LCOV - code coverage report
Current view: top level - lib/libz - trees.c (source / functions) Hit Total Coverage
Test: 6.4 Lines: 0 300 0.0 %
Date: 2018-10-19 03:25:38 Functions: 0 21 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*      $OpenBSD: trees.c,v 1.3 2016/03/14 23:08:06 krw Exp $   */
       2             : /* trees.c -- output deflated data using Huffman coding
       3             :  * Copyright (C) 1995-2005 Jean-loup Gailly
       4             :  * For conditions of distribution and use, see copyright notice in zlib.h
       5             :  */
       6             : 
       7             : /*
       8             :  *  ALGORITHM
       9             :  *
      10             :  *      The "deflation" process uses several Huffman trees. The more
      11             :  *      common source values are represented by shorter bit sequences.
      12             :  *
      13             :  *      Each code tree is stored in a compressed form which is itself
      14             :  * a Huffman encoding of the lengths of all the code strings (in
      15             :  * ascending order by source values).  The actual code strings are
      16             :  * reconstructed from the lengths in the inflate process, as described
      17             :  * in the deflate specification.
      18             :  *
      19             :  *  REFERENCES
      20             :  *
      21             :  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
      22             :  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
      23             :  *
      24             :  *      Storer, James A.
      25             :  *          Data Compression:  Methods and Theory, pp. 49-50.
      26             :  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
      27             :  *
      28             :  *      Sedgewick, R.
      29             :  *          Algorithms, p290.
      30             :  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
      31             :  */
      32             : 
      33             : 
      34             : /* #define GEN_TREES_H */
      35             : 
      36             : #include "deflate.h"
      37             : 
      38             : #ifdef DEBUG_LIBZ
      39             : #  include <ctype.h>
      40             : #endif
      41             : 
      42             : /* ===========================================================================
      43             :  * Constants
      44             :  */
      45             : 
      46             : #define MAX_BL_BITS 7
      47             : /* Bit length codes must not exceed MAX_BL_BITS bits */
      48             : 
      49             : #define END_BLOCK 256
      50             : /* end of block literal code */
      51             : 
      52             : #define REP_3_6      16
      53             : /* repeat previous bit length 3-6 times (2 bits of repeat count) */
      54             : 
      55             : #define REPZ_3_10    17
      56             : /* repeat a zero length 3-10 times  (3 bits of repeat count) */
      57             : 
      58             : #define REPZ_11_138  18
      59             : /* repeat a zero length 11-138 times  (7 bits of repeat count) */
      60             : 
      61             : local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
      62             :    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
      63             : 
      64             : local const int extra_dbits[D_CODES] /* extra bits for each distance code */
      65             :    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
      66             : 
      67             : local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
      68             :    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
      69             : 
      70             : local const uch bl_order[BL_CODES]
      71             :    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
      72             : /* The lengths of the bit length codes are sent in order of decreasing
      73             :  * probability, to avoid transmitting the lengths for unused bit length codes.
      74             :  */
      75             : 
      76             : #define Buf_size (8 * 2*sizeof(char))
      77             : /* Number of bits used within bi_buf. (bi_buf might be implemented on
      78             :  * more than 16 bits on some systems.)
      79             :  */
      80             : 
      81             : /* ===========================================================================
      82             :  * Local data. These are initialized only once.
      83             :  */
      84             : 
      85             : #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
      86             : 
      87             : #if defined(GEN_TREES_H) || !defined(STDC)
      88             : /* non ANSI compilers may not accept trees.h */
      89             : 
      90             : local ct_data static_ltree[L_CODES+2];
      91             : /* The static literal tree. Since the bit lengths are imposed, there is no
      92             :  * need for the L_CODES extra codes used during heap construction. However
      93             :  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
      94             :  * below).
      95             :  */
      96             : 
      97             : local ct_data static_dtree[D_CODES];
      98             : /* The static distance tree. (Actually a trivial tree since all codes use
      99             :  * 5 bits.)
     100             :  */
     101             : 
     102             : uch _dist_code[DIST_CODE_LEN];
     103             : /* Distance codes. The first 256 values correspond to the distances
     104             :  * 3 .. 258, the last 256 values correspond to the top 8 bits of
     105             :  * the 15 bit distances.
     106             :  */
     107             : 
     108             : uch _length_code[MAX_MATCH-MIN_MATCH+1];
     109             : /* length code for each normalized match length (0 == MIN_MATCH) */
     110             : 
     111             : local int base_length[LENGTH_CODES];
     112             : /* First normalized length for each code (0 = MIN_MATCH) */
     113             : 
     114             : local int base_dist[D_CODES];
     115             : /* First normalized distance for each code (0 = distance of 1) */
     116             : 
     117             : #else
     118             : #  include "trees.h"
     119             : #endif /* GEN_TREES_H */
     120             : 
     121             : struct static_tree_desc_s {
     122             :     const ct_data *static_tree;  /* static tree or NULL */
     123             :     const intf *extra_bits;      /* extra bits for each code or NULL */
     124             :     int     extra_base;          /* base index for extra_bits */
     125             :     int     elems;               /* max number of elements in the tree */
     126             :     int     max_length;          /* max bit length for the codes */
     127             : };
     128             : 
     129             : local static_tree_desc  static_l_desc =
     130             : {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
     131             : 
     132             : local static_tree_desc  static_d_desc =
     133             : {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
     134             : 
     135             : local static_tree_desc  static_bl_desc =
     136             : {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
     137             : 
     138             : /* ===========================================================================
     139             :  * Local (static) routines in this file.
     140             :  */
     141             : 
     142             : local void tr_static_init OF((void));
     143             : local void init_block     OF((deflate_state *s));
     144             : local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
     145             : local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
     146             : local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
     147             : local void build_tree     OF((deflate_state *s, tree_desc *desc));
     148             : local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
     149             : local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
     150             : local int  build_bl_tree  OF((deflate_state *s));
     151             : local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
     152             :                               int blcodes));
     153             : local void compress_block OF((deflate_state *s, ct_data *ltree,
     154             :                               ct_data *dtree));
     155             : local void set_data_type  OF((deflate_state *s));
     156             : local unsigned bi_reverse OF((unsigned value, int length));
     157             : local void bi_windup      OF((deflate_state *s));
     158             : local void bi_flush       OF((deflate_state *s));
     159             : local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
     160             :                               int header));
     161             : 
     162             : #ifdef GEN_TREES_H
     163             : local void gen_trees_header OF((void));
     164             : #endif
     165             : 
     166             : #ifndef DEBUG_LIBZ
     167             : #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
     168             :    /* Send a code of the given tree. c and tree must not have side effects */
     169             : 
     170             : #else /* DEBUG_LIBZ */
     171             : #  define send_code(s, c, tree) \
     172             :      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
     173             :        send_bits(s, tree[c].Code, tree[c].Len); }
     174             : #endif
     175             : 
     176             : /* ===========================================================================
     177             :  * Output a short LSB first on the stream.
