LCOV - code coverage report
Current view: top level - kern - kern_tc.c (source / functions) Hit Total Coverage
Test: 6.4 Lines: 0 232 0.0 %
Date: 2018-10-19 03:25:38 Functions: 0 24 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*      $OpenBSD: kern_tc.c,v 1.33 2018/05/28 18:05:42 guenther Exp $ */
       2             : 
       3             : /*
       4             :  * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org>
       5             :  *
       6             :  * Permission to use, copy, modify, and distribute this software for any
       7             :  * purpose with or without fee is hereby granted, provided that the above
       8             :  * copyright notice and this permission notice appear in all copies.
       9             :  *
      10             :  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      11             :  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      12             :  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
      13             :  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
      14             :  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
      15             :  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
      16             :  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
      17             :  */
      18             : 
      19             : /*
      20             :  * If we meet some day, and you think this stuff is worth it, you
      21             :  * can buy me a beer in return. Poul-Henning Kamp
      22             :  */
      23             : 
      24             : #include <sys/param.h>
      25             : #include <sys/kernel.h>
      26             : #include <sys/timeout.h>
      27             : #include <sys/sysctl.h>
      28             : #include <sys/syslog.h>
      29             : #include <sys/systm.h>
      30             : #include <sys/timetc.h>
      31             : #include <sys/malloc.h>
      32             : #include <dev/rndvar.h>
      33             : 
      34             : /*
      35             :  * A large step happens on boot.  This constant detects such steps.
      36             :  * It is relatively small so that ntp_update_second gets called enough
      37             :  * in the typical 'missed a couple of seconds' case, but doesn't loop
      38             :  * forever when the time step is large.
      39             :  */
      40             : #define LARGE_STEP      200
      41             : 
      42             : u_int dummy_get_timecount(struct timecounter *);
      43             : 
      44             : void ntp_update_second(int64_t *);
      45             : int sysctl_tc_hardware(void *, size_t *, void *, size_t);
      46             : int sysctl_tc_choice(void *, size_t *, void *, size_t);
      47             : 
      48             : /*
      49             :  * Implement a dummy timecounter which we can use until we get a real one
      50             :  * in the air.  This allows the console and other early stuff to use
      51             :  * time services.
      52             :  */
      53             : 
      54             : u_int
      55           0 : dummy_get_timecount(struct timecounter *tc)
      56             : {
      57             :         static u_int now;
      58             : 
      59           0 :         return (++now);
      60             : }
      61             : 
      62             : static struct timecounter dummy_timecounter = {
      63             :         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
      64             : };
      65             : 
      66             : struct timehands {
      67             :         /* These fields must be initialized by the driver. */
      68             :         struct timecounter      *th_counter;
      69             :         int64_t                 th_adjustment;
      70             :         u_int64_t               th_scale;
      71             :         u_int                   th_offset_count;
      72             :         struct bintime          th_offset;
      73             :         struct timeval          th_microtime;
      74             :         struct timespec         th_nanotime;
      75             :         /* Fields not to be copied in tc_windup start with th_generation. */
      76             :         volatile u_int          th_generation;
      77             :         struct timehands        *th_next;
      78             : };
      79             : 
      80             : static struct timehands th0;
      81             : static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
      82             : static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
      83             : static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
      84             : static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
      85             : static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
      86             : static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
      87             : static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
      88             : static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
      89             : static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
      90             : static struct timehands th0 = {
      91             :         &dummy_timecounter,
      92             :         0,
      93             :         (uint64_t)-1 / 1000000,
      94             :         0,
      95             :         {1, 0},
      96             :         {0, 0},
      97             :         {0, 0},
      98             :         1,
      99             :         &th1
     100             : };
     101             : 
     102             : static struct timehands *volatile timehands = &th0;
     103             : struct timecounter *timecounter = &dummy_timecounter;
     104             : static struct timecounter *timecounters = &dummy_timecounter;
     105             : 
     106             : volatile time_t time_second = 1;
     107             : volatile time_t time_uptime = 0;
     108             : 
     109             : struct bintime naptime;
     110             : static struct bintime boottimebin;
     111             : static int timestepwarnings;
     112             : 
     113             : void tc_windup(void);
     114             : 
     115             : /*
     116             :  * Return the difference between the timehands' counter value now and what
     117             :  * was when we copied it to the timehands' offset_count.
