LCOV - code coverage report
Current view: top level - dev/videomode - vesagtf.c (source / functions) Hit Total Coverage
Test: 6.4 Lines: 0 52 0.0 %
Date: 2018-10-19 03:25:38 Functions: 0 2 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* $NetBSD: vesagtf.c,v 1.1 2006/05/11 01:49:53 gdamore Exp $ */
       2             : 
       3             : /*-
       4             :  * Copyright (c) 2006 Itronix Inc.
       5             :  * All rights reserved.
       6             :  *
       7             :  * Written by Garrett D'Amore for Itronix Inc.
       8             :  *
       9             :  * Redistribution and use in source and binary forms, with or without
      10             :  * modification, are permitted provided that the following conditions
      11             :  * are met:
      12             :  * 1. Redistributions of source code must retain the above copyright
      13             :  *    notice, this list of conditions and the following disclaimer.
      14             :  * 2. Redistributions in binary form must reproduce the above copyright
      15             :  *    notice, this list of conditions and the following disclaimer in the
      16             :  *    documentation and/or other materials provided with the distribution.
      17             :  * 3. The name of Itronix Inc. may not be used to endorse
      18             :  *    or promote products derived from this software without specific
      19             :  *    prior written permission.
      20             :  *
      21             :  * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND ANY EXPRESS
      22             :  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
      23             :  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
      24             :  * ARE DISCLAIMED.  IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
      25             :  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
      26             :  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
      27             :  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
      28             :  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
      29             :  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
      30             :  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
      31             :  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      32             :  */ 
      33             : 
      34             : /*
      35             :  * This was derived from a userland GTF program supplied by NVIDIA.
      36             :  * NVIDIA's original boilerplate follows. 
      37             :  *
      38             :  * Note that I have heavily modified the program for use in the EDID
      39             :  * kernel code for NetBSD, including removing the use of floating
      40             :  * point operations and making significant adjustments to minimize
      41             :  * error propogation while operating with integer only math.
      42             :  *
      43             :  * This has required the use of 64-bit integers in a few places, but
      44             :  * the upshot is that for a calculation of 1920x1200x85 (as an
      45             :  * example), the error deviates by only ~.004% relative to the
      46             :  * floating point version.  This error is *well* within VESA
      47             :  * tolerances.
      48             :  */
      49             : 
      50             : /*
      51             :  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
      52             :  * All rights reserved.
      53             :  * 
      54             :  * Redistribution and use in source and binary forms, with or without
      55             :  * modification, are permitted provided that the following conditions
      56             :  * are met:
      57             :  * 
      58             :  * o Redistributions of source code must retain the above copyright
      59             :  *   notice, this list of conditions and the following disclaimer.
      60             :  * o Redistributions in binary form must reproduce the above copyright
      61             :  *   notice, this list of conditions and the following disclaimer
      62             :  *   in the documentation and/or other materials provided with the
      63             :  *   distribution.
      64             :  * o Neither the name of NVIDIA nor the names of its contributors
      65             :  *   may be used to endorse or promote products derived from this
      66             :  *   software without specific prior written permission.
      67             :  *
      68             :  *
      69             :  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      70             :  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
      71             :  * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
      72             :  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
      73             :  * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
      74             :  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
      75             :  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
      76             :  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
      77             :  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
      78             :  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
      79             :  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
      80             :  * POSSIBILITY OF SUCH DAMAGE.
      81             :  *
      82             :  * 
      83             :  *
      84             :  * This program is based on the Generalized Timing Formula(GTF TM)
      85             :  * Standard Version: 1.0, Revision: 1.0
      86             :  *
      87             :  * The GTF Document contains the following Copyright information:
      88             :  *
      89             :  * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
      90             :  * Association. Duplication of this document within VESA member
      91             :  * companies for review purposes is permitted. All other rights
      92             :  * reserved.
      93             :  *
      94             :  * While every precaution has been taken in the preparation
      95             :  * of this standard, the Video Electronics Standards Association and
      96             :  * its contributors assume no responsibility for errors or omissions,
      97             :  * and make no warranties, expressed or implied, of functionality
      98             :  * of suitability for any purpose. The sample code contained within
      99             :  * this standard may be used without restriction.
