1588 0 : return error;
1589 : }
1590 0 : sc->rxbufsz = betoh32(tmp) & 0xfff;
1591 : DPRINTF(("maximum Rx buffer size %d\n", sc->rxbufsz));
1592 0 : return 0;
1593 0 : }
1594 :
1595 : int
1596 0 : uath_reset(struct uath_softc *sc)
1597 : {
1598 0 : struct uath_cmd_setup setup;
1599 0 : uint32_t reg, val;
1600 : int s, error;
1601 :
1602 : /* init device with some voodoo incantations.. */
1603 0 : setup.magic1 = htobe32(1);
1604 0 : setup.magic2 = htobe32(5);
1605 0 : setup.magic3 = htobe32(200);
1606 0 : setup.magic4 = htobe32(27);
1607 0 : s = splusb();
1608 0 : error = uath_cmd_write(sc, UATH_CMD_SETUP, &setup, sizeof setup,
1609 : UATH_CMD_FLAG_ASYNC);
1610 : /* ..and wait until firmware notifies us that it is ready */
1611 0 : if (error == 0)
1612 0 : error = tsleep(UATH_COND_INIT(sc), PCATCH, "uathinit", 5 * hz);
1613 0 : splx(s);
1614 0 : if (error != 0)
1615 0 : return error;
1616 :
1617 : /* read PHY registers */
1618 0 : for (reg = 0x09; reg <= 0x24; reg++) {
1619 0 : if (reg == 0x0b || reg == 0x0c)
1620 : continue;
1621 0 : DELAY(100);
1622 0 : if ((error = uath_read_reg(sc, reg, &val)) != 0)
1623 0 : return error;
1624 : DPRINTFN(2, ("reg 0x%02x=0x%08x\n", reg, val));
1625 : }
1626 0 : return error;
1627 0 : }
1628 :
1629 : int
1630 0 : uath_reset_tx_queues(struct uath_softc *sc)
1631 : {
1632 : int ac, error;
1633 :
1634 0 : for (ac = 0; ac < 4; ac++) {
1635 0 : const uint32_t qid = htobe32(UATH_AC_TO_QID(ac));
1636 :
1637 : DPRINTF(("resetting Tx queue %d\n", UATH_AC_TO_QID(ac)));
1638 0 : error = uath_cmd_write(sc, UATH_CMD_RESET_QUEUE, &qid,
1639 : sizeof qid, 0);
1640 0 : if (error != 0)
1641 0 : break;
1642 0 : }
1643 0 : return error;
1644 : }
1645 :
1646 : int
1647 0 : uath_wme_init(struct uath_softc *sc)
1648 : {
1649 0 : struct uath_qinfo qinfo;
1650 : int ac, error;
1651 : static const struct uath_wme_settings uath_wme_11g[4] = {
1652 : { 7, 4, 10, 0, 0 }, /* Background */
1653 : { 3, 4, 10, 0, 0 }, /* Best-Effort */
1654 : { 3, 3, 4, 26, 0 }, /* Video */
1655 : { 2, 2, 3, 47, 0 } /* Voice */
1656 : };
1657 :
1658 0 : bzero(&qinfo, sizeof qinfo);
1659 0 : qinfo.size = htobe32(32);
1660 0 : qinfo.magic1 = htobe32(1); /* XXX ack policy? */
1661 0 : qinfo.magic2 = htobe32(1);
1662 0 : for (ac = 0; ac < 4; ac++) {
1663 0 : qinfo.qid = htobe32(UATH_AC_TO_QID(ac));
1664 0 : qinfo.ac = htobe32(ac);
1665 0 : qinfo.aifsn = htobe32(uath_wme_11g[ac].aifsn);
1666 0 : qinfo.logcwmin = htobe32(uath_wme_11g[ac].logcwmin);
1667 0 : qinfo.logcwmax = htobe32(uath_wme_11g[ac].logcwmax);
1668 0 : qinfo.txop = htobe32(UATH_TXOP_TO_US(
1669 : uath_wme_11g[ac].txop));
1670 0 : qinfo.acm = htobe32(uath_wme_11g[ac].acm);
1671 :
1672 : DPRINTF(("setting up Tx queue %d\n", UATH_AC_TO_QID(ac)));
1673 0 : error = uath_cmd_write(sc, UATH_CMD_SET_QUEUE, &qinfo,
1674 : sizeof qinfo, 0);
1675 0 : if (error != 0)
1676 : break;
1677 : }
1678 0 : return error;
1679 0 : }
1680 :
1681 : int
1682 0 : uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c)
1683 : {
1684 0 : struct uath_set_chan chan;
1685 :
1686 0 : bzero(&chan, sizeof chan);
1687 0 : chan.flags = htobe32(0x1400);