     118             :  */
     119             : static __inline u_int
     120           0 : tc_delta(struct timehands *th)
     121             : {
     122             :         struct timecounter *tc;
     123             : 
     124           0 :         tc = th->th_counter;
     125           0 :         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
     126           0 :             tc->tc_counter_mask);
     127             : }
     128             : 
     129             : /*
     130             :  * Functions for reading the time.  We have to loop until we are sure that
     131             :  * the timehands that we operated on was not updated under our feet.  See
     132             :  * the comment in <sys/time.h> for a description of these 12 functions.
     133             :  */
     134             : 
     135             : void
     136           0 : binuptime(struct bintime *bt)
     137             : {
     138             :         struct timehands *th;
     139             :         u_int gen;
     140             : 
     141           0 :         do {
     142           0 :                 th = timehands;
     143           0 :                 gen = th->th_generation;
     144           0 :                 *bt = th->th_offset;
     145           0 :                 bintime_addx(bt, th->th_scale * tc_delta(th));
     146           0 :         } while (gen == 0 || gen != th->th_generation);
     147           0 : }
     148             : 
     149             : void
     150           0 : nanouptime(struct timespec *tsp)
     151             : {
     152           0 :         struct bintime bt;
     153             : 
     154           0 :         binuptime(&bt);
     155           0 :         bintime2timespec(&bt, tsp);
     156           0 : }
     157             : 
     158             : void
     159           0 : microuptime(struct timeval *tvp)
     160             : {
     161           0 :         struct bintime bt;
     162             : 
     163           0 :         binuptime(&bt);
     164           0 :         bintime2timeval(&bt, tvp);
     165           0 : }
     166             : 
     167             : void
     168           0 : bintime(struct bintime *bt)
     169             : {
     170             : 
     171           0 :         binuptime(bt);
     172           0 :         bintime_add(bt, &boottimebin);
     173           0 : }
     174             : 
     175             : void
     176           0 : nanotime(struct timespec *tsp)
     177             : {
     178           0 :         struct bintime bt;
     179             : 
     180           0 :         bintime(&bt);
     181           0 :         bintime2timespec(&bt, tsp);
     182           0 : }
     183             : 
     184             : void
     185           0 : microtime(struct timeval *tvp)
     186             : {
     187           0 :         struct bintime bt;
     188             : 
     189           0 :         bintime(&bt);
     190           0 :         bintime2timeval(&bt, tvp);
     191           0 : }
     192             : 
     193             : void
     194           0 : getnanouptime(struct timespec *tsp)
     195             : {
     196             :         struct timehands *th;
     197             :         u_int gen;
     198             : 
     199           0 :         do {
     200           0 :                 th = timehands;
     201           0 :                 gen = th->th_generation;
     202           0 :                 bintime2timespec(&th->th_offset, tsp);
     203           0 :         } while (gen == 0 || gen != th->th_generation);
     204           0 : }
     205             : 
     206             : void
     207           0 : getmicrouptime(struct timeval *tvp)
     208             : {
     209             :         struct timehands *th;
     210             :         u_int gen;
     211             : 
     212           0 :         do {
     213           0 :                 th = timehands;
     214           0 :                 gen = th->th_generation;
     215           0 :                 bintime2timeval(&th->th_offset, tvp);
     216           0 :         } while (gen == 0 || gen != th->th_generation);
     217           0 : }
     218             : 
     219             : void
     220           0 : getnanotime(struct timespec *tsp)
     221             : {
     222             :         struct timehands *th;
     223             :         u_int gen;
     224             : 
     225           0 :         do {
     226           0 :                 th = timehands;
     227           0 :                 gen = th->th_generation;
     228           0 :                 *tsp = th->th_nanotime;
     229           0 :         } while (gen == 0 || gen != th->th_generation);
     230           0 : }
     231             : 
     232             : void
     233           0 : getmicrotime(struct timeval *tvp)
     234             : {
     235             :         struct timehands *th;
     236             :         u_int gen;
     237             : 
     238           0 :         do {
     239           0 :                 th = timehands;
     240           0 :                 gen = th->th_generation;
     241           0 :                 *tvp = th->th_microtime;
     242           0 :         } while (gen == 0 || gen != th->th_generation);
     243           0 : }
     244             : 
     245             : /*
     246             :  * Initialize a new timecounter and possibly use it.