     100             :  *
     101             :  * 
     102             :  *
     103             :  * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
     104             :  * implementation of the GTF Timing Standard, is available at:
     105             :  *
     106             :  * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
     107             :  *
     108             :  *
     109             :  *
     110             :  * This program takes a desired resolution and vertical refresh rate,
     111             :  * and computes mode timings according to the GTF Timing Standard.
     112             :  * These mode timings can then be formatted as an XFree86 modeline
     113             :  * or a mode description for use by fbset(8).
     114             :  *
     115             :  *
     116             :  *
     117             :  * NOTES:
     118             :  *
     119             :  * The GTF allows for computation of "margins" (the visible border
     120             :  * surrounding the addressable video); on most non-overscan type
     121             :  * systems, the margin period is zero.  I've implemented the margin
     122             :  * computations but not enabled it because 1) I don't really have
     123             :  * any experience with this, and 2) neither XFree86 modelines nor
     124             :  * fbset fb.modes provide an obvious way for margin timings to be
     125             :  * included in their mode descriptions (needs more investigation).
     126             :  * 
     127             :  * The GTF provides for computation of interlaced mode timings;
     128             :  * I've implemented the computations but not enabled them, yet.
     129             :  * I should probably enable and test this at some point.
     130             :  *
     131             :  * 
     132             :  *
     133             :  * TODO:
     134             :  *
     135             :  * o Add support for interlaced modes.
     136             :  *
     137             :  * o Implement the other portions of the GTF: compute mode timings
     138             :  *   given either the desired pixel clock or the desired horizontal
     139             :  *   frequency.
     140             :  *
     141             :  * o It would be nice if this were more general purpose to do things
     142             :  *   outside the scope of the GTF: like generate double scan mode
     143             :  *   timings, for example.
     144             :  *   
     145             :  * o Printing digits to the right of the decimal point when the
     146             :  *   digits are 0 annoys me.
     147             :  *
     148             :  * o Error checking.
     149             :  *
     150             :  */
     151             : 
     152             : 
     153             : #ifdef  _KERNEL
     154             : #include <sys/param.h>
     155             : #include <sys/systm.h>
     156             : #include <dev/videomode/videomode.h>
     157             : #include <dev/videomode/vesagtf.h>
     158             : #else
     159             : #include <sys/types.h>
     160             : #include "videomode.h"
     161             : #include "vesagtf.h"
     162             : #include <stdio.h>
     163             : #include <stdlib.h>
     164             : void print_xf86_mode(struct videomode *m);
     165             : #endif
     166             : 
     167             : #define CELL_GRAN         8     /* assumed character cell granularity        */
     168             : 
     169             : /* C' and M' are part of the Blanking Duty Cycle computation */
     170             : /*
     171             :  * #define C_PRIME           (((C - J) * K/256.0) + J)
     172             :  * #define M_PRIME           (K/256.0 * M)
     173             :  */
     174             : 
     175             : /*
     176             :  * C' and M' multiplied by 256 to give integer math.  Make sure to
     177             :  * scale results using these back down, appropriately.
     178             :  */
     179             : #define C_PRIME256(p)     (((p->C - p->J) * p->K) + (p->J * 256))
     180             : #define M_PRIME256(p)     (p->K * p->M)
     181             : 
     182             : #define DIVIDE(x,y)     (((x) + ((y) / 2)) / (y))
     183             : 
     184             : /*
     185             :  * print_value() - print the result of the named computation; this is
     186             :  * useful when comparing against the GTF EXCEL spreadsheet.
     187             :  */
     188             : 
     189             : #ifdef GTFDEBUG
     190             : 
     191             : void
     192             : print_value(int n, const char *name, unsigned val)
     193             : {
     194             :         printf("%2d: %-27s: %u\n", n, name, val);
     195             : }
     196             : #else
     197             : #define print_value(n, name, val)
     198             : #endif
     199             : 
     200             : 
     201             : /*
     202             :  * vert_refresh() - as defined by the GTF Timing Standard, compute the
     203             :  * Stage 1 Parameters using the vertical refresh frequency.  In other
     204             :  * words: input a desired resolution and desired refresh rate, and
     205             :  * output the GTF mode timings.