     178             :  * IN assertion: there is enough room in pendingBuf.
     179             :  */
     180             : #define put_short(s, w) { \
     181             :     put_byte(s, (uch)((w) & 0xff)); \
     182             :     put_byte(s, (uch)((ush)(w) >> 8)); \
     183             : }
     184             : 
     185             : /* ===========================================================================
     186             :  * Send a value on a given number of bits.
     187             :  * IN assertion: length <= 16 and value fits in length bits.
     188             :  */
     189             : #ifdef DEBUG_LIBZ
     190             : local void send_bits      OF((deflate_state *s, int value, int length));
     191             : 
     192             : local void send_bits(s, value, length)
     193             :     deflate_state *s;
     194             :     int value;  /* value to send */
     195             :     int length; /* number of bits */
     196             : {
     197             :     Tracevv((stderr," l %2d v %4x ", length, value));
     198             :     Assert(length > 0 && length <= 15, "invalid length");
     199             :     s->bits_sent += (ulg)length;
     200             : 
     201             :     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
     202             :      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
     203             :      * unused bits in value.
     204             :      */
     205             :     if (s->bi_valid > (int)Buf_size - length) {
     206             :         s->bi_buf |= (value << s->bi_valid);
     207             :         put_short(s, s->bi_buf);
     208             :         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
     209             :         s->bi_valid += length - Buf_size;
     210             :     } else {
     211             :         s->bi_buf |= value << s->bi_valid;
     212             :         s->bi_valid += length;
     213             :     }
     214             : }
     215             : #else /* !DEBUG_LIBZ */
     216             : 
     217             : #define send_bits(s, value, length) \
     218             : { int len = length;\
     219             :   if (s->bi_valid > (int)Buf_size - len) {\
     220             :     int val = value;\
     221             :     s->bi_buf |= (val << s->bi_valid);\
     222             :     put_short(s, s->bi_buf);\
     223             :     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
     224             :     s->bi_valid += len - Buf_size;\
     225             :   } else {\
     226             :     s->bi_buf |= (value) << s->bi_valid;\
     227             :     s->bi_valid += len;\
     228             :   }\
     229             : }
     230             : #endif /* DEBUG_LIBZ */
     231             : 
     232             : 
     233             : /* the arguments must not have side effects */
     234             : 
     235             : /* ===========================================================================
     236             :  * Initialize the various 'constant' tables.
     237             :  */
     238           0 : local void tr_static_init()
     239             : {
     240             : #if defined(GEN_TREES_H) || !defined(STDC)
     241             :     static int static_init_done = 0;
     242             :     int n;        /* iterates over tree elements */
     243             :     int bits;     /* bit counter */
     244             :     int length;   /* length value */
     245             :     int code;     /* code value */
     246             :     int dist;     /* distance index */
     247             :     ush bl_count[MAX_BITS+1];
     248             :     /* number of codes at each bit length for an optimal tree */
     249             : 
     250             :     if (static_init_done) return;
     251             : 
     252             :     /* For some embedded targets, global variables are not initialized: */
     253             :     static_l_desc.static_tree = static_ltree;
     254             :     static_l_desc.extra_bits = extra_lbits;
     255             :     static_d_desc.static_tree = static_dtree;
     256             :     static_d_desc.extra_bits = extra_dbits;
     257             :     static_bl_desc.extra_bits = extra_blbits;
     258             : 
     259             :     /* Initialize the mapping length (0..255) -> length code (0..28) */
     260             :     length = 0;
     261             :     for (code = 0; code < LENGTH_CODES-1; code++) {
     262             :         base_length[code] = length;
     263             :         for (n = 0; n < (1<<extra_lbits[code]); n++) {
     264             :             _length_code[length++] = (uch)code;
     265             :         }
     266             :     }
     267             :     Assert (length == 256, "tr_static_init: length != 256");
     268             :     /* Note that the length 255 (match length 258) can be represented
     269             :      * in two different ways: code 284 + 5 bits or code 285, so we
     270             :      * overwrite length_code[255] to use the best encoding:
     271             :      */
     272             :     _length_code[length-1] = (uch)code;
     273             : 
     274             :     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
     275             :     dist = 0;
     276             :     for (code = 0 ; code < 16; code++) {
     277             :         base_dist[code] = dist;
     278             :         for (n = 0; n < (1<<extra_dbits[code]); n++) {
     279             :             _dist_code[dist++] = (uch)code;
     280             :         }
     281             :     }
     282             :     Assert (dist == 256, "tr_static_init: dist != 256");
     283             :     dist >>= 7; /* from now on, all distances are divided by 128 */
     284             :     for ( ; code < D_CODES; code++) {
     285             :         base_dist[code] = dist << 7;
     286             :         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
     287             :             _dist_code[256 + dist++] = (uch)code;
     288             :         }
     289             :     }
     290             :     Assert (dist == 256, "tr_static_init: 256+dist != 512");
     291             : 
     292             :     /* Construct the codes of the static literal tree */
     293             :     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
     294             :     n = 0;
     295             :     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
     296             :     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
     297             :     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
     298             :     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
     299             :     /* Codes 286 and 287 do not exist, but we must include them in the
     300             :      * tree construction to get a canonical Huffman tree (longest code
     301             :      * all ones)
     302             :      */
     303             :     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
     304             : 
     305             :     /* The static distance tree is trivial: */
     306             :     for (n = 0; n < D_CODES; n++) {
     307             :         static_dtree[n].Len = 5;
     308             :         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
     309             :     }
     310             :     static_init_done = 1;
     311             : 
     312             : #  ifdef GEN_TREES_H
     313             :     gen_trees_header();
     314             : #  endif
     315             : #endif /* defined(GEN_TREES_H) || !defined(STDC) */
     316           0 : }
     317             : 
     318             : /* ===========================================================================
     319             :  * Genererate the file trees.h describing the static trees.