1688 0 : chan.freq = htobe32(c->ic_freq);
1689 0 : chan.magic1 = htobe32(20);
1690 0 : chan.magic2 = htobe32(50);
1691 0 : chan.magic3 = htobe32(1);
1692 :
1693 : DPRINTF(("switching to channel %d\n",
1694 : ieee80211_chan2ieee(&sc->sc_ic, c)));
1695 0 : return uath_cmd_write(sc, UATH_CMD_SET_CHAN, &chan, sizeof chan, 0);
1696 0 : }
1697 :
1698 : int
1699 0 : uath_set_key(struct uath_softc *sc, const struct ieee80211_key *k, int index)
1700 : {
1701 0 : struct uath_cmd_crypto crypto;
1702 : int i;
1703 :
1704 0 : bzero(&crypto, sizeof crypto);
1705 0 : crypto.keyidx = htobe32(index);
1706 0 : crypto.magic1 = htobe32(1);
1707 0 : crypto.size = htobe32(368);
1708 0 : crypto.mask = htobe32(0xffff);
1709 0 : crypto.flags = htobe32(0x80000068);
1710 0 : if (index != UATH_DEFAULT_KEY)
1711 0 : crypto.flags |= htobe32(index << 16);
1712 0 : memset(crypto.magic2, 0xff, sizeof crypto.magic2);
1713 :
1714 : /*
1715 : * Each byte of the key must be XOR'ed with 10101010 before being
1716 : * transmitted to the firmware.
1717 : */
1718 0 : for (i = 0; i < k->k_len; i++)
1719 0 : crypto.key[i] = k->k_key[i] ^ 0xaa;
1720 :
1721 : DPRINTF(("setting crypto key index=%d len=%d\n", index, k->k_len));
1722 0 : return uath_cmd_write(sc, UATH_CMD_CRYPTO, &crypto, sizeof crypto, 0);
1723 0 : }
1724 :
1725 : int
1726 0 : uath_set_keys(struct uath_softc *sc)
1727 : {
1728 0 : const struct ieee80211com *ic = &sc->sc_ic;
1729 : int i, error;
1730 :
1731 0 : for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1732 0 : const struct ieee80211_key *k = &ic->ic_nw_keys[i];
1733 :
1734 0 : if (k->k_len > 0 && (error = uath_set_key(sc, k, i)) != 0)
1735 0 : return error;
1736 0 : }
1737 0 : return uath_set_key(sc, &ic->ic_nw_keys[ic->ic_wep_txkey],
1738 : UATH_DEFAULT_KEY);
1739 0 : }
1740 :
1741 : int
1742 0 : uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs)
1743 : {
1744 0 : struct uath_cmd_rates rates;
1745 :
1746 0 : bzero(&rates, sizeof rates);
1747 0 : rates.magic1 = htobe32(0x02);
1748 0 : rates.size = htobe32(1 + sizeof rates.rates);
1749 0 : rates.nrates = rs->rs_nrates;
1750 0 : bcopy(rs->rs_rates, rates.rates, rs->rs_nrates);
1751 :
1752 : DPRINTF(("setting supported rates nrates=%d\n", rs->rs_nrates));
1753 0 : return uath_cmd_write(sc, UATH_CMD_SET_RATES, &rates, sizeof rates, 0);
1754 0 : }
1755 :
1756 : int
1757 0 : uath_set_rxfilter(struct uath_softc *sc, uint32_t filter, uint32_t flags)
1758 : {
1759 0 : struct uath_cmd_filter rxfilter;
1760 :
1761 0 : rxfilter.filter = htobe32(filter);
1762 0 : rxfilter.flags = htobe32(flags);
1763 :
1764 : DPRINTF(("setting Rx filter=0x%x flags=0x%x\n", filter, flags));
1765 0 : return uath_cmd_write(sc, UATH_CMD_SET_FILTER, &rxfilter,
1766 : sizeof rxfilter, 0);
1767 0 : }
1768 :
1769 : int
1770 0 : uath_set_led(struct uath_softc *sc, int which, int on)
1771 : {
1772 0 : struct uath_cmd_led led;
1773 :
1774 0 : led.which = htobe32(which);
1775 0 : led.state = htobe32(on ? UATH_LED_ON : UATH_LED_OFF);
1776 :
1777 : DPRINTFN(2, ("switching %s led %s\n",
1778 : (which == UATH_LED_LINK) ? "link" : "activity",
1779 : on ? "on" : "off"));
1780 0 : return uath_cmd_write(sc, UATH_CMD_SET_LED, &led, sizeof led, 0);
