Line data Source code
1 : /* $OpenBSD: kern_malloc.c,v 1.136 2018/07/10 10:17:42 bluhm Exp $ */
2 : /* $NetBSD: kern_malloc.c,v 1.15.4.2 1996/06/13 17:10:56 cgd Exp $ */
3 :
4 : /*
5 : * Copyright (c) 1987, 1991, 1993
6 : * The Regents of the University of California. All rights reserved.
7 : *
8 : * Redistribution and use in source and binary forms, with or without
9 : * modification, are permitted provided that the following conditions
10 : * are met:
11 : * 1. Redistributions of source code must retain the above copyright
12 : * notice, this list of conditions and the following disclaimer.
13 : * 2. Redistributions in binary form must reproduce the above copyright
14 : * notice, this list of conditions and the following disclaimer in the
15 : * documentation and/or other materials provided with the distribution.
16 : * 3. Neither the name of the University nor the names of its contributors
17 : * may be used to endorse or promote products derived from this software
18 : * without specific prior written permission.
19 : *
20 : * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 : * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 : * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 : * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 : * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 : * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 : * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 : * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 : * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 : * SUCH DAMAGE.
31 : *
32 : * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
33 : */
34 :
35 : #include <sys/param.h>
36 : #include <sys/kernel.h>
37 : #include <sys/malloc.h>
38 : #include <sys/proc.h>
39 : #include <sys/stdint.h>
40 : #include <sys/systm.h>
41 : #include <sys/sysctl.h>
42 : #include <sys/time.h>
43 : #include <sys/mutex.h>
44 : #include <sys/rwlock.h>
45 :
46 : #include <uvm/uvm_extern.h>
47 :
48 : static
49 : #ifndef SMALL_KERNEL
50 : __inline__
51 : #endif
52 0 : long BUCKETINDX(size_t sz)
53 : {
54 : long b, d;
55 :
56 : /* note that this relies upon MINALLOCSIZE being 1 << MINBUCKET */
57 : b = 7 + MINBUCKET; d = 4;
58 0 : while (d != 0) {
59 0 : if (sz <= (1 << b))
60 0 : b -= d;
61 : else
62 0 : b += d;
63 0 : d >>= 1;
64 : }
65 0 : if (sz <= (1 << b))
66 0 : b += 0;
67 : else
68 0 : b += 1;
69 0 : return b;
70 : }
71 :
72 : static struct vm_map kmem_map_store;
73 : struct vm_map *kmem_map = NULL;
74 :
75 : /*
76 : * Default number of pages in kmem_map. We attempt to calculate this
77 : * at run-time, but allow it to be either patched or set in the kernel
78 : * config file.
79 : */
80 : #ifndef NKMEMPAGES
81 : #define NKMEMPAGES 0
82 : #endif
83 : u_int nkmempages = NKMEMPAGES;
84 :
85 : /*
86 : * Defaults for lower- and upper-bounds for the kmem_map page count.
87 : * Can be overridden by kernel config options.
88 : */
89 : #ifndef NKMEMPAGES_MIN
90 : #define NKMEMPAGES_MIN 0
91 : #endif
92 : u_int nkmempages_min = 0;
93 :
94 : #ifndef NKMEMPAGES_MAX
95 : #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
96 : #endif
97 : u_int nkmempages_max = 0;
98 :
99 : struct mutex malloc_mtx = MUTEX_INITIALIZER(IPL_VM);
100 : struct kmembuckets bucket[MINBUCKET + 16];
101 : #ifdef KMEMSTATS
102 : struct kmemstats kmemstats[M_LAST];
103 : #endif
104 : struct kmemusage *kmemusage;
105 : char *kmembase, *kmemlimit;
106 : char buckstring[16 * sizeof("123456,")];
107 : int buckstring_init = 0;
108 : #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES)
109 : char *memname[] = INITKMEMNAMES;
110 : char *memall = NULL;
111 : struct rwlock sysctl_kmemlock = RWLOCK_INITIALIZER("sysctlklk");
112 : #endif
113 :
114 : /*
115 : * Normally the freelist structure is used only to hold the list pointer
116 : * for free objects. However, when running with diagnostics, the first
117 : * 8 bytes of the structure is unused except for diagnostic information,
118 : * and the free list pointer is at offset 8 in the structure. Since the
119 : * first 8 bytes is the portion of the structure most often modified, this
120 : * helps to detect memory reuse problems and avoid free list corruption.