     320             :  */
     321             : #ifdef GEN_TREES_H
     322             : #  ifndef DEBUG_LIBZ
     323             : #    include <stdio.h>
     324             : #  endif
     325             : 
     326             : #  define SEPARATOR(i, last, width) \
     327             :       ((i) == (last)? "\n};\n\n" :    \
     328             :        ((i) % (width) == (width)-1 ? ",\n" : ", "))
     329             : 
     330             : void gen_trees_header()
     331             : {
     332             :     FILE *header = fopen("trees.h", "w");
     333             :     int i;
     334             : 
     335             :     Assert (header != NULL, "Can't open trees.h");
     336             :     fprintf(header,
     337             :             "/* header created automatically with -DGEN_TREES_H */\n\n");
     338             : 
     339             :     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
     340             :     for (i = 0; i < L_CODES+2; i++) {
     341             :         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
     342             :                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
     343             :     }
     344             : 
     345             :     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
     346             :     for (i = 0; i < D_CODES; i++) {
     347             :         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
     348             :                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
     349             :     }
     350             : 
     351             :     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
     352             :     for (i = 0; i < DIST_CODE_LEN; i++) {
     353             :         fprintf(header, "%2u%s", _dist_code[i],
     354             :                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
     355             :     }
     356             : 
     357             :     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
     358             :     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
     359             :         fprintf(header, "%2u%s", _length_code[i],
     360             :                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
     361             :     }
     362             : 
     363             :     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
     364             :     for (i = 0; i < LENGTH_CODES; i++) {
     365             :         fprintf(header, "%1u%s", base_length[i],
     366             :                 SEPARATOR(i, LENGTH_CODES-1, 20));
     367             :     }
     368             : 
     369             :     fprintf(header, "local const int base_dist[D_CODES] = {\n");
     370             :     for (i = 0; i < D_CODES; i++) {
     371             :         fprintf(header, "%5u%s", base_dist[i],
     372             :                 SEPARATOR(i, D_CODES-1, 10));
     373             :     }
     374             : 
     375             :     fclose(header);
     376             : }
     377             : #endif /* GEN_TREES_H */
     378             : 
     379             : /* ===========================================================================
     380             :  * Initialize the tree data structures for a new zlib stream.
     381             :  */
     382           0 : void _tr_init(s)
     383             :     deflate_state *s;
     384             : {
     385           0 :     tr_static_init();
     386             : 
     387           0 :     s->l_desc.dyn_tree = s->dyn_ltree;
     388           0 :     s->l_desc.stat_desc = &static_l_desc;
     389             : 
     390           0 :     s->d_desc.dyn_tree = s->dyn_dtree;
     391           0 :     s->d_desc.stat_desc = &static_d_desc;
     392             : 
     393           0 :     s->bl_desc.dyn_tree = s->bl_tree;
     394           0 :     s->bl_desc.stat_desc = &static_bl_desc;
     395             : 
     396           0 :     s->bi_buf = 0;
     397           0 :     s->bi_valid = 0;
     398           0 :     s->last_eob_len = 8; /* enough lookahead for inflate */
     399             : #ifdef DEBUG_LIBZ
     400             :     s->compressed_len = 0L;
     401             :     s->bits_sent = 0L;
     402             : #endif
     403             : 
     404             :     /* Initialize the first block of the first file: */
     405           0 :     init_block(s);
     406           0 : }
     407             : 
     408             : /* ===========================================================================
     409             :  * Initialize a new block.
     410             :  */
     411           0 : local void init_block(s)
     412             :     deflate_state *s;
     413             : {
     414             :     int n; /* iterates over tree elements */
     415             : 
     416             :     /* Initialize the trees. */
     417           0 :     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
     418           0 :     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
     419           0 :     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
     420             : 
     421           0 :     s->dyn_ltree[END_BLOCK].Freq = 1;
     422           0 :     s->opt_len = s->static_len = 0L;
     423           0 :     s->last_lit = s->matches = 0;
     424           0 : }
     425             : 
     426             : #define SMALLEST 1
     427             : /* Index within the heap array of least frequent node in the Huffman tree */
     428             : 
     429             : 
     430             : /* ===========================================================================
     431             :  * Remove the smallest element from the heap and recreate the heap with
     432             :  * one less element. Updates heap and heap_len.
     433             :  */
     434             : #define pqremove(s, tree, top) \
     435             : {\
     436             :     top = s->heap[SMALLEST]; \
     437             :     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
     438             :     pqdownheap(s, tree, SMALLEST); \
     439             : }
     440             : 
     441             : /* ===========================================================================
     442             :  * Compares to subtrees, using the tree depth as tie breaker when
     443             :  * the subtrees have equal frequency. This minimizes the worst case length.
     444             :  */
     445             : #define smaller(tree, n, m, depth) \
     446             :    (tree[n].Freq < tree[m].Freq || \
     447             :    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
     448             : 
     449             : /* ===========================================================================
     450             :  * Restore the heap property by moving down the tree starting at node k,
     451             :  * exchanging a node with the smallest of its two sons if necessary, stopping
     452             :  * when the heap property is re-established (each father smaller than its
     453             :  * two sons).
     454             :  */
     455           0 : local void pqdownheap(s, tree, k)
     456             :     deflate_state *s;
     457             :     ct_data *tree;  /* the tree to restore */
     458             :     int k;               /* node to move down */
     459             : {
     460           0 :     int v = s->heap[k];
     461           0 :     int j = k << 1;  /* left son of k */
     462           0 :     while (j <= s->heap_len) {
     463             :         /* Set j to the smallest of the two sons: */
     464           0 :         if (j < s->heap_len &&
     465           0 :             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
     466             :             j++;
     467           0 :         }
     468             :         /* Exit if v is smaller than both sons */
     469           0 :         if (smaller(tree, v, s->heap[j], s->depth)) break;
     470             : 
     471             :         /* Exchange v with the smallest son */
     472           0 :         s->heap[k] = s->heap[j];  k = j;
     473             : 
     474             :         /* And continue down the tree, setting j to the left son of k */
     475           0 :         j <<= 1;
     476             :     }
     477           0 :     s->heap[k] = v;
     478           0 : }
     479             : 
     480             : /* ===========================================================================
     481             :  * Compute the optimal bit lengths for a tree and update the total bit length
     482             :  * for the current block.