     247             :  */
     248             : void
     249           0 : tc_init(struct timecounter *tc)
     250             : {
     251             :         u_int u;
     252             : 
     253           0 :         u = tc->tc_frequency / tc->tc_counter_mask;
     254             :         /* XXX: We need some margin here, 10% is a guess */
     255           0 :         u *= 11;
     256           0 :         u /= 10;
     257           0 :         if (tc->tc_quality >= 0) {
     258           0 :                 if (u > hz) {
     259           0 :                         tc->tc_quality = -2000;
     260           0 :                         printf("Timecounter \"%s\" frequency %lu Hz",
     261           0 :                             tc->tc_name, (unsigned long)tc->tc_frequency);
     262           0 :                         printf(" -- Insufficient hz, needs at least %u\n", u);
     263           0 :                 }
     264             :         }
     265             : 
     266           0 :         tc->tc_next = timecounters;
     267           0 :         timecounters = tc;
     268             :         /*
     269             :          * Never automatically use a timecounter with negative quality.
     270             :          * Even though we run on the dummy counter, switching here may be
     271             :          * worse since this timecounter may not be monotonic.
     272             :          */
     273           0 :         if (tc->tc_quality < 0)
     274           0 :                 return;
     275           0 :         if (tc->tc_quality < timecounter->tc_quality)
     276           0 :                 return;
     277           0 :         if (tc->tc_quality == timecounter->tc_quality &&
     278           0 :             tc->tc_frequency < timecounter->tc_frequency)
     279           0 :                 return;
     280           0 :         (void)tc->tc_get_timecount(tc);
     281           0 :         enqueue_randomness(tc->tc_get_timecount(tc));
     282             : 
     283           0 :         timecounter = tc;
     284           0 : }
     285             : 
     286             : /* Report the frequency of the current timecounter. */
     287             : u_int64_t
     288           0 : tc_getfrequency(void)
     289             : {
     290             : 
     291           0 :         return (timehands->th_counter->tc_frequency);
     292             : }
     293             : 
     294             : /*
     295             :  * Step our concept of UTC, aka the realtime clock.
     296             :  * This is done by modifying our estimate of when we booted.
     297             :  * XXX: not locked.
     298             :  */
     299             : void
     300           0 : tc_setrealtimeclock(const struct timespec *ts)
     301             : {
     302           0 :         struct timespec ts2;
     303           0 :         struct bintime bt, bt2;
     304             : 
     305           0 :         binuptime(&bt2);
     306           0 :         timespec2bintime(ts, &bt);
     307           0 :         bintime_sub(&bt, &bt2);
     308           0 :         bintime_add(&bt2, &boottimebin);
     309           0 :         boottimebin = bt;
     310           0 :         bintime2timespec(&bt, &boottime);
     311           0 :         enqueue_randomness(ts->tv_sec);
     312             : 
     313             :         /* XXX fiddle all the little crinkly bits around the fiords... */
     314           0 :         tc_windup();
     315           0 :         if (timestepwarnings) {
     316           0 :                 bintime2timespec(&bt2, &ts2);
     317           0 :                 log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
     318           0 :                     (long long)ts2.tv_sec, ts2.tv_nsec,
     319           0 :                     (long long)ts->tv_sec, ts->tv_nsec);
     320           0 :         }
     321           0 : }
     322             : 
     323             : /*
     324             :  * Step the monotonic and realtime clocks, triggering any timeouts that
     325             :  * should have occurred across the interval.
     326             :  * XXX: not locked.
     327             :  */
     328             : void
     329           0 : tc_setclock(const struct timespec *ts)
     330             : {
     331           0 :         struct bintime bt, bt2;
     332             : #ifndef SMALL_KERNEL
     333             :         long long adj_ticks;
     334             : #endif
     335             : 
     336             :         /*
     337             :          * When we're called for the first time, during boot when
     338             :          * the root partition is mounted, boottime is still zero:
     339             :          * we just need to set it.