121 : */
122 : struct kmem_freelist {
123 : int32_t kf_spare0;
124 : int16_t kf_type;
125 : int16_t kf_spare1;
126 : XSIMPLEQ_ENTRY(kmem_freelist) kf_flist;
127 : };
128 :
129 : #ifdef DIAGNOSTIC
130 : /*
131 : * This structure provides a set of masks to catch unaligned frees.
132 : */
133 : const long addrmask[] = { 0,
134 : 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
135 : 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
136 : 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
137 : 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
138 : };
139 :
140 : #endif /* DIAGNOSTIC */
141 :
142 : #ifndef SMALL_KERNEL
143 : struct timeval malloc_errintvl = { 5, 0 };
144 : struct timeval malloc_lasterr;
145 : #endif
146 :
147 : /*
148 : * Allocate a block of memory
149 : */
150 : void *
151 0 : malloc(size_t size, int type, int flags)
152 : {
153 : struct kmembuckets *kbp;
154 : struct kmemusage *kup;
155 : struct kmem_freelist *freep;
156 : long indx, npg, allocsize;
157 : caddr_t va, cp;
158 : int s;
159 : #ifdef DIAGNOSTIC
160 : int freshalloc;
161 : char *savedtype;
162 : #endif
163 : #ifdef KMEMSTATS
164 0 : struct kmemstats *ksp = &kmemstats[type];
165 : int wake;
166 :
167 0 : if (((unsigned long)type) <= 1 || ((unsigned long)type) >= M_LAST)
168 0 : panic("malloc: bogus type %d", type);
169 : #endif
170 :
171 0 : KASSERT(flags & (M_WAITOK | M_NOWAIT));
172 :
173 : #ifdef DIAGNOSTIC
174 0 : if ((flags & M_NOWAIT) == 0) {
175 : extern int pool_debug;
176 0 : assertwaitok();
177 0 : if (pool_debug == 2)
178 0 : yield();
179 : }
180 : #endif
181 :
182 0 : if (size > 65535 * PAGE_SIZE) {
183 0 : if (flags & M_CANFAIL) {
184 : #ifndef SMALL_KERNEL
185 : /* XXX lock */
186 0 : if (ratecheck(&malloc_lasterr, &malloc_errintvl))
187 0 : printf("malloc(): allocation too large, "
188 : "type = %d, size = %lu\n", type, size);
189 : #endif
190 0 : return (NULL);
191 : } else
192 0 : panic("malloc: allocation too large, "
193 : "type = %d, size = %lu\n", type, size);
194 : }
195 :
196 0 : indx = BUCKETINDX(size);
197 0 : if (size > MAXALLOCSAVE)
198 0 : allocsize = round_page(size);
199 : else
200 0 : allocsize = 1 << indx;
201 0 : kbp = &bucket[indx];
202 0 : mtx_enter(&malloc_mtx);
203 : #ifdef KMEMSTATS
204 0 : while (ksp->ks_memuse >= ksp->ks_limit) {
205 0 : if (flags & M_NOWAIT) {
206 0 : mtx_leave(&malloc_mtx);
207 0 : return (NULL);
208 : }
209 : #ifdef DIAGNOSTIC
210 0 : if (ISSET(flags, M_WAITOK) && curproc == &proc0)
211 0 : panic("%s: cannot sleep for memory during boot",
212 : __func__);
213 : #endif
214 0 : if (ksp->ks_limblocks < 65535)
215 0 : ksp->ks_limblocks++;
216 0 : msleep(ksp, &malloc_mtx, PSWP+2, memname[type], 0);
217 : }
218 0 : ksp->ks_memuse += allocsize; /* account for this early */
219 0 : ksp->ks_size |= 1 << indx;
220 : #endif
221 0 : if (XSIMPLEQ_FIRST(&kbp->kb_freelist) == NULL) {
222 0 : mtx_leave(&malloc_mtx);
223 0 : npg = atop(round_page(allocsize));
224 0 : s = splvm();
225 0 : va = (caddr_t)uvm_km_kmemalloc_pla(kmem_map, NULL,
226 0 : (vsize_t)ptoa(npg), 0,
227 0 : ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
228 0 : ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0),
229 0 : no_constraint.ucr_low, no_constraint.ucr_high,
230 : 0, 0, 0);
231 0 : splx(s);
232 0 : if (va == NULL) {
233 : /*
234 : * Kmem_malloc() can return NULL, even if it can
235 : * wait, if there is no map space available, because
236 : * it can't fix that problem. Neither can we,
237 : * right now. (We should release pages which
238 : * are completely free and which are in buckets
239 : * with too many free elements.)