     483             :  * IN assertion: the fields freq and dad are set, heap[heap_max] and
     484             :  *    above are the tree nodes sorted by increasing frequency.
     485             :  * OUT assertions: the field len is set to the optimal bit length, the
     486             :  *     array bl_count contains the frequencies for each bit length.
     487             :  *     The length opt_len is updated; static_len is also updated if stree is
     488             :  *     not null.
     489             :  */
     490           0 : local void gen_bitlen(s, desc)
     491             :     deflate_state *s;
     492             :     tree_desc *desc;    /* the tree descriptor */
     493             : {
     494           0 :     ct_data *tree        = desc->dyn_tree;
     495           0 :     int max_code         = desc->max_code;
     496           0 :     const ct_data *stree = desc->stat_desc->static_tree;
     497           0 :     const intf *extra    = desc->stat_desc->extra_bits;
     498           0 :     int base             = desc->stat_desc->extra_base;
     499           0 :     int max_length       = desc->stat_desc->max_length;
     500             :     int h;              /* heap index */
     501             :     int n, m;           /* iterate over the tree elements */
     502             :     int bits;           /* bit length */
     503             :     int xbits;          /* extra bits */
     504             :     ush f;              /* frequency */
     505             :     int overflow = 0;   /* number of elements with bit length too large */
     506             : 
     507           0 :     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
     508             : 
     509             :     /* In a first pass, compute the optimal bit lengths (which may
     510             :      * overflow in the case of the bit length tree).
     511             :      */
     512           0 :     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
     513             : 
     514           0 :     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
     515           0 :         n = s->heap[h];
     516           0 :         bits = tree[tree[n].Dad].Len + 1;
     517           0 :         if (bits > max_length) bits = max_length, overflow++;
     518           0 :         tree[n].Len = (ush)bits;
     519             :         /* We overwrite tree[n].Dad which is no longer needed */
     520             : 
     521           0 :         if (n > max_code) continue; /* not a leaf node */
     522             : 
     523           0 :         s->bl_count[bits]++;
     524             :         xbits = 0;
     525           0 :         if (n >= base) xbits = extra[n-base];
     526           0 :         f = tree[n].Freq;
     527           0 :         s->opt_len += (ulg)f * (bits + xbits);
     528           0 :         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
     529             :     }
     530           0 :     if (overflow == 0) return;
     531             : 
     532             :     Trace((stderr,"\nbit length overflow\n"));
     533             :     /* This happens for example on obj2 and pic of the Calgary corpus */
     534             : 
     535             :     /* Find the first bit length which could increase: */
     536           0 :     do {
     537           0 :         bits = max_length-1;
     538           0 :         while (s->bl_count[bits] == 0) bits--;
     539           0 :         s->bl_count[bits]--;      /* move one leaf down the tree */
     540           0 :         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
     541           0 :         s->bl_count[max_length]--;
     542             :         /* The brother of the overflow item also moves one step up,
     543             :          * but this does not affect bl_count[max_length]
     544             :          */
     545           0 :         overflow -= 2;
     546           0 :     } while (overflow > 0);
     547             : 
     548             :     /* Now recompute all bit lengths, scanning in increasing frequency.
     549             :      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
     550             :      * lengths instead of fixing only the wrong ones. This idea is taken
     551             :      * from 'ar' written by Haruhiko Okumura.)
     552             :      */
     553           0 :     for (bits = max_length; bits != 0; bits--) {
     554           0 :         n = s->bl_count[bits];
     555           0 :         while (n != 0) {
     556           0 :             m = s->heap[--h];
     557           0 :             if (m > max_code) continue;
     558           0 :             if ((unsigned) tree[m].Len != (unsigned) bits) {
     559             :                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
     560           0 :                 s->opt_len += ((long)bits - (long)tree[m].Len)
     561           0 :                               *(long)tree[m].Freq;
     562           0 :                 tree[m].Len = (ush)bits;
     563           0 :             }
     564           0 :             n--;
     565             :         }
     566             :     }
     567           0 : }
     568             : 
     569             : /* ===========================================================================
     570             :  * Generate the codes for a given tree and bit counts (which need not be
     571             :  * optimal).
     572             :  * IN assertion: the array bl_count contains the bit length statistics for
     573             :  * the given tree and the field len is set for all tree elements.
     574             :  * OUT assertion: the field code is set for all tree elements of non
     575             :  *     zero code length.
     576             :  */
     577           0 : local void gen_codes (tree, max_code, bl_count)
     578             :     ct_data *tree;             /* the tree to decorate */
     579             :     int max_code;              /* largest code with non zero frequency */
     580             :     ushf *bl_count;            /* number of codes at each bit length */
     581             : {
     582           0 :     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
     583             :     ush code = 0;              /* running code value */
     584             :     int bits;                  /* bit index */
     585             :     int n;                     /* code index */
     586             : 
     587             :     /* The distribution counts are first used to generate the code values
     588             :      * without bit reversal.
     589             :      */
     590           0 :     for (bits = 1; bits <= MAX_BITS; bits++) {
     591           0 :         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
     592             :     }
     593             :     /* Check that the bit counts in bl_count are consistent. The last code
     594             :      * must be all ones.
     595             :      */
     596             :     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
     597             :             "inconsistent bit counts");
     598             :     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
     599             : 
     600           0 :     for (n = 0;  n <= max_code; n++) {
     601           0 :         int len = tree[n].Len;
     602           0 :         if (len == 0) continue;
     603             :         /* Now reverse the bits */
     604           0 :         tree[n].Code = bi_reverse(next_code[len]++, len);
     605             : 
     606             :         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
     607             :              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
     608           0 :     }
     609           0 : }
     610             : 
     611             : /* ===========================================================================
     612             :  * Construct one Huffman tree and assigns the code bit strings and lengths.
     613             :  * Update the total bit length for the current block.
     614             :  * IN assertion: the field freq is set for all tree elements.
     615             :  * OUT assertions: the fields len and code are set to the optimal bit length
     616             :  *     and corresponding code. The length opt_len is updated; static_len is
     617             :  *     also updated if stree is not null. The field max_code is set.