     340             :          */
     341           0 :         if (boottimebin.sec == 0) {
     342           0 :                 tc_setrealtimeclock(ts);
     343           0 :                 return;
     344             :         }
     345             : 
     346           0 :         enqueue_randomness(ts->tv_sec);
     347             : 
     348           0 :         timespec2bintime(ts, &bt);
     349           0 :         bintime_sub(&bt, &boottimebin);
     350           0 :         bt2 = timehands->th_offset;
     351           0 :         timehands->th_offset = bt;
     352             : 
     353             :         /* XXX fiddle all the little crinkly bits around the fiords... */
     354           0 :         tc_windup();
     355             : 
     356             : #ifndef SMALL_KERNEL
     357             :         /* convert the bintime to ticks */
     358           0 :         bintime_sub(&bt, &bt2);
     359           0 :         bintime_add(&naptime, &bt);
     360           0 :         adj_ticks = (uint64_t)hz * bt.sec +
     361           0 :             (((uint64_t)1000000 * (uint32_t)(bt.frac >> 32)) >> 32) / tick;
     362           0 :         if (adj_ticks > 0) {
     363           0 :                 if (adj_ticks > INT_MAX)
     364           0 :                         adj_ticks = INT_MAX;
     365           0 :                 timeout_adjust_ticks(adj_ticks);
     366           0 :         }
     367             : #endif
     368           0 : }
     369             : 
     370             : /*
     371             :  * Initialize the next struct timehands in the ring and make
     372             :  * it the active timehands.  Along the way we might switch to a different
     373             :  * timecounter and/or do seconds processing in NTP.  Slightly magic.
     374             :  */
     375             : void
     376           0 : tc_windup(void)
     377             : {
     378           0 :         struct bintime bt;
     379             :         struct timehands *th, *tho;
     380             :         u_int64_t scale;
     381             :         u_int delta, ncount, ogen;
     382             :         int i;
     383             : 
     384             :         /*
     385             :          * Make the next timehands a copy of the current one, but do not
     386             :          * overwrite the generation or next pointer.  While we update
     387             :          * the contents, the generation must be zero.
     388             :          */
     389           0 :         tho = timehands;
     390           0 :         th = tho->th_next;
     391           0 :         ogen = th->th_generation;
     392           0 :         th->th_generation = 0;
     393           0 :         memcpy(th, tho, offsetof(struct timehands, th_generation));
     394             : 
     395             :         /*
     396             :          * Capture a timecounter delta on the current timecounter and if
     397             :          * changing timecounters, a counter value from the new timecounter.
     398             :          * Update the offset fields accordingly.
     399             :          */
     400           0 :         delta = tc_delta(th);
     401           0 :         if (th->th_counter != timecounter)
     402           0 :                 ncount = timecounter->tc_get_timecount(timecounter);
     403             :         else
     404             :                 ncount = 0;
     405           0 :         th->th_offset_count += delta;
     406           0 :         th->th_offset_count &= th->th_counter->tc_counter_mask;
     407           0 :         bintime_addx(&th->th_offset, th->th_scale * delta);
     408             : 
     409             : #ifdef notyet
     410             :         /*
     411             :          * Hardware latching timecounters may not generate interrupts on
     412             :          * PPS events, so instead we poll them.  There is a finite risk that
     413             :          * the hardware might capture a count which is later than the one we
     414             :          * got above, and therefore possibly in the next NTP second which might
     415             :          * have a different rate than the current NTP second.  It doesn't
     416             :          * matter in practice.
     417             :          */
     418             :         if (tho->th_counter->tc_poll_pps)
     419             :                 tho->th_counter->tc_poll_pps(tho->th_counter);
     420             : #endif
     421             : 
     422             :         /*
     423             :          * Deal with NTP second processing.  The for loop normally
     424             :          * iterates at most once, but in extreme situations it might
     425             :          * keep NTP sane if timeouts are not run for several seconds.
     426             :          * At boot, the time step can be large when the TOD hardware
     427             :          * has been read, so on really large steps, we call
     428             :          * ntp_update_second only twice.  We need to call it twice in
     429             :          * case we missed a leap second.