240 : */
241 0 : if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
242 0 : panic("malloc: out of space in kmem_map");
243 :
244 : #ifdef KMEMSTATS
245 0 : mtx_enter(&malloc_mtx);
246 0 : ksp->ks_memuse -= allocsize;
247 0 : wake = ksp->ks_memuse + allocsize >= ksp->ks_limit &&
248 0 : ksp->ks_memuse < ksp->ks_limit;
249 0 : mtx_leave(&malloc_mtx);
250 0 : if (wake)
251 0 : wakeup(ksp);
252 : #endif
253 0 : return (NULL);
254 : }
255 0 : mtx_enter(&malloc_mtx);
256 : #ifdef KMEMSTATS
257 0 : kbp->kb_total += kbp->kb_elmpercl;
258 : #endif
259 0 : kup = btokup(va);
260 0 : kup->ku_indx = indx;
261 : #ifdef DIAGNOSTIC
262 : freshalloc = 1;
263 : #endif
264 0 : if (allocsize > MAXALLOCSAVE) {
265 0 : kup->ku_pagecnt = npg;
266 0 : goto out;
267 : }
268 : #ifdef KMEMSTATS
269 0 : kup->ku_freecnt = kbp->kb_elmpercl;
270 0 : kbp->kb_totalfree += kbp->kb_elmpercl;
271 : #endif
272 0 : cp = va + (npg * PAGE_SIZE) - allocsize;
273 0 : for (;;) {
274 0 : freep = (struct kmem_freelist *)cp;
275 : #ifdef DIAGNOSTIC
276 : /*
277 : * Copy in known text to detect modification
278 : * after freeing.
279 : */
280 0 : poison_mem(cp, allocsize);
281 0 : freep->kf_type = M_FREE;
282 : #endif /* DIAGNOSTIC */
283 0 : XSIMPLEQ_INSERT_HEAD(&kbp->kb_freelist, freep,
284 : kf_flist);
285 0 : if (cp <= va)
286 : break;
287 0 : cp -= allocsize;
288 : }
289 : } else {
290 : #ifdef DIAGNOSTIC
291 : freshalloc = 0;
292 : #endif
293 : }
294 0 : freep = XSIMPLEQ_FIRST(&kbp->kb_freelist);
295 0 : XSIMPLEQ_REMOVE_HEAD(&kbp->kb_freelist, kf_flist);
296 0 : va = (caddr_t)freep;
297 : #ifdef DIAGNOSTIC
298 0 : savedtype = (unsigned)freep->kf_type < M_LAST ?