     618             :  */
     619           0 : local void build_tree(s, desc)
     620             :     deflate_state *s;
     621             :     tree_desc *desc; /* the tree descriptor */
     622             : {
     623           0 :     ct_data *tree         = desc->dyn_tree;
     624           0 :     const ct_data *stree  = desc->stat_desc->static_tree;
     625           0 :     int elems             = desc->stat_desc->elems;
     626             :     int n, m;          /* iterate over heap elements */
     627             :     int max_code = -1; /* largest code with non zero frequency */
     628             :     int node;          /* new node being created */
     629             : 
     630             :     /* Construct the initial heap, with least frequent element in
     631             :      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
     632             :      * heap[0] is not used.
     633             :      */
     634           0 :     s->heap_len = 0, s->heap_max = HEAP_SIZE;
     635             : 
     636           0 :     for (n = 0; n < elems; n++) {
     637           0 :         if (tree[n].Freq != 0) {
     638           0 :             s->heap[++(s->heap_len)] = max_code = n;
     639           0 :             s->depth[n] = 0;
     640           0 :         } else {
     641           0 :             tree[n].Len = 0;
     642             :         }
     643             :     }
     644             : 
     645             :     /* The pkzip format requires that at least one distance code exists,
     646             :      * and that at least one bit should be sent even if there is only one
     647             :      * possible code. So to avoid special checks later on we force at least
     648             :      * two codes of non zero frequency.
     649             :      */
     650           0 :     while (s->heap_len < 2) {
     651           0 :         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
     652           0 :         tree[node].Freq = 1;
     653           0 :         s->depth[node] = 0;
     654           0 :         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
     655             :         /* node is 0 or 1 so it does not have extra bits */
     656             :     }
     657           0 :     desc->max_code = max_code;
     658             : 
     659             :     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
     660             :      * establish sub-heaps of increasing lengths:
     661             :      */
     662           0 :     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
     663             : 
     664             :     /* Construct the Huffman tree by repeatedly combining the least two
     665             :      * frequent nodes.
     666             :      */
     667             :     node = elems;              /* next internal node of the tree */
     668           0 :     do {
     669           0 :         pqremove(s, tree, n);  /* n = node of least frequency */
     670           0 :         m = s->heap[SMALLEST]; /* m = node of next least frequency */
     671             : 
     672           0 :         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
     673           0 :         s->heap[--(s->heap_max)] = m;
     674             : 
     675             :         /* Create a new node father of n and m */
     676           0 :         tree[node].Freq = tree[n].Freq + tree[m].Freq;
     677           0 :         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
     678           0 :                                 s->depth[n] : s->depth[m]) + 1);
     679           0 :         tree[n].Dad = tree[m].Dad = (ush)node;
     680             : #ifdef DUMP_BL_TREE
     681             :         if (tree == s->bl_tree) {
     682             :             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
     683             :                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
     684             :         }
     685             : #endif
     686             :         /* and insert the new node in the heap */
     687           0 :         s->heap[SMALLEST] = node++;
     688           0 :         pqdownheap(s, tree, SMALLEST);
     689             : 
     690           0 :     } while (s->heap_len >= 2);
     691             : 
     692           0 :     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
     693             : 
     694             :     /* At this point, the fields freq and dad are set. We can now
     695             :      * generate the bit lengths.
     696             :      */
     697           0 :     gen_bitlen(s, (tree_desc *)desc);
     698             : 
     699             :     /* The field len is now set, we can generate the bit codes */
     700           0 :     gen_codes ((ct_data *)tree, max_code, s->bl_count);
     701           0 : }
     702             : 
     703             : /* ===========================================================================
     704             :  * Scan a literal or distance tree to determine the frequencies of the codes
     705             :  * in the bit length tree.
     706             :  */
     707           0 : local void scan_tree (s, tree, max_code)
     708             :     deflate_state *s;
     709             :     ct_data *tree;   /* the tree to be scanned */
     710             :     int max_code;    /* and its largest code of non zero frequency */
     711             : {
     712             :     int n;                     /* iterates over all tree elements */
     713             :     int prevlen = -1;          /* last emitted length */
     714             :     int curlen;                /* length of current code */
     715           0 :     int nextlen = tree[0].Len; /* length of next code */
     716             :     int count = 0;             /* repeat count of the current code */
     717             :     int max_count = 7;         /* max repeat count */
     718             :     int min_count = 4;         /* min repeat count */
     719             : 
     720           0 :     if (nextlen == 0) max_count = 138, min_count = 3;
     721           0 :     tree[max_code+1].Len = (ush)0xffff; /* guard */
     722             : 
     723           0 :     for (n = 0; n <= max_code; n++) {
     724           0 :         curlen = nextlen; nextlen = tree[n+1].Len;
     725           0 :         if (++count < max_count && curlen == nextlen) {
     726             :             continue;
     727           0 :         } else if (count < min_count) {
     728           0 :             s->bl_tree[curlen].Freq += count;
     729           0 :         } else if (curlen != 0) {
     730           0 :             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
     731           0 :             s->bl_tree[REP_3_6].Freq++;
     732           0 :         } else if (count <= 10) {
     733           0 :             s->bl_tree[REPZ_3_10].Freq++;
     734           0 :         } else {
     735           0 :             s->bl_tree[REPZ_11_138].Freq++;
     736             :         }
     737             :         count = 0; prevlen = curlen;
     738           0 :         if (nextlen == 0) {
     739             :             max_count = 138, min_count = 3;
     740           0 :         } else if (curlen == nextlen) {
     741             :             max_count = 6, min_count = 3;
     742           0 :         } else {
     743             :             max_count = 7, min_count = 4;
     744             :         }
     745             :     }
     746           0 : }
     747             : 
     748             : /* ===========================================================================
     749             :  * Send a literal or distance tree in compressed form, using the codes in
     750             :  * bl_tree.