     206             :  *
     207             :  * XXX All the code is in place to compute interlaced modes, but I don't
     208             :  * feel like testing it right now.
     209             :  *
     210             :  * XXX margin computations are implemented but not tested (nor used by
     211             :  * XFree86 of fbset mode descriptions, from what I can tell).
     212             :  */
     213             : 
     214             : void
     215           0 : vesagtf_mode_params(unsigned h_pixels, unsigned v_lines, unsigned freq,
     216             :     struct vesagtf_params *params, int flags, struct videomode *vmp)
     217             : {
     218             :     unsigned v_field_rqd;
     219             :     unsigned top_margin;
     220             :     unsigned bottom_margin;
     221             :     unsigned interlace;
     222             :     uint64_t h_period_est;
     223             :     unsigned vsync_plus_bp;
     224             :     unsigned v_back_porch;
     225             :     unsigned total_v_lines;
     226             :     uint64_t v_field_est;
     227             :     uint64_t h_period;
     228             :     unsigned v_field_rate;
     229             :     unsigned v_frame_rate;
     230             :     unsigned left_margin;
     231             :     unsigned right_margin;
     232             :     unsigned total_active_pixels;
     233             :     uint64_t ideal_duty_cycle;
     234             :     unsigned h_blank;
     235             :     unsigned total_pixels;
     236             :     unsigned pixel_freq;
     237             : 
     238             :     unsigned h_sync;
     239             :     unsigned h_front_porch;
     240             :     unsigned v_odd_front_porch_lines;
     241             : 
     242             : #ifdef  GTFDEBUG
     243             :     unsigned h_freq;
     244             : #endif
     245             :     
     246             :     /*  1. In order to give correct results, the number of horizontal
     247             :      *  pixels requested is first processed to ensure that it is divisible
     248             :      *  by the character size, by rounding it to the nearest character
     249             :      *  cell boundary:
     250             :      *
     251             :      *  [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
     252             :      */
     253             :     
     254           0 :     h_pixels = DIVIDE(h_pixels, CELL_GRAN) * CELL_GRAN;
     255             :     
     256             :     print_value(1, "[H PIXELS RND]", h_pixels);
     257             : 
     258             :     
     259             :     /*  2. If interlace is requested, the number of vertical lines assumed
     260             :      *  by the calculation must be halved, as the computation calculates
     261             :      *  the number of vertical lines per field. In either case, the
     262             :      *  number of lines is rounded to the nearest integer.
     263             :      *   
     264             :      *  [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
     265             :      *                                     ROUND([V LINES],0))
     266             :      */
     267             : 
     268           0 :     v_lines = (flags & VESAGTF_FLAG_ILACE) ? DIVIDE(v_lines, 2) : v_lines;
     269             :     
     270             :     print_value(2, "[V LINES RND]", v_lines);
     271             :     
     272             :     
     273             :     /*  3. Find the frame rate required:
     274             :      *
     275             :      *  [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
     276             :      *                                          [I/P FREQ RQD])
     277             :      */
     278             : 
     279           0 :     v_field_rqd = (flags & VESAGTF_FLAG_ILACE) ? (freq * 2) : (freq);
     280             : 
     281             :     print_value(3, "[V FIELD RATE RQD]", v_field_rqd);
     282             :     
     283             : 
     284             :     /*  4. Find number of lines in Top margin:
     285             :      *  5. Find number of lines in Bottom margin:
     286             :      *
     287             :      *  [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
     288             :      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
     289             :      *          0)
     290             :      *
     291             :      *  Ditto for bottom margin.  Note that instead of %, we use PPT, which
     292             :      *  is parts per thousand.  This helps us with integer math.
     293             :      */
     294             : 
     295           0 :     top_margin = bottom_margin = (flags & VESAGTF_FLAG_MARGINS) ?
     296           0 :         DIVIDE(v_lines * params->margin_ppt, 1000) : 0;
     297             : 
     298             :     print_value(4, "[TOP MARGIN (LINES)]", top_margin);
     299             :     print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
     300             : 
     301             :     
     302             :     /*  6. If interlace is required, then set variable [INTERLACE]=0.5:
     303             :      *   
     304             :      *  [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
     305             :      *
     306             :      *  To make this integer friendly, we use some special hacks in step
     307             :      *  7 below.  Please read those comments to understand why I am using
     308             :      *  a whole number of 1.0 instead of 0.5 here.