299 0 : memname[freep->kf_type] : "???";
300 0 : if (freshalloc == 0 && XSIMPLEQ_FIRST(&kbp->kb_freelist)) {
301 : int rv;
302 0 : vaddr_t addr = (vaddr_t)XSIMPLEQ_FIRST(&kbp->kb_freelist);
303 :
304 0 : vm_map_lock(kmem_map);
305 0 : rv = uvm_map_checkprot(kmem_map, addr,
306 0 : addr + sizeof(struct kmem_freelist), PROT_WRITE);
307 0 : vm_map_unlock(kmem_map);
308 :
309 0 : if (!rv) {
310 0 : printf("%s %zd of object %p size 0x%lx %s %s"
311 : " (invalid addr %p)\n",
312 : "Data modified on freelist: word",
313 0 : (int32_t *)&addr - (int32_t *)kbp, va, size,
314 0 : "previous type", savedtype, (void *)addr);
315 0 : }
316 0 : }
317 :
318 : /* Fill the fields that we've used with poison */
319 0 : poison_mem(freep, sizeof(*freep));
320 :
321 : /* and check that the data hasn't been modified. */
322 0 : if (freshalloc == 0) {
323 0 : size_t pidx;
324 0 : uint32_t pval;
325 0 : if (poison_check(va, allocsize, &pidx, &pval)) {
326 0 : panic("%s %zd of object %p size 0x%lx %s %s"
327 : " (0x%x != 0x%x)\n",
328 : "Data modified on freelist: word",
329 0 : pidx, va, size, "previous type",
330 0 : savedtype, ((int32_t*)va)[pidx], pval);
331 : }
332 0 : }
333 :
334 0 : freep->kf_spare0 = 0;
335 : #endif /* DIAGNOSTIC */
336 : #ifdef KMEMSTATS
337 0 : kup = btokup(va);
338 0 : if (kup->ku_indx != indx)
339 0 : panic("malloc: wrong bucket");
340 0 : if (kup->ku_freecnt == 0)
341 0 : panic("malloc: lost data");
342 0 : kup->ku_freecnt--;
343 0 : kbp->kb_totalfree--;
344 : out:
345 0 : kbp->kb_calls++;
346 0 : ksp->ks_inuse++;
347 0 : ksp->ks_calls++;
348 0 : if (ksp->ks_memuse > ksp->ks_maxused)
349 0 : ksp->ks_maxused = ksp->ks_memuse;
350 : #else
351 : out:
352 : #endif
353 0 : mtx_leave(&malloc_mtx);
354 :
355 0 : if ((flags & M_ZERO) && va != NULL)
356 0 : memset(va, 0, size);
357 0 : return (va);
358 0 : }
359 :
360 : /*
361 : * Free a block of memory allocated by malloc.
362 : */
363 : void
364 0 : free(void *addr, int type, size_t freedsize)
365 : {
366 : struct kmembuckets *kbp;
367 : struct kmemusage *kup;
368 : struct kmem_freelist *freep;
369 : long size;
370 : int s;
371 : #ifdef DIAGNOSTIC
372 : long alloc;
373 : #endif
374 : #ifdef KMEMSTATS
375 0 : struct kmemstats *ksp = &kmemstats[type];
376 : int wake;
377 : #endif
378 :
379 120 : if (addr == NULL)
380 0 : return;
381 :
382 : #ifdef DIAGNOSTIC
383 0 : if (addr < (void *)kmembase || addr >= (void *)kmemlimit)
384 0 : panic("free: non-malloced addr %p type %s", addr,
385 0 : memname[type]);
386 : #endif
387 :
388 0 : mtx_enter(&malloc_mtx);
389 0 : kup = btokup(addr);
390 0 : size = 1 << kup->ku_indx;
391 0 : kbp = &bucket[kup->ku_indx];
392 0 : if (size > MAXALLOCSAVE)
393 0 : size = kup->ku_pagecnt << PAGE_SHIFT;
394 : #ifdef DIAGNOSTIC
395 0 : if (freedsize != 0 && freedsize > size)
396 0 : panic("free: size too large %zu > %ld (%p) type %s",
397 0 : freedsize, size, addr, memname[type]);
398 0 : if (freedsize != 0 && size > MINALLOCSIZE && freedsize <= size / 2)
399 0 : panic("free: size too small %zu <= %ld / 2 (%p) type %s",
400 0 : freedsize, size, addr, memname[type]);
401 : /*
402 : * Check for returns of data that do not point to the
403 : * beginning of the allocation.
404 : */
405 0 : if (size > PAGE_SIZE)
406 0 : alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
407 : else
408 0 : alloc = addrmask[kup->ku_indx];
409 0 : if (((u_long)addr & alloc) != 0)
410 0 : panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
411 0 : addr, size, memname[type], alloc);
412 : #endif /* DIAGNOSTIC */
413 0 : if (size > MAXALLOCSAVE) {
414 0 : u_short pagecnt = kup->ku_pagecnt;
415 :
416 0 : kup->ku_indx = 0;
417 0 : kup->ku_pagecnt = 0;
418 0 : mtx_leave(&malloc_mtx);
419 0 : s = splvm();
420 0 : uvm_km_free(kmem_map, (vaddr_t)addr, ptoa(pagecnt));
421 0 : splx(s);
422 : #ifdef KMEMSTATS
423 0 : mtx_enter(&malloc_mtx);
424 0 : ksp->ks_memuse -= size;
425 0 : wake = ksp->ks_memuse + size >= ksp->ks_limit &&
426 0 : ksp->ks_memuse < ksp->ks_limit;
427 0 : ksp->ks_inuse--;
428 0 : kbp->kb_total -= 1;
429 0 : mtx_leave(&malloc_mtx);
430 0 : if (wake)
431 0 : wakeup(ksp);
432 : #endif
433 : return;
434 : }
435 0 : freep = (struct kmem_freelist *)addr;
436 : #ifdef DIAGNOSTIC
437 : /*
438 : * Check for multiple frees. Use a quick check to see if
439 : * it looks free before laboriously searching the freelist.