     751             :  */
     752           0 : local void send_tree (s, tree, max_code)
     753             :     deflate_state *s;
     754             :     ct_data *tree; /* the tree to be scanned */
     755             :     int max_code;       /* and its largest code of non zero frequency */
     756             : {
     757             :     int n;                     /* iterates over all tree elements */
     758             :     int prevlen = -1;          /* last emitted length */
     759             :     int curlen;                /* length of current code */
     760           0 :     int nextlen = tree[0].Len; /* length of next code */
     761             :     int count = 0;             /* repeat count of the current code */
     762             :     int max_count = 7;         /* max repeat count */
     763             :     int min_count = 4;         /* min repeat count */
     764             : 
     765             :     /* tree[max_code+1].Len = -1; */  /* guard already set */
     766           0 :     if (nextlen == 0) max_count = 138, min_count = 3;
     767             : 
     768           0 :     for (n = 0; n <= max_code; n++) {
     769           0 :         curlen = nextlen; nextlen = tree[n+1].Len;
     770           0 :         if (++count < max_count && curlen == nextlen) {
     771             :             continue;
     772           0 :         } else if (count < min_count) {
     773           0 :             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
     774             : 
     775           0 :         } else if (curlen != 0) {
     776           0 :             if (curlen != prevlen) {
     777           0 :                 send_code(s, curlen, s->bl_tree); count--;
     778           0 :             }
     779             :             Assert(count >= 3 && count <= 6, " 3_6?");
     780           0 :             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
     781             : 
     782           0 :         } else if (count <= 10) {
     783           0 :             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
     784             : 
     785           0 :         } else {
     786           0 :             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
     787             :         }
     788             :         count = 0; prevlen = curlen;
     789           0 :         if (nextlen == 0) {
     790             :             max_count = 138, min_count = 3;
     791           0 :         } else if (curlen == nextlen) {
     792             :             max_count = 6, min_count = 3;
     793           0 :         } else {
     794             :             max_count = 7, min_count = 4;
     795             :         }
     796             :     }
     797           0 : }
     798             : 
     799             : /* ===========================================================================
     800             :  * Construct the Huffman tree for the bit lengths and return the index in
     801             :  * bl_order of the last bit length code to send.
     802             :  */
     803           0 : local int build_bl_tree(s)
     804             :     deflate_state *s;
     805             : {
     806             :     int max_blindex;  /* index of last bit length code of non zero freq */
     807             : 
     808             :     /* Determine the bit length frequencies for literal and distance trees */
     809           0 :     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
     810           0 :     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
     811             : 
     812             :     /* Build the bit length tree: */
     813           0 :     build_tree(s, (tree_desc *)(&(s->bl_desc)));
     814             :     /* opt_len now includes the length of the tree representations, except
     815             :      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
     816             :      */
     817             : 
     818             :     /* Determine the number of bit length codes to send. The pkzip format
     819             :      * requires that at least 4 bit length codes be sent. (appnote.txt says
     820             :      * 3 but the actual value used is 4.)
     821             :      */
     822           0 :     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
     823           0 :         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
     824             :     }
     825             :     /* Update opt_len to include the bit length tree and counts */
     826           0 :     s->opt_len += 3*(max_blindex+1) + 5+5+4;
     827             :     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
     828             :             s->opt_len, s->static_len));
     829             : 
     830           0 :     return max_blindex;
     831             : }
     832             : 
     833             : /* ===========================================================================
     834             :  * Send the header for a block using dynamic Huffman trees: the counts, the
     835             :  * lengths of the bit length codes, the literal tree and the distance tree.
     836             :  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
     837             :  */
     838           0 : local void send_all_trees(s, lcodes, dcodes, blcodes)
     839             :     deflate_state *s;
     840             :     int lcodes, dcodes, blcodes; /* number of codes for each tree */
     841             : {
     842             :     int rank;                    /* index in bl_order */
     843             : 
     844             :     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
     845             :     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
     846             :             "too many codes");
     847             :     Tracev((stderr, "\nbl counts: "));
     848           0 :     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
     849           0 :     send_bits(s, dcodes-1,   5);
     850           0 :     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
     851           0 :     for (rank = 0; rank < blcodes; rank++) {
     852             :         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
     853           0 :         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
     854             :     }
     855             :     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
     856             : 
     857           0 :     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
     858             :     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
     859             : 
     860           0 :     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
     861             :     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
     862           0 : }
     863             : 
     864             : /* ===========================================================================
     865             :  * Send a stored block
     866             :  */
     867           0 : void _tr_stored_block(s, buf, stored_len, eof)
     868             :     deflate_state *s;
     869             :     charf *buf;       /* input block */
     870             :     ulg stored_len;   /* length of input block */
     871             :     int eof;          /* true if this is the last block for a file */
     872             : {
     873           0 :     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
     874             : #ifdef DEBUG_LIBZ
     875             :     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
     876             :     s->compressed_len += (stored_len + 4) << 3;
     877             : #endif
     878           0 :     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
     879           0 : }
     880             : 
     881             : /* ===========================================================================
     882             :  * Send one empty static block to give enough lookahead for inflate.
     883             :  * This takes 10 bits, of which 7 may remain in the bit buffer.
     884             :  * The current inflate code requires 9 bits of lookahead. If the
     885             :  * last two codes for the previous block (real code plus EOB) were coded
     886             :  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
     887             :  * the last real code. In this case we send two empty static blocks instead
     888             :  * of one. (There are no problems if the previous block is stored or fixed.)
     889             :  * To simplify the code, we assume the worst case of last real code encoded
     890             :  * on one bit only.
     891             :  */
     892           0 : void _tr_align(s)
     893             :     deflate_state *s;
     894             : {
     895           0 :     send_bits(s, STATIC_TREES<<1, 3);
     896           0 :     send_code(s, END_BLOCK, static_ltree);
     897             : #ifdef DEBUG_LIBZ
     898             :     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
     899             : #endif
     900           0 :     bi_flush(s);
     901             :     /* Of the 10 bits for the empty block, we have already sent
     902             :      * (10 - bi_valid) bits. The lookahead for the last real code (before
     903             :      * the EOB of the previous block) was thus at least one plus the length
     904             :      * of the EOB plus what we have just sent of the empty static block.
     905             :      */
     906           0 :     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
     907           0 :         send_bits(s, STATIC_TREES<<1, 3);
     908           0 :         send_code(s, END_BLOCK, static_ltree);
     909             : #ifdef DEBUG_LIBZ
     910             :         s->compressed_len += 10L;
     911             : #endif
     912           0 :         bi_flush(s);
     913           0 :     }
     914           0 :     s->last_eob_len = 7;
     915           0 : }
     916             : 
     917             : /* ===========================================================================
     918             :  * Determine the best encoding for the current block: dynamic trees, static
     919             :  * trees or store, and output the encoded block to the zip file.