     309             :      */
     310           0 :     interlace = (flags & VESAGTF_FLAG_ILACE) ? 1 : 0;
     311             : 
     312             :     print_value(6, "[2*INTERLACE]", interlace);
     313             :     
     314             : 
     315             :     /*  7. Estimate the Horizontal period
     316             :      *
     317             :      *  [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
     318             :      *                    ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
     319             :      *                     [MIN PORCH RND]+[INTERLACE]) * 1000000
     320             :      *
     321             :      *  To make it integer friendly, we pre-multiply the 1000000 to get to
     322             :      *  usec.  This gives us:
     323             :      *
     324             :      *  [H PERIOD EST] = ((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP]) /
     325             :      *                  ([V LINES RND] + (2 * [TOP MARGIN (LINES)]) +
     326             :      *                   [MIN PORCH RND]+[INTERLACE])
     327             :      *
     328             :      *  The other problem is that the interlace value is wrong.  To get
     329             :      *  the interlace to a whole number, we multiply both the numerator and
     330             :      *  divisor by 2, so we can use a value of either 1 or 0 for the interlace
     331             :      *  factor.
     332             :      *
     333             :      * This gives us:
     334             :      *
     335             :      * [H PERIOD EST] = ((2*((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP])) /
     336             :      *                   (2*([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
     337             :      *                    [MIN PORCH RND]) + [2*INTERLACE]))
     338             :      *
     339             :      * Finally we multiply by another 1000, to get value in picosec.
     340             :      * Why picosec?  To minimize rounding errors.  Gotta love integer
     341             :      * math and error propogation.
     342             :      */
     343             : 
     344           0 :     h_period_est = DIVIDE(((DIVIDE(2000000000000ULL, v_field_rqd)) -
     345             :                               (2000000 * params->min_vsbp)),
     346             :         ((2 * (v_lines + (2 * top_margin) + params->min_porch)) + interlace));
     347             : 
     348             :     print_value(7, "[H PERIOD EST (ps)]", h_period_est);
     349             :     
     350             : 
     351             :     /*  8. Find the number of lines in V sync + back porch:
     352             :      *
     353             :      *  [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
     354             :      *
     355             :      *  But recall that h_period_est is in psec. So multiply by 1000000.
     356             :      */
     357             : 
     358           0 :     vsync_plus_bp = DIVIDE(params->min_vsbp * 1000000, h_period_est);
     359             : 
     360             :     print_value(8, "[V SYNC+BP]", vsync_plus_bp);
     361             :     
     362             :     
     363             :     /*  9. Find the number of lines in V back porch alone:
     364             :      *
     365             :      *  [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
     366             :      *
     367             :      *  XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
     368             :      */
     369             :     
     370           0 :     v_back_porch = vsync_plus_bp - params->vsync_rqd;
     371             :     
     372             :     print_value(9, "[V BACK PORCH]", v_back_porch);
     373             :     
     374             : 
     375             :     /*  10. Find the total number of lines in Vertical field period:
     376             :      *
     377             :      *  [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
     378             :      *                    [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
     379             :      *                    [MIN PORCH RND]
     380             :      */
     381             : 
     382           0 :     total_v_lines = v_lines + top_margin + bottom_margin + vsync_plus_bp +
     383           0 :         interlace + params->min_porch;
     384             :     
     385             :     print_value(10, "[TOTAL V LINES]", total_v_lines);
     386             :     
     387             : 
     388             :     /*  11. Estimate the Vertical field frequency:
     389             :      *
     390             :      *  [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
     391             :      *
     392             :      *  Again, we want to pre multiply by 10^9 to convert for nsec, thereby
     393             :      *  making it usable in integer math.
     394             :      *
     395             :      *  So we get:
     396             :      *
     397             :      *  [V FIELD RATE EST] = 1000000000 / [H PERIOD EST] / [TOTAL V LINES]
     398             :      *
     399             :      *  This is all scaled to get the result in uHz.  Again, we're trying to
     400             :      *  minimize error propogation.