440 : */
441 0 : if (freep->kf_spare0 == poison_value(freep)) {
442 : struct kmem_freelist *fp;
443 0 : XSIMPLEQ_FOREACH(fp, &kbp->kb_freelist, kf_flist) {
444 0 : if (addr != fp)
445 : continue;
446 0 : printf("multiply freed item %p\n", addr);
447 0 : panic("free: duplicated free");
448 : }
449 0 : }
450 : /*
451 : * Copy in known text to detect modification after freeing
452 : * and to make it look free. Also, save the type being freed
453 : * so we can list likely culprit if modification is detected
454 : * when the object is reallocated.
455 : */
456 0 : poison_mem(addr, size);
457 0 : freep->kf_spare0 = poison_value(freep);
458 :
459 0 : freep->kf_type = type;
460 : #endif /* DIAGNOSTIC */
461 : #ifdef KMEMSTATS
462 0 : kup->ku_freecnt++;
463 0 : if (kup->ku_freecnt >= kbp->kb_elmpercl) {
464 0 : if (kup->ku_freecnt > kbp->kb_elmpercl)
465 0 : panic("free: multiple frees");
466 0 : else if (kbp->kb_totalfree > kbp->kb_highwat)
467 0 : kbp->kb_couldfree++;
468 : }
469 0 : kbp->kb_totalfree++;
470 0 : ksp->ks_memuse -= size;
471 0 : wake = ksp->ks_memuse + size >= ksp->ks_limit &&
472 0 : ksp->ks_memuse < ksp->ks_limit;
473 0 : ksp->ks_inuse--;
474 : #endif
475 0 : XSIMPLEQ_INSERT_TAIL(&kbp->kb_freelist, freep, kf_flist);
476 0 : mtx_leave(&malloc_mtx);
477 : #ifdef KMEMSTATS
478 0 : if (wake)
479 0 : wakeup(ksp);
480 : #endif
481 0 : }
482 :
483 : /*
484 : * Compute the number of pages that kmem_map will map, that is,
485 : * the size of the kernel malloc arena.
486 : */
487 : void
488 0 : kmeminit_nkmempages(void)
489 : {
490 : u_int npages;
491 :
492 0 : if (nkmempages != 0) {
493 : /*
494 : * It's already been set (by us being here before, or
495 : * by patching or kernel config options), bail out now.
496 : */
497 0 : return;
498 : }
499 :
500 : /*
501 : * We can't initialize these variables at compilation time, since
502 : * the page size may not be known (on sparc GENERIC kernels, for
503 : * example). But we still want the MD code to be able to provide
504 : * better values.
505 : */
506 0 : if (nkmempages_min == 0)
507 0 : nkmempages_min = NKMEMPAGES_MIN;
508 0 : if (nkmempages_max == 0)
509 0 : nkmempages_max = NKMEMPAGES_MAX;
510 :
511 : /*
512 : * We use the following (simple) formula:
513 : *
514 : * - Starting point is physical memory / 4.
515 : *
516 : * - Clamp it down to nkmempages_max.
517 : *
518 : * - Round it up to nkmempages_min.
519 : */
520 0 : npages = physmem / 4;
521 :
522 0 : if (npages > nkmempages_max)
523 0 : npages = nkmempages_max;
524 :
525 0 : if (npages < nkmempages_min)
526 0 : npages = nkmempages_min;
527 :
528 0 : nkmempages = npages;
529 0 : }
530 :
531 : /*
532 : * Initialize the kernel memory allocator
533 : */
534 : void
535 0 : kmeminit(void)
536 : {
537 0 : vaddr_t base, limit;
538 : long indx;
539 :
540 : #ifdef DIAGNOSTIC
541 : if (sizeof(struct kmem_freelist) > (1 << MINBUCKET))
542 : panic("kmeminit: minbucket too small/struct freelist too big");
543 : #endif
544 :
545 : /*
546 : * Compute the number of kmem_map pages, if we have not
547 : * done so already.