     920             :  */
     921           0 : void _tr_flush_block(s, buf, stored_len, eof)
     922             :     deflate_state *s;
     923             :     charf *buf;       /* input block, or NULL if too old */
     924             :     ulg stored_len;   /* length of input block */
     925             :     int eof;          /* true if this is the last block for a file */
     926             : {
     927             :     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
     928             :     int max_blindex = 0;  /* index of last bit length code of non zero freq */
     929             : 
     930             :     /* Build the Huffman trees unless a stored block is forced */
     931           0 :     if (s->level > 0) {
     932             : 
     933             :         /* Check if the file is binary or text */
     934           0 :         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
     935           0 :             set_data_type(s);
     936             : 
     937             :         /* Construct the literal and distance trees */
     938           0 :         build_tree(s, (tree_desc *)(&(s->l_desc)));
     939             :         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
     940             :                 s->static_len));
     941             : 
     942           0 :         build_tree(s, (tree_desc *)(&(s->d_desc)));
     943             :         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
     944             :                 s->static_len));
     945             :         /* At this point, opt_len and static_len are the total bit lengths of
     946             :          * the compressed block data, excluding the tree representations.
     947             :          */
     948             : 
     949             :         /* Build the bit length tree for the above two trees, and get the index
     950             :          * in bl_order of the last bit length code to send.
     951             :          */
     952           0 :         max_blindex = build_bl_tree(s);
     953             : 
     954             :         /* Determine the best encoding. Compute the block lengths in bytes. */
     955           0 :         opt_lenb = (s->opt_len+3+7)>>3;
     956           0 :         static_lenb = (s->static_len+3+7)>>3;
     957             : 
     958             :         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
     959             :                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
     960             :                 s->last_lit));
     961             : 
     962           0 :         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
     963             : 
     964             :     } else {
     965             :         Assert(buf != NULL, "lost buf");
     966           0 :         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
     967             :     }
     968             : 
     969             : #ifdef FORCE_STORED
     970             :     if (buf != NULL) { /* force stored block */
     971             : #else
     972           0 :     if (stored_len+4 <= opt_lenb && buf != NULL) {
     973             :                        /* 4: two words for the lengths */
     974             : #endif
     975             :         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
     976             :          * Otherwise we can't have processed more than WSIZE input bytes since
     977             :          * the last block flush, because compression would have been
     978             :          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
     979             :          * transform a block into a stored block.
     980             :          */
     981           0 :         _tr_stored_block(s, buf, stored_len, eof);
     982             : 
     983             : #ifdef FORCE_STATIC
     984             :     } else if (static_lenb >= 0) { /* force static trees */
     985             : #else
     986           0 :     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
     987             : #endif
     988           0 :         send_bits(s, (STATIC_TREES<<1)+eof, 3);
     989           0 :         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
     990             : #ifdef DEBUG_LIBZ
     991             :         s->compressed_len += 3 + s->static_len;
     992             : #endif
     993           0 :     } else {
     994           0 :         send_bits(s, (DYN_TREES<<1)+eof, 3);
     995           0 :         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
     996           0 :                        max_blindex+1);
     997           0 :         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
     998             : #ifdef DEBUG_LIBZ
     999             :         s->compressed_len += 3 + s->opt_len;
    1000             : #endif
    1001             :     }
    1002             :     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
    1003             :     /* The above check is made mod 2^32, for files larger than 512 MB
    1004             :      * and uLong implemented on 32 bits.
    1005             :      */
    1006           0 :     init_block(s);
    1007             : 
    1008           0 :     if (eof) {
    1009           0 :         bi_windup(s);
    1010             : #ifdef DEBUG_LIBZ
    1011             :         s->compressed_len += 7;  /* align on byte boundary */
    1012             : #endif
    1013           0 :     }
    1014             :     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
    1015             :            s->compressed_len-7*eof));
    1016           0 : }
    1017             : 
    1018             : /* ===========================================================================
    1019             :  * Save the match info and tally the frequency counts. Return true if
    1020             :  * the current block must be flushed.
    1021             :  */
    1022           0 : int _tr_tally (s, dist, lc)
    1023             :     deflate_state *s;
    1024             :     unsigned dist;  /* distance of matched string */
    1025             :     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
    1026             : {
    1027           0 :     s->d_buf[s->last_lit] = (ush)dist;
    1028           0 :     s->l_buf[s->last_lit++] = (uch)lc;
    1029           0 :     if (dist == 0) {
    1030             :         /* lc is the unmatched char */
    1031           0 :         s->dyn_ltree[lc].Freq++;
    1032           0 :     } else {
    1033           0 :         s->matches++;
    1034             :         /* Here, lc is the match length - MIN_MATCH */
    1035           0 :         dist--;             /* dist = match distance - 1 */
    1036             :         Assert((ush)dist < (ush)MAX_DIST(s) &&
    1037             :                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
    1038             :                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
    1039             : 
    1040           0 :         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
    1041           0 :         s->dyn_dtree[d_code(dist)].Freq++;
    1042             :     }
    1043             : 
    1044             : #ifdef TRUNCATE_BLOCK
    1045             :     /* Try to guess if it is profitable to stop the current block here */
    1046             :     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
    1047             :         /* Compute an upper bound for the compressed length */
    1048             :         ulg out_length = (ulg)s->last_lit*8L;
    1049             :         ulg in_length = (ulg)((long)s->strstart - s->block_start);
    1050             :         int dcode;
    1051             :         for (dcode = 0; dcode < D_CODES; dcode++) {
    1052             :             out_length += (ulg)s->dyn_dtree[dcode].Freq *
    1053             :                 (5L+extra_dbits[dcode]);
    1054             :         }
    1055             :         out_length >>= 3;
    1056             :         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
    1057             :                s->last_lit, in_length, out_length,
    1058             :                100L - out_length*100L/in_length));
    1059             :         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
    1060             :     }
    1061             : #endif
    1062           0 :     return (s->last_lit == s->lit_bufsize-1);
    1063             :     /* We avoid equality with lit_bufsize because of wraparound at 64K
    1064             :      * on 16 bit machines and because stored blocks are restricted to
    1065             :      * 64K-1 bytes.