     401             :      */
     402           0 :     v_field_est = DIVIDE(DIVIDE(1000000000000000ULL, h_period_est),
     403             :         total_v_lines);
     404             :     
     405             :     print_value(11, "[V FIELD RATE EST(uHz)]", v_field_est);
     406             :     
     407             : 
     408             :     /*  12. Find the actual horizontal period:
     409             :      *
     410             :      *  [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
     411             :      */
     412             : 
     413           0 :     h_period = DIVIDE(h_period_est * v_field_est, v_field_rqd * 1000);
     414             :     
     415             :     print_value(12, "[H PERIOD(ps)]", h_period);
     416             :     
     417             : 
     418             :     /*  13. Find the actual Vertical field frequency:
     419             :      *
     420             :      *  [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
     421             :      *
     422             :      *  And again, we convert to nsec ahead of time, giving us:
     423             :      *
     424             :      *  [V FIELD RATE] = 1000000 / [H PERIOD] / [TOTAL V LINES]
     425             :      *
     426             :      *  And another rescaling back to mHz.  Gotta love it.
     427             :      */
     428             : 
     429           0 :     v_field_rate = DIVIDE(1000000000000ULL, h_period * total_v_lines);
     430             : 
     431             :     print_value(13, "[V FIELD RATE]", v_field_rate);
     432             :     
     433             : 
     434             :     /*  14. Find the Vertical frame frequency:
     435             :      *
     436             :      *  [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
     437             :      *
     438             :      *  N.B. that the result here is in mHz.
     439             :      */
     440             : 
     441             :     v_frame_rate = (flags & VESAGTF_FLAG_ILACE) ?
     442           0 :         v_field_rate / 2 : v_field_rate;
     443             : 
     444             :     print_value(14, "[V FRAME RATE]", v_frame_rate);
     445             :     
     446             : 
     447             :     /*  15. Find number of pixels in left margin:
     448             :      *  16. Find number of pixels in right margin:
     449             :      *
     450             :      *  [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
     451             :      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
     452             :      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
     453             :      *          0))
     454             :      *
     455             :      *  Again, we deal with margin percentages as PPT (parts per thousand).
     456             :      *  And the calculations for left and right are the same.
     457             :      */
     458             : 
     459           0 :     left_margin = right_margin = (flags & VESAGTF_FLAG_MARGINS) ?
     460           0 :         DIVIDE(DIVIDE(h_pixels * params->margin_ppt, 1000),
     461           0 :             CELL_GRAN) * CELL_GRAN : 0;
     462             : 
     463             :     print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
     464             :     print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
     465             :     
     466             : 
     467             :     /*  17. Find total number of active pixels in image and left and right
     468             :      *  margins:
     469             :      *
     470             :      *  [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
     471             :      *                          [RIGHT MARGIN (PIXELS)]
     472             :      */
     473             : 
     474           0 :     total_active_pixels = h_pixels + left_margin + right_margin;
     475             :     
     476             :     print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
     477             :     
     478             :     
     479             :     /*  18. Find the ideal blanking duty cycle from the blanking duty cycle
     480             :      *  equation:
     481             :      *
     482             :      *  [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
     483             :      *
     484             :      *  However, we have modified values for [C'] as [256*C'] and
     485             :      *  [M'] as [256*M'].  Again the idea here is to get good scaling.
     486             :      *  We use 256 as the factor to make the math fast.
     487             :      *
     488             :      *  Note that this means that we have to scale it appropriately in
     489             :      *  later calculations.
     490             :      *
     491             :      *  The ending result is that our ideal_duty_cycle is 256000x larger
     492             :      *  than the duty cycle used by VESA.  But again, this reduces error
     493             :      *  propogation.
     494             :      */
     495             : 
     496             :     ideal_duty_cycle =
     497           0 :         ((C_PRIME256(params) * 1000) -
     498           0 :             (M_PRIME256(params) * h_period / 1000000));
     499             :     
     500             :     print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
     501             :     
     502             : 
     503             :     /*  19. Find the number of pixels in the blanking time to the nearest
     504             :      *  double character cell:
     505             :      *
     506             :      *  [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
     507             :      *                               [IDEAL DUTY CYCLE] /
     508             :      *                               (100-[IDEAL DUTY CYCLE]) /
     509             :      *                               (2*[CELL GRAN RND])), 0))
     510             :      *                       * (2*[CELL GRAN RND])
     511             :      *
     512             :      *  Of course, we adjust to make this rounding work in integer math.