1781 0 : }
1782 :
1783 : int
1784 0 : uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c)
1785 : {
1786 0 : uint32_t val;
1787 : int error;
1788 :
1789 : /* set radio frequency */
1790 0 : if ((error = uath_set_chan(sc, c)) != 0) {
1791 0 : printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1792 0 : return error;
1793 : }
1794 :
1795 : /* reset Tx rings */
1796 0 : if ((error = uath_reset_tx_queues(sc)) != 0) {
1797 0 : printf("%s: could not reset Tx queues\n",
1798 0 : sc->sc_dev.dv_xname);
1799 0 : return error;
1800 : }
1801 :
1802 : /* set Tx rings WME properties */
1803 0 : if ((error = uath_wme_init(sc)) != 0) {
1804 0 : printf("%s: could not init Tx queues\n",
1805 0 : sc->sc_dev.dv_xname);
1806 0 : return error;
1807 : }
1808 :
1809 0 : val = htobe32(0);
1810 0 : error = uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1811 0 : if (error != 0) {
1812 0 : printf("%s: could not set state\n", sc->sc_dev.dv_xname);
1813 0 : return error;
1814 : }
1815 :
1816 0 : return uath_tx_null(sc);
1817 0 : }
1818 :
1819 : int
1820 0 : uath_init(struct ifnet *ifp)
1821 : {
1822 0 : struct uath_softc *sc = ifp->if_softc;
1823 0 : struct ieee80211com *ic = &sc->sc_ic;
1824 0 : struct uath_cmd_31 cmd31;
1825 0 : uint32_t val;
1826 : int i, error;
1827 :
1828 : /* reset data and command rings */
1829 0 : sc->tx_queued = sc->data_idx = sc->cmd_idx = 0;
1830 :
1831 0 : val = htobe32(0);
1832 0 : (void)uath_cmd_write(sc, UATH_CMD_02, &val, sizeof val, 0);
1833 :
1834 : /* set MAC address */
1835 0 : IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1836 0 : (void)uath_write_multi(sc, 0x13, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1837 :
1838 0 : (void)uath_write_reg(sc, 0x02, 0x00000001);
1839 0 : (void)uath_write_reg(sc, 0x0e, 0x0000003f);
1840 0 : (void)uath_write_reg(sc, 0x10, 0x00000001);
1841 0 : (void)uath_write_reg(sc, 0x06, 0x0000001e);
1842 :
1843 : /*
1844 : * Queue Rx data xfers.
1845 : */
1846 0 : for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
1847 0 : struct uath_rx_data *data = &sc->rx_data[i];
1848 :
1849 0 : usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
1850 0 : sc->rxbufsz, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT,
1851 : uath_data_rxeof);
1852 0 : error = usbd_transfer(data->xfer);
1853 0 : if (error != USBD_IN_PROGRESS && error != 0) {
1854 0 : printf("%s: could not queue Rx transfer\n",
1855 0 : sc->sc_dev.dv_xname);
1856 0 : goto fail;
1857 : }
1858 0 : }
1859 :
1860 0 : error = uath_cmd_read(sc, UATH_CMD_07, NULL, 0, &val,
1861 : UATH_CMD_FLAG_MAGIC);
1862 0 : if (error != 0) {
1863 0 : printf("%s: could not send read command 07h\n",
1864 0 : sc->sc_dev.dv_xname);
1865 0 : goto fail;
1866 : }
1867 : DPRINTF(("command 07h return code: %x\n", betoh32(val)));
1868 :
1869 : /* set default channel */
1870 0 : ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1871 0 : if ((error = uath_set_chan(sc, ic->ic_bss->ni_chan)) != 0) {
1872 0 : printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1873 0 : goto fail;
1874 : }
1875 :
1876 0 : if ((error = uath_wme_init(sc)) != 0) {