548 : */
549 0 : kmeminit_nkmempages();
550 0 : base = vm_map_min(kernel_map);
551 0 : kmem_map = uvm_km_suballoc(kernel_map, &base, &limit,
552 0 : (vsize_t)nkmempages << PAGE_SHIFT,
553 : #ifdef KVA_GUARDPAGES
554 : VM_MAP_INTRSAFE | VM_MAP_GUARDPAGES,
555 : #else
556 : VM_MAP_INTRSAFE,
557 : #endif
558 : FALSE, &kmem_map_store);
559 0 : kmembase = (char *)base;
560 0 : kmemlimit = (char *)limit;
561 0 : kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map,
562 : (vsize_t)(nkmempages * sizeof(struct kmemusage)));
563 0 : for (indx = 0; indx < MINBUCKET + 16; indx++) {
564 0 : XSIMPLEQ_INIT(&bucket[indx].kb_freelist);
565 : }
566 : #ifdef KMEMSTATS
567 0 : for (indx = 0; indx < MINBUCKET + 16; indx++) {
568 0 : if (1 << indx >= PAGE_SIZE)
569 0 : bucket[indx].kb_elmpercl = 1;
570 : else
571 0 : bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
572 0 : bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
573 : }
574 0 : for (indx = 0; indx < M_LAST; indx++)
575 0 : kmemstats[indx].ks_limit = nkmempages * PAGE_SIZE * 6 / 10;
576 : #endif
577 0 : }
578 :
579 : /*
580 : * Return kernel malloc statistics information.
581 : */
582 : int
583 0 : sysctl_malloc(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
584 : size_t newlen, struct proc *p)
585 : {
586 0 : struct kmembuckets kb;
587 : #ifdef KMEMSTATS
588 0 : struct kmemstats km;
589 : #endif
590 : #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES)
591 : int error;
592 : #endif
593 : int i, siz;
594 :
595 0 : if (namelen != 2 && name[0] != KERN_MALLOC_BUCKETS &&
596 0 : name[0] != KERN_MALLOC_KMEMNAMES)
597 0 : return (ENOTDIR); /* overloaded */
598 :
599 0 : switch (name[0]) {
600 : case KERN_MALLOC_BUCKETS:
601 : /* Initialize the first time */
602 0 : if (buckstring_init == 0) {
603 0 : buckstring_init = 1;
604 0 : memset(buckstring, 0, sizeof(buckstring));
605 0 : for (siz = 0, i = MINBUCKET; i < MINBUCKET + 16; i++) {
606 0 : snprintf(buckstring + siz,
607 0 : sizeof buckstring - siz,
608 0 : "%d,", (u_int)(1<<i));
609 0 : siz += strlen(buckstring + siz);
610 : }
611 : /* Remove trailing comma */
612 0 : if (siz)
613 0 : buckstring[siz - 1] = '\0';
614 : }
615 0 : return (sysctl_rdstring(oldp, oldlenp, newp, buckstring));
616 :
617 : case KERN_MALLOC_BUCKET:
618 0 : mtx_enter(&malloc_mtx);
619 0 : memcpy(&kb, &bucket[BUCKETINDX(name[1])], sizeof(kb));
620 0 : mtx_leave(&malloc_mtx);
621 0 : memset(&kb.kb_freelist, 0, sizeof(kb.kb_freelist));
622 0 : return (sysctl_rdstruct(oldp, oldlenp, newp, &kb, sizeof(kb)));
623 : case KERN_MALLOC_KMEMSTATS:
624 : #ifdef KMEMSTATS
625 0 : if ((name[1] < 0) || (name[1] >= M_LAST))
626 0 : return (EINVAL);
627 0 : mtx_enter(&malloc_mtx);
628 0 : memcpy(&km, &kmemstats[name[1]], sizeof(km));
629 0 : mtx_leave(&malloc_mtx);
630 0 : return (sysctl_rdstruct(oldp, oldlenp, newp, &km, sizeof(km)));
631 : #else
632 : return (EOPNOTSUPP);
633 : #endif
634 : case KERN_MALLOC_KMEMNAMES:
635 : #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES)
636 0 : error = rw_enter(&sysctl_kmemlock, RW_WRITE|RW_INTR);
637 0 : if (error)
638 0 : return (error);
639 0 : if (memall == NULL) {
640 : int totlen;
641 :
642 : /* Figure out how large a buffer we need */
643 0 : for (totlen = 0, i = 0; i < M_LAST; i++) {
644 0 : if (memname[i])
645 0 : totlen += strlen(memname[i]);