     430             :          */
     431           0 :         bt = th->th_offset;
     432           0 :         bintime_add(&bt, &boottimebin);
     433           0 :         i = bt.sec - tho->th_microtime.tv_sec;
     434           0 :         if (i > LARGE_STEP)
     435             :                 i = 2;
     436           0 :         for (; i > 0; i--)
     437           0 :                 ntp_update_second(&th->th_adjustment);
     438             : 
     439             :         /* Update the UTC timestamps used by the get*() functions. */
     440             :         /* XXX shouldn't do this here.  Should force non-`get' versions. */
     441           0 :         bintime2timeval(&bt, &th->th_microtime);
     442           0 :         bintime2timespec(&bt, &th->th_nanotime);
     443             : 
     444             :         /* Now is a good time to change timecounters. */
     445           0 :         if (th->th_counter != timecounter) {
     446           0 :                 th->th_counter = timecounter;
     447           0 :                 th->th_offset_count = ncount;
     448           0 :         }
     449             : 
     450             :         /*-
     451             :          * Recalculate the scaling factor.  We want the number of 1/2^64
     452             :          * fractions of a second per period of the hardware counter, taking
     453             :          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
     454             :          * processing provides us with.
     455             :          *
     456             :          * The th_adjustment is nanoseconds per second with 32 bit binary
     457             :          * fraction and we want 64 bit binary fraction of second:
     458             :          *
     459             :          *       x = a * 2^32 / 10^9 = a * 4.294967296
     460             :          *
     461             :          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
     462             :          * we can only multiply by about 850 without overflowing, but that
     463             :          * leaves suitably precise fractions for multiply before divide.
     464             :          *
     465             :          * Divide before multiply with a fraction of 2199/512 results in a
     466             :          * systematic undercompensation of 10PPM of th_adjustment.  On a
     467             :          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
     468             :          *
     469             :          * We happily sacrifice the lowest of the 64 bits of our result
     470             :          * to the goddess of code clarity.
     471             :          *
     472             :          */
     473             :         scale = (u_int64_t)1 << 63;
     474           0 :         scale += (th->th_adjustment / 1024) * 2199;
     475           0 :         scale /= th->th_counter->tc_frequency;
     476           0 :         th->th_scale = scale * 2;
     477             : 
     478             :         /*
     479             :          * Now that the struct timehands is again consistent, set the new
     480             :          * generation number, making sure to not make it zero.
     481             :          */
     482           0 :         if (++ogen == 0)
     483             :                 ogen = 1;
     484           0 :         th->th_generation = ogen;
     485             : 
     486             :         /* Go live with the new struct timehands. */
     487           0 :         time_second = th->th_microtime.tv_sec;
     488           0 :         time_uptime = th->th_offset.sec;
     489           0 :         timehands = th;
     490           0 : }
     491             : 
     492             : /* Report or change the active timecounter hardware. */
     493             : int
     494           0 : sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
     495             : {
     496           0 :         char newname[32];
     497             :         struct timecounter *newtc, *tc;
     498             :         int error;
     499             : 
     500           0 :         tc = timecounter;
     501           0 :         strlcpy(newname, tc->tc_name, sizeof(newname));
     502             : 
     503           0 :         error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
     504           0 :         if (error != 0 || strcmp(newname, tc->tc_name) == 0)
     505           0 :                 return (error);
     506           0 :         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
     507           0 :                 if (strcmp(newname, newtc->tc_name) != 0)
     508             :                         continue;
     509             : 
     510             :                 /* Warm up new timecounter. */
     511           0 :                 (void)newtc->tc_get_timecount(newtc);
     512           0 :                 (void)newtc->tc_get_timecount(newtc);
     513             : 
     514           0 :                 timecounter = newtc;
     515           0 :                 return (0);
     516             :         }
     517           0 :         return (EINVAL);
     518           0 : }
     519             : 
     520             : /* Report or change the active timecounter hardware. */
     521             : int
     522           0 : sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
     523             : {
     524           0 :         char buf[32], *spc, *choices;
     525             :         struct timecounter *tc;
     526             :         int error, maxlen;
     527             : 
     528             :         spc = "";
     529             :         maxlen = 0;
     530           0 :         for (tc = timecounters; tc != NULL; tc = tc->tc_next)
     531           0 :                 maxlen += sizeof(buf);
     532           0 :         choices = malloc(maxlen, M_TEMP, M_WAITOK);
     533           0 :         *choices = '\0';
     534           0 :         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
     535           0 :                 snprintf(buf, sizeof(buf), "%s%s(%d)",
     536           0 :                     spc, tc->tc_name, tc->tc_quality);
     537             :                 spc = " ";
     538           0 :                 strlcat(choices, buf, maxlen);
     539             :         }
     540           0 :         error = sysctl_rdstring(oldp, oldlenp, newp, choices);
     541           0 :         free(choices, M_TEMP, maxlen);
     542           0 :         return (error);
     543           0 : }
     544             : 
     545             : /*
     546             :  * Timecounters need to be updated every so often to prevent the hardware
     547             :  * counter from overflowing.  Updating also recalculates the cached values
     548             :  * used by the get*() family of functions, so their precision depends on
     549             :  * the update frequency.