1877 0 : printf("%s: could not setup WME parameters\n",
1878 0 : sc->sc_dev.dv_xname);
1879 0 : goto fail;
1880 : }
1881 :
1882 : /* init MAC registers */
1883 0 : (void)uath_write_reg(sc, 0x19, 0x00000000);
1884 0 : (void)uath_write_reg(sc, 0x1a, 0x0000003c);
1885 0 : (void)uath_write_reg(sc, 0x1b, 0x0000003c);
1886 0 : (void)uath_write_reg(sc, 0x1c, 0x00000000);
1887 0 : (void)uath_write_reg(sc, 0x1e, 0x00000000);
1888 0 : (void)uath_write_reg(sc, 0x1f, 0x00000003);
1889 0 : (void)uath_write_reg(sc, 0x0c, 0x00000000);
1890 0 : (void)uath_write_reg(sc, 0x0f, 0x00000002);
1891 0 : (void)uath_write_reg(sc, 0x0a, 0x00000007); /* XXX retry? */
1892 0 : (void)uath_write_reg(sc, 0x09, ic->ic_rtsthreshold);
1893 :
1894 0 : val = htobe32(4);
1895 0 : (void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1896 0 : (void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1897 0 : (void)uath_cmd_write(sc, UATH_CMD_1B, NULL, 0, 0);
1898 :
1899 0 : if ((error = uath_set_keys(sc)) != 0) {
1900 0 : printf("%s: could not set crypto keys\n",
1901 0 : sc->sc_dev.dv_xname);
1902 0 : goto fail;
1903 : }
1904 :
1905 : /* enable Rx */
1906 0 : (void)uath_set_rxfilter(sc, 0x0000, 4);
1907 0 : (void)uath_set_rxfilter(sc, 0x0817, 1);
1908 :
1909 0 : cmd31.magic1 = htobe32(0xffffffff);
1910 0 : cmd31.magic2 = htobe32(0xffffffff);
1911 0 : (void)uath_cmd_write(sc, UATH_CMD_31, &cmd31, sizeof cmd31, 0);
1912 :
1913 0 : ifp->if_flags |= IFF_RUNNING;
1914 0 : ifq_clr_oactive(&ifp->if_snd);
1915 :
1916 0 : if (ic->ic_opmode == IEEE80211_M_MONITOR)
1917 0 : ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1918 : else
1919 0 : ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1920 :
1921 0 : return 0;
1922 :
1923 0 : fail: uath_stop(ifp, 1);
1924 0 : return error;
1925 0 : }
1926 :
1927 : void
1928 0 : uath_stop(struct ifnet *ifp, int disable)
1929 : {
1930 0 : struct uath_softc *sc = ifp->if_softc;
1931 0 : struct ieee80211com *ic = &sc->sc_ic;
1932 0 : uint32_t val;
1933 : int s;
1934 :
1935 0 : s = splusb();
1936 :
1937 0 : sc->sc_tx_timer = 0;
1938 0 : ifp->if_timer = 0;
1939 0 : ifp->if_flags &= ~IFF_RUNNING;
1940 0 : ifq_clr_oactive(&ifp->if_snd);
1941 :
1942 0 : ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
1943 :
1944 0 : val = htobe32(0);
1945 0 : (void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1946 0 : (void)uath_cmd_write(sc, UATH_CMD_RESET, NULL, 0, 0);
1947 :
1948 0 : val = htobe32(0);
1949 0 : (void)uath_cmd_write(sc, UATH_CMD_15, &val, sizeof val, 0);
1950 :
1951 : #if 0
1952 : (void)uath_cmd_read(sc, UATH_CMD_SHUTDOWN, NULL, 0, NULL,
1953 : UATH_CMD_FLAG_MAGIC);
1954 : #endif
1955 :
1956 : /* abort any pending transfers */
1957 0 : usbd_abort_pipe(sc->data_tx_pipe);
1958 0 : usbd_abort_pipe(sc->data_rx_pipe);
1959 0 : usbd_abort_pipe(sc->cmd_tx_pipe);
1960 :
1961 0 : splx(s);
1962 0 : }
1963 :
1964 : /*
1965 : * Load the MIPS R4000 microcode into the device. Once the image is loaded,
1966 : * the device will detach itself from the bus and reattach later with a new
1967 : * product Id (a la ezusb). XXX this could also be implemented in userland
1968 : * through /dev/ugen.