646 0 : totlen++;
647 : }
648 0 : memall = malloc(totlen + M_LAST, M_SYSCTL,
649 : M_WAITOK|M_ZERO);
650 0 : for (siz = 0, i = 0; i < M_LAST; i++) {
651 0 : snprintf(memall + siz,
652 0 : totlen + M_LAST - siz,
653 0 : "%s,", memname[i] ? memname[i] : "");
654 0 : siz += strlen(memall + siz);
655 : }
656 : /* Remove trailing comma */
657 0 : if (siz)
658 0 : memall[siz - 1] = '\0';
659 :
660 : /* Now, convert all spaces to underscores */
661 0 : for (i = 0; i < totlen; i++)
662 0 : if (memall[i] == ' ')
663 0 : memall[i] = '_';
664 0 : }
665 0 : rw_exit_write(&sysctl_kmemlock);
666 0 : return (sysctl_rdstring(oldp, oldlenp, newp, memall));
667 : #else
668 : return (EOPNOTSUPP);
669 : #endif
670 : default:
671 0 : return (EOPNOTSUPP);
672 : }
673 : /* NOTREACHED */
674 0 : }
675 :
676 : /*
677 : * Round up a size to how much malloc would actually allocate.
678 : */
679 : size_t
680 0 : malloc_roundup(size_t sz)
681 : {
682 0 : if (sz > MAXALLOCSAVE)
683 0 : return round_page(sz);
684 :
685 0 : return (1 << BUCKETINDX(sz));
686 0 : }
687 :
688 : #if defined(DDB)
689 : #include <machine/db_machdep.h>
690 : #include <ddb/db_output.h>
691 :
692 : void
693 0 : malloc_printit(
694 : int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
695 : {
696 : #ifdef KMEMSTATS
697 : struct kmemstats *km;
698 : int i;
699 :
700 0 : (*pr)("%15s %5s %6s %7s %6s %9s %8s %8s\n",
701 : "Type", "InUse", "MemUse", "HighUse", "Limit", "Requests",
702 : "Type Lim", "Kern Lim");
703 0 : for (i = 0, km = kmemstats; i < M_LAST; i++, km++) {
704 0 : if (!km->ks_calls || !memname[i])
705 : continue;
706 :
707 0 : (*pr)("%15s %5ld %6ldK %7ldK %6ldK %9ld %8d %8d\n",
708 0 : memname[i], km->ks_inuse, km->ks_memuse / 1024,
709 0 : km->ks_maxused / 1024, km->ks_limit / 1024,
710 0 : km->ks_calls, km->ks_limblocks, km->ks_mapblocks);
711 0 : }
712 : #else
713 : (*pr)("No KMEMSTATS compiled in\n");
714 : #endif
715 0 : }
716 : #endif /* DDB */
717 :
718 : /*
719 : * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net>
720 : *
721 : * Permission to use, copy, modify, and distribute this software for any
722 : * purpose with or without fee is hereby granted, provided that the above
723 : * copyright notice and this permission notice appear in all copies.
724 : *
725 : * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
726 : * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
727 : * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
728 : * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
729 : * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
730 : * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
731 : * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
732 : */
733 :
734 : /*
735 : * This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX
736 : * if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW
737 : */
738 : #define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4))
739 :
740 : void *
741 0 : mallocarray(size_t nmemb, size_t size, int type, int flags)
742 : {
743 0 : if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
744 0 : nmemb > 0 && SIZE_MAX / nmemb < size) {
745 0 : if (flags & M_CANFAIL)
746 0 : return (NULL);
747 0 : panic("mallocarray: overflow %zu * %zu", nmemb, size);
748 : }
749 0 : return (malloc(size * nmemb, type, flags));
750 0 : }
|