     513             :      */
     514             : 
     515           0 :     h_blank = DIVIDE(DIVIDE(total_active_pixels * ideal_duty_cycle,
     516             :                          (256000 * 100ULL) - ideal_duty_cycle),
     517           0 :         2 * CELL_GRAN) * (2 * CELL_GRAN);
     518             : 
     519             :     print_value(19, "[H BLANK (PIXELS)]", h_blank);
     520             :     
     521             : 
     522             :     /*  20. Find total number of pixels:
     523             :      *
     524             :      *  [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
     525             :      */
     526             : 
     527           0 :     total_pixels = total_active_pixels + h_blank;
     528             :     
     529             :     print_value(20, "[TOTAL PIXELS]", total_pixels);
     530             :     
     531             : 
     532             :     /*  21. Find pixel clock frequency:
     533             :      *
     534             :      *  [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
     535             :      *
     536             :      *  We calculate this in Hz rather than MHz, to get a value that
     537             :      *  is usable with integer math.  Recall that the [H PERIOD] is in
     538             :      *  nsec.
     539             :      */
     540             :     
     541           0 :     pixel_freq = DIVIDE(total_pixels * 1000000, DIVIDE(h_period, 1000));
     542             :     
     543             :     print_value(21, "[PIXEL FREQ]", pixel_freq);
     544             :     
     545             : 
     546             :     /*  22. Find horizontal frequency:
     547             :      *
     548             :      *  [H FREQ] = 1000 / [H PERIOD]
     549             :      *
     550             :      *  I've ifdef'd this out, because we don't need it for any of
     551             :      *  our calculations.
     552             :      *  We calculate this in Hz rather than kHz, to avoid rounding
     553             :      *  errors.  Recall that the [H PERIOD] is in usec.
     554             :      */
     555             : 
     556             : #ifdef  GTFDEBUG
     557             :     h_freq = 1000000000 / h_period;
     558             :     
     559             :     print_value(22, "[H FREQ]", h_freq);
     560             : #endif
     561             :     
     562             : 
     563             : 
     564             :     /* Stage 1 computations are now complete; I should really pass
     565             :        the results to another function and do the Stage 2
     566             :        computations, but I only need a few more values so I'll just
     567             :        append the computations here for now */
     568             : 
     569             :     
     570             : 
     571             :     /*  17. Find the number of pixels in the horizontal sync period:
     572             :      *
     573             :      *  [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
     574             :      *                             [CELL GRAN RND]),0))*[CELL GRAN RND]
     575             :      *
     576             :      *  Rewriting for integer math:
     577             :      *
     578             :      *  [H SYNC (PIXELS)]=(ROUND((H SYNC%] * [TOTAL PIXELS] / 100 /
     579             :      *                             [CELL GRAN RND),0))*[CELL GRAN RND]
     580             :      */
     581             : 
     582           0 :     h_sync = DIVIDE(((params->hsync_pct * total_pixels) / 100), CELL_GRAN) *
     583             :         CELL_GRAN;
     584             : 
     585             :     print_value(17, "[H SYNC (PIXELS)]", h_sync);
     586             :     
     587             : 
     588             :     /*  18. Find the number of pixels in the horizontal front porch period:
     589             :      *
     590             :      *  [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
     591             :      *
     592             :      *  Note that h_blank is always an even number of characters (i.e.