1969 : */
1970 : int
1971 0 : uath_loadfirmware(struct uath_softc *sc, const u_char *fw, int len)
1972 : {
1973 : struct usbd_xfer *ctlxfer, *txxfer, *rxxfer;
1974 : struct uath_fwblock *txblock, *rxblock;
1975 : uint8_t *txdata;
1976 : int error = 0;
1977 :
1978 0 : if ((ctlxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
1979 0 : printf("%s: could not allocate Tx control xfer\n",
1980 0 : sc->sc_dev.dv_xname);
1981 : error = USBD_NOMEM;
1982 0 : goto fail1;
1983 : }
1984 0 : txblock = usbd_alloc_buffer(ctlxfer, sizeof (struct uath_fwblock));
1985 0 : if (txblock == NULL) {
1986 0 : printf("%s: could not allocate Tx control block\n",
1987 0 : sc->sc_dev.dv_xname);
1988 : error = USBD_NOMEM;
1989 0 : goto fail2;
1990 : }
1991 :
1992 0 : if ((txxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
1993 0 : printf("%s: could not allocate Tx xfer\n",
1994 0 : sc->sc_dev.dv_xname);
1995 : error = USBD_NOMEM;
1996 0 : goto fail2;
1997 : }
1998 0 : txdata = usbd_alloc_buffer(txxfer, UATH_MAX_FWBLOCK_SIZE);
1999 0 : if (txdata == NULL) {
2000 0 : printf("%s: could not allocate Tx buffer\n",
2001 0 : sc->sc_dev.dv_xname);
2002 : error = USBD_NOMEM;
2003 0 : goto fail3;
2004 : }
2005 :
2006 0 : if ((rxxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2007 0 : printf("%s: could not allocate Rx control xfer\n",
2008 0 : sc->sc_dev.dv_xname);
2009 : error = USBD_NOMEM;
2010 0 : goto fail3;
2011 : }
2012 0 : rxblock = usbd_alloc_buffer(rxxfer, sizeof (struct uath_fwblock));
2013 0 : if (rxblock == NULL) {
2014 0 : printf("%s: could not allocate Rx control block\n",
2015 0 : sc->sc_dev.dv_xname);
2016 : error = USBD_NOMEM;
2017 0 : goto fail4;
2018 : }
2019 :
2020 0 : bzero(txblock, sizeof (struct uath_fwblock));
2021 0 : txblock->flags = htobe32(UATH_WRITE_BLOCK);
2022 0 : txblock->total = htobe32(len);
2023 :
2024 0 : while (len > 0) {
2025 0 : int mlen = min(len, UATH_MAX_FWBLOCK_SIZE);
2026 :
2027 0 : txblock->remain = htobe32(len - mlen);
2028 0 : txblock->len = htobe32(mlen);
2029 :
2030 : DPRINTF(("sending firmware block: %d bytes remaining\n",
2031 : len - mlen));
2032 :
2033 : /* send firmware block meta-data */
2034 0 : usbd_setup_xfer(ctlxfer, sc->cmd_tx_pipe, sc, txblock,
2035 : sizeof (struct uath_fwblock),
2036 : USBD_NO_COPY | USBD_SYNCHRONOUS,
2037 : UATH_CMD_TIMEOUT, NULL);
2038 0 : if ((error = usbd_transfer(ctlxfer)) != 0) {
2039 0 : printf("%s: could not send firmware block info\n",
2040 0 : sc->sc_dev.dv_xname);
2041 0 : break;
2042 : }
2043 :
2044 : /* send firmware block data */
2045 0 : bcopy(fw, txdata, mlen);
2046 0 : usbd_setup_xfer(txxfer, sc->data_tx_pipe, sc, txdata, mlen,
2047 : USBD_NO_COPY | USBD_SYNCHRONOUS, UATH_DATA_TIMEOUT, NULL);
2048 0 : if ((error = usbd_transfer(txxfer)) != 0) {
2049 0 : printf("%s: could not send firmware block data\n",
2050 0 : sc->sc_dev.dv_xname);
2051 0 : break;
2052 : }
2053 :
2054 : /* wait for ack from firmware */
2055 0 : usbd_setup_xfer(rxxfer, sc->cmd_rx_pipe, sc, rxblock,
2056 : sizeof (struct uath_fwblock), USBD_SHORT_XFER_OK |
2057 : USBD_NO_COPY | USBD_SYNCHRONOUS, UATH_CMD_TIMEOUT, NULL);
2058 0 : if ((error = usbd_transfer(rxxfer)) != 0) {
2059 0 : printf("%s: could not read firmware answer\n",
2060 0 : sc->sc_dev.dv_xname);
2061 0 : break;
2062 : }
2063 :
2064 : DPRINTFN(2, ("rxblock flags=0x%x total=%d\n",
2065 : betoh32(rxblock->flags), betoh32(rxblock->rxtotal)));
2066 0 : fw += mlen;
2067 : len -= mlen;
2068 0 : }
2069 :
2070 0 : fail4: usbd_free_xfer(rxxfer);
2071 0 : fail3: usbd_free_xfer(txxfer);
2072 0 : fail2: usbd_free_xfer(ctlxfer);
2073 0 : fail1: return error;
2074 : }
|