    1066             :      */
    1067             : }
    1068             : 
    1069             : /* ===========================================================================
    1070             :  * Send the block data compressed using the given Huffman trees
    1071             :  */
    1072           0 : local void compress_block(s, ltree, dtree)
    1073             :     deflate_state *s;
    1074             :     ct_data *ltree; /* literal tree */
    1075             :     ct_data *dtree; /* distance tree */
    1076             : {
    1077             :     unsigned dist;      /* distance of matched string */
    1078             :     int lc;             /* match length or unmatched char (if dist == 0) */
    1079             :     unsigned lx = 0;    /* running index in l_buf */
    1080             :     unsigned code;      /* the code to send */
    1081             :     int extra;          /* number of extra bits to send */
    1082             : 
    1083           0 :     if (s->last_lit != 0) do {
    1084           0 :         dist = s->d_buf[lx];
    1085           0 :         lc = s->l_buf[lx++];
    1086           0 :         if (dist == 0) {
    1087           0 :             send_code(s, lc, ltree); /* send a literal byte */
    1088             :             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
    1089           0 :         } else {
    1090             :             /* Here, lc is the match length - MIN_MATCH */
    1091           0 :             code = _length_code[lc];
    1092           0 :             send_code(s, code+LITERALS+1, ltree); /* send the length code */
    1093           0 :             extra = extra_lbits[code];
    1094           0 :             if (extra != 0) {
    1095           0 :                 lc -= base_length[code];
    1096           0 :                 send_bits(s, lc, extra);       /* send the extra length bits */
    1097           0 :             }
    1098           0 :             dist--; /* dist is now the match distance - 1 */
    1099           0 :             code = d_code(dist);
    1100             :             Assert (code < D_CODES, "bad d_code");
    1101             : 
    1102           0 :             send_code(s, code, dtree);       /* send the distance code */
    1103           0 :             extra = extra_dbits[code];
    1104           0 :             if (extra != 0) {
    1105           0 :                 dist -= base_dist[code];
    1106           0 :                 send_bits(s, dist, extra);   /* send the extra distance bits */
    1107           0 :             }
    1108             :         } /* literal or match pair ? */
    1109             : 
    1110             :         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
    1111             :         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
    1112             :                "pendingBuf overflow");
    1113             : 
    1114           0 :     } while (lx < s->last_lit);
    1115             : 
    1116           0 :     send_code(s, END_BLOCK, ltree);
    1117           0 :     s->last_eob_len = ltree[END_BLOCK].Len;
    1118           0 : }
    1119             : 
    1120             : /* ===========================================================================
    1121             :  * Set the data type to BINARY or TEXT, using a crude approximation:
    1122             :  * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
    1123             :  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
    1124             :  * IN assertion: the fields Freq of dyn_ltree are set.
    1125             :  */
    1126           0 : local void set_data_type(s)
    1127             :     deflate_state *s;
    1128             : {
    1129             :     int n;
    1130             : 
    1131           0 :     for (n = 0; n < 9; n++)
    1132           0 :         if (s->dyn_ltree[n].Freq != 0)
    1133             :             break;
    1134           0 :     if (n == 9)
    1135           0 :         for (n = 14; n < 32; n++)
    1136           0 :             if (s->dyn_ltree[n].Freq != 0)
    1137             :                 break;
    1138           0 :     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
    1139           0 : }
    1140             : 
    1141             : /* ===========================================================================
    1142             :  * Reverse the first len bits of a code, using straightforward code (a faster
    1143             :  * method would use a table)
    1144             :  * IN assertion: 1 <= len <= 15
    1145             :  */
    1146           0 : local unsigned bi_reverse(code, len)
    1147             :     unsigned code; /* the value to invert */
    1148             :     int len;       /* its bit length */
    1149             : {
    1150             :     register unsigned res = 0;
    1151           0 :     do {
    1152           0 :         res |= code & 1;
    1153           0 :         code >>= 1, res <<= 1;
    1154           0 :     } while (--len > 0);
    1155           0 :     return res >> 1;
    1156             : }
    1157             : 
    1158             : /* ===========================================================================
    1159             :  * Flush the bit buffer, keeping at most 7 bits in it.
    1160             :  */
    1161           0 : local void bi_flush(s)
    1162             :     deflate_state *s;
    1163             : {
    1164           0 :     if (s->bi_valid == 16) {
    1165           0 :         put_short(s, s->bi_buf);
    1166           0 :         s->bi_buf = 0;
    1167           0 :         s->bi_valid = 0;
    1168           0 :     } else if (s->bi_valid >= 8) {
    1169           0 :         put_byte(s, (Byte)s->bi_buf);
    1170           0 :         s->bi_buf >>= 8;
    1171           0 :         s->bi_valid -= 8;
    1172           0 :     }
    1173           0 : }
    1174             : 
    1175             : /* ===========================================================================
    1176             :  * Flush the bit buffer and align the output on a byte boundary
    1177             :  */
    1178           0 : local void bi_windup(s)
    1179             :     deflate_state *s;
    1180             : {
    1181           0 :     if (s->bi_valid > 8) {
    1182           0 :         put_short(s, s->bi_buf);
    1183           0 :     } else if (s->bi_valid > 0) {
    1184           0 :         put_byte(s, (Byte)s->bi_buf);
    1185           0 :     }
    1186           0 :     s->bi_buf = 0;
    1187           0 :     s->bi_valid = 0;
    1188             : #ifdef DEBUG_LIBZ
    1189             :     s->bits_sent = (s->bits_sent+7) & ~7;
    1190             : #endif
    1191           0 : }
    1192             : 
    1193             : /* ===========================================================================
    1194             :  * Copy a stored block, storing first the length and its
    1195             :  * one's complement if requested.
    1196             :  */
    1197           0 : local void copy_block(s, buf, len, header)
    1198             :     deflate_state *s;
    1199             :     charf    *buf;    /* the input data */
    1200             :     unsigned len;     /* its length */
    1201             :     int      header;  /* true if block header must be written */
    1202             : {
    1203           0 :     bi_windup(s);        /* align on byte boundary */
    1204           0 :     s->last_eob_len = 8; /* enough lookahead for inflate */
    1205             : 
    1206           0 :     if (header) {
    1207           0 :         put_short(s, (ush)len);
    1208           0 :         put_short(s, (ush)~len);
    1209             : #ifdef DEBUG_LIBZ
    1210             :         s->bits_sent += 2*16;
    1211             : #endif
    1212           0 :     }
    1213             : #ifdef DEBUG_LIBZ
    1214             :     s->bits_sent += (ulg)len<<3;
    1215             : #endif
    1216           0 :     while (len--) {
    1217           0 :         put_byte(s, *buf++);
    1218             :     }
    1219           0 : }

Generated by: LCOV version 1.13