     550             :  */
     551             : static int tc_tick;
     552             : 
     553             : void
     554           0 : tc_ticktock(void)
     555             : {
     556             :         static int count;
     557             : 
     558           0 :         if (++count < tc_tick)
     559             :                 return;
     560           0 :         count = 0;
     561           0 :         tc_windup();
     562           0 : }
     563             : 
     564             : void
     565           0 : inittimecounter(void)
     566             : {
     567             : #ifdef DEBUG
     568             :         u_int p;
     569             : #endif
     570             : 
     571             :         /*
     572             :          * Set the initial timeout to
     573             :          * max(1, <approx. number of hardclock ticks in a millisecond>).
     574             :          * People should probably not use the sysctl to set the timeout
     575             :          * to smaller than its initial value, since that value is the
     576             :          * smallest reasonable one.  If they want better timestamps they
     577             :          * should use the non-"get"* functions.
     578             :          */
     579           0 :         if (hz > 1000)
     580           0 :                 tc_tick = (hz + 500) / 1000;
     581             :         else
     582           0 :                 tc_tick = 1;
     583             : #ifdef DEBUG
     584             :         p = (tc_tick * 1000000) / hz;
     585             :         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
     586             : #endif
     587             : 
     588             :         /* warm up new timecounter (again) and get rolling. */
     589           0 :         (void)timecounter->tc_get_timecount(timecounter);
     590           0 :         (void)timecounter->tc_get_timecount(timecounter);
     591           0 : }
     592             : 
     593             : /*
     594             :  * Return timecounter-related information.
     595             :  */
     596             : int
     597           0 : sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
     598             :     void *newp, size_t newlen)
     599             : {
     600           0 :         if (namelen != 1)
     601           0 :                 return (ENOTDIR);
     602             : 
     603           0 :         switch (name[0]) {
     604             :         case KERN_TIMECOUNTER_TICK:
     605           0 :                 return (sysctl_rdint(oldp, oldlenp, newp, tc_tick));
     606             :         case KERN_TIMECOUNTER_TIMESTEPWARNINGS:
     607           0 :                 return (sysctl_int(oldp, oldlenp, newp, newlen,
     608             :                     &timestepwarnings));
     609             :         case KERN_TIMECOUNTER_HARDWARE:
     610           0 :                 return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
     611             :         case KERN_TIMECOUNTER_CHOICE:
     612           0 :                 return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
     613             :         default:
     614           0 :                 return (EOPNOTSUPP);
     615             :         }
     616             :         /* NOTREACHED */
     617           0 : }
     618             : 
     619             : void
     620           0 : ntp_update_second(int64_t *adjust)
     621             : {
     622             :         int64_t adj;
     623             : 
     624             :         /* Skew time according to any adjtime(2) adjustments. */
     625           0 :         if (adjtimedelta > 0)
     626           0 :                 adj = MIN(5000, adjtimedelta);
     627             :         else
     628           0 :                 adj = MAX(-5000, adjtimedelta);
     629           0 :         adjtimedelta -= adj;
     630           0 :         *adjust = (adj * 1000) << 32;
     631           0 :         *adjust += timecounter->tc_freq_adj;
     632           0 : }
     633             : 
     634             : int
     635           0 : tc_adjfreq(int64_t *old, int64_t *new)
     636             : {
     637           0 :         if (old != NULL) {
     638           0 :                 *old = timecounter->tc_freq_adj;
     639           0 :         }
     640           0 :         if (new != NULL) {
     641           0 :                 timecounter->tc_freq_adj = *new;
     642           0 :         }
     643           0 :         return 0;
     644             : }

Generated by: LCOV version 1.13