     593             :      *  h_blank % (CELL_GRAN * 2) == 0)
     594             :      */
     595             : 
     596           0 :     h_front_porch = (h_blank / 2) - h_sync;
     597             : 
     598             :     print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
     599             :     
     600             :     
     601             :     /*  36. Find the number of lines in the odd front porch period:
     602             :      *
     603             :      *  [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
     604             :      *
     605             :      *  Adjusting for the fact that the interlace is scaled:
     606             :      *
     607             :      *  [V ODD FRONT PORCH(LINES)]=(([MIN PORCH RND] * 2) + [2*INTERLACE]) / 2
     608             :      */
     609             :     
     610           0 :     v_odd_front_porch_lines = ((2 * params->min_porch) + interlace) / 2;
     611             :     
     612             :     print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
     613             :     
     614             : 
     615             :     /* finally, pack the results in the mode struct */
     616             : 
     617           0 :     vmp->hsync_start = h_pixels + h_front_porch;
     618           0 :     vmp->hsync_end = vmp->hsync_start + h_sync;
     619           0 :     vmp->htotal = total_pixels;
     620           0 :     vmp->hdisplay = h_pixels;
     621             : 
     622           0 :     vmp->vsync_start = v_lines + v_odd_front_porch_lines;
     623           0 :     vmp->vsync_end = vmp->vsync_start + params->vsync_rqd;
     624           0 :     vmp->vtotal = total_v_lines;
     625           0 :     vmp->vdisplay = v_lines;
     626             : 
     627           0 :     vmp->dot_clock = pixel_freq;
     628             :     
     629           0 : }
     630             : 
     631             : void
     632           0 : vesagtf_mode(unsigned x, unsigned y, unsigned refresh, struct videomode *vmp)
     633             : {
     634           0 :         struct vesagtf_params   params;
     635             : 
     636           0 :         params.margin_ppt = VESAGTF_MARGIN_PPT;
     637           0 :         params.min_porch = VESAGTF_MIN_PORCH;
     638           0 :         params.vsync_rqd = VESAGTF_VSYNC_RQD;
     639           0 :         params.hsync_pct = VESAGTF_HSYNC_PCT;
     640           0 :         params.min_vsbp = VESAGTF_MIN_VSBP;
     641           0 :         params.M = VESAGTF_M;
     642           0 :         params.C = VESAGTF_C;
     643           0 :         params.K = VESAGTF_K;
     644           0 :         params.J = VESAGTF_J;
     645             : 
     646           0 :         vesagtf_mode_params(x, y, refresh, &params, 0, vmp);
     647           0 : }
     648             : 
     649             : /*
     650             :  * The tidbit here is so that you can compile this file as a
     651             :  * standalone user program to generate X11 modelines using VESA GTF.
     652             :  * This also allows for testing of the code itself, without
     653             :  * necessitating a full kernel recompile.
     654             :  */
     655             : 
     656             : /* print_xf86_mode() - print the XFree86 modeline, given mode timings. */
     657             : 
     658             : #ifndef _KERNEL
     659             : void
     660             : print_xf86_mode (struct videomode *vmp)
     661             : {
     662             :         float   vf, hf;
     663             : 
     664             :         hf = 1000.0 * vmp->dot_clock / vmp->htotal;
     665             :         vf = 1.0 * hf / vmp->vtotal;
     666             : 
     667             :     printf("\n");
     668             :     printf("  # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
     669             :         vmp->hdisplay, vmp->vdisplay, vf, hf, vmp->dot_clock / 1000.0);
     670             :     
     671             :     printf("  Modeline \"%dx%d_%.2f\"  %.2f"
     672             :         "  %d %d %d %d"
     673             :         "  %d %d %d %d"
     674             :         "  -HSync +Vsync\n\n",
     675             :         vmp->hdisplay, vmp->vdisplay, vf, (vmp->dot_clock / 1000.0),
     676             :         vmp->hdisplay, vmp->hsync_start, vmp->hsync_end, vmp->htotal,
     677             :         vmp->vdisplay, vmp->vsync_start, vmp->vsync_end, vmp->vtotal);
     678             : }
     679             : 
     680             : int
     681             : main (int argc, char *argv[])
     682             : {
     683             :         struct videomode m;
     684             : 
     685             :         if (argc != 4) {
     686             :                 printf("usage: %s x y refresh\n", argv[0]);
     687             :                 exit(1);
     688             :         }
     689             :     
     690             :         vesagtf_mode(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), &m);
     691             : 
     692             :         print_xf86_mode(&m);
     693             :     
     694             :         return 0;
     695             :     
     696             : }
     697             : #endif

Generated by: LCOV version 1.13