LCOV - code coverage report
Current view: top level - net80211 - ieee80211_crypto.c (source / functions) Hit Total Coverage
Test: 6.4 Lines: 0 306 0.0 %
Date: 2018-10-19 03:25:38 Functions: 0 21 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*      $OpenBSD: ieee80211_crypto.c,v 1.73 2018/04/28 14:46:10 stsp Exp $      */
       2             : 
       3             : /*-
       4             :  * Copyright (c) 2008 Damien Bergamini <damien.bergamini@free.fr>
       5             :  *
       6             :  * Permission to use, copy, modify, and distribute this software for any
       7             :  * purpose with or without fee is hereby granted, provided that the above
       8             :  * copyright notice and this permission notice appear in all copies.
       9             :  *
      10             :  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      11             :  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      12             :  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
      13             :  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
      14             :  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
      15             :  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
      16             :  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
      17             :  */
      18             : 
      19             : #include <sys/param.h>
      20             : #include <sys/systm.h>
      21             : #include <sys/mbuf.h>
      22             : #include <sys/malloc.h>
      23             : #include <sys/kernel.h>
      24             : #include <sys/socket.h>
      25             : #include <sys/sockio.h>
      26             : #include <sys/endian.h>
      27             : #include <sys/errno.h>
      28             : #include <sys/sysctl.h>
      29             : 
      30             : #include <net/if.h>
      31             : #include <net/if_dl.h>
      32             : #include <net/if_media.h>
      33             : 
      34             : #include <netinet/in.h>
      35             : #include <netinet/if_ether.h>
      36             : 
      37             : #include <net80211/ieee80211_var.h>
      38             : #include <net80211/ieee80211_priv.h>
      39             : 
      40             : #include <crypto/arc4.h>
      41             : #include <crypto/md5.h>
      42             : #include <crypto/sha1.h>
      43             : #include <crypto/sha2.h>
      44             : #include <crypto/hmac.h>
      45             : #include <crypto/aes.h>
      46             : #include <crypto/cmac.h>
      47             : #include <crypto/key_wrap.h>
      48             : 
      49             : void    ieee80211_prf(const u_int8_t *, size_t, const u_int8_t *, size_t,
      50             :             const u_int8_t *, size_t, u_int8_t *, size_t);
      51             : void    ieee80211_kdf(const u_int8_t *, size_t, const u_int8_t *, size_t,
      52             :             const u_int8_t *, size_t, u_int8_t *, size_t);
      53             : void    ieee80211_derive_pmkid(enum ieee80211_akm, const u_int8_t *,
      54             :             const u_int8_t *, const u_int8_t *, u_int8_t *);
      55             : 
      56             : void
      57           0 : ieee80211_crypto_attach(struct ifnet *ifp)
      58             : {
      59           0 :         struct ieee80211com *ic = (void *)ifp;
      60             : 
      61           0 :         TAILQ_INIT(&ic->ic_pmksa);
      62           0 :         if (ic->ic_caps & IEEE80211_C_RSN) {
      63           0 :                 ic->ic_rsnprotos = IEEE80211_PROTO_RSN;
      64           0 :                 ic->ic_rsnakms = IEEE80211_AKM_PSK;
      65           0 :                 ic->ic_rsnciphers = IEEE80211_CIPHER_CCMP;
      66           0 :                 ic->ic_rsngroupcipher = IEEE80211_CIPHER_CCMP;
      67           0 :                 ic->ic_rsngroupmgmtcipher = IEEE80211_CIPHER_BIP;
      68           0 :         }
      69           0 :         ic->ic_set_key = ieee80211_set_key;
      70           0 :         ic->ic_delete_key = ieee80211_delete_key;
      71             : #ifndef IEEE80211_STA_ONLY
      72           0 :         timeout_set(&ic->ic_tkip_micfail_timeout,
      73             :             ieee80211_michael_mic_failure_timeout, ic);
      74             : #endif
      75           0 : }
      76             : 
      77             : void
      78           0 : ieee80211_crypto_detach(struct ifnet *ifp)
      79             : {
      80           0 :         struct ieee80211com *ic = (void *)ifp;
      81             :         struct ieee80211_pmk *pmk;
      82             : 
      83             :         /* purge the PMKSA cache */
      84           0 :         while ((pmk = TAILQ_FIRST(&ic->ic_pmksa)) != NULL) {
      85           0 :                 TAILQ_REMOVE(&ic->ic_pmksa, pmk, pmk_next);
      86           0 :                 explicit_bzero(pmk, sizeof(*pmk));
      87           0 :                 free(pmk, M_DEVBUF, sizeof(*pmk));
      88             :         }
      89             : 
      90             :         /* clear all group keys from memory */
      91           0 :         ieee80211_crypto_clear_groupkeys(ic);
      92             : 
      93             :         /* clear pre-shared key from memory */
      94           0 :         explicit_bzero(ic->ic_psk, IEEE80211_PMK_LEN);
      95             : 
      96             : #ifndef IEEE80211_STA_ONLY
      97           0 :         timeout_del(&ic->ic_tkip_micfail_timeout);
      98             : #endif
      99           0 : }
     100             : 
     101             : void
     102           0 : ieee80211_crypto_clear_groupkeys(struct ieee80211com *ic)
     103             : {
     104             :         int i;
     105             : 
     106           0 :         for (i = 0; i < IEEE80211_GROUP_NKID; i++) {
     107           0 :                 struct ieee80211_key *k = &ic->ic_nw_keys[i];
     108           0 :                 if (k->k_cipher != IEEE80211_CIPHER_NONE)
     109           0 :                         (*ic->ic_delete_key)(ic, NULL, k);
     110           0 :                 explicit_bzero(k, sizeof(*k));
     111             :         }
     112           0 : }
     113             : 
     114             : /*
     115             :  * Return the length in bytes of a cipher suite key (see Table 60).
     116             :  */
     117             : int
     118           0 : ieee80211_cipher_keylen(enum ieee80211_cipher cipher)
     119             : {
     120           0 :         switch (cipher) {
     121             :         case IEEE80211_CIPHER_WEP40:
     122           0 :                 return 5;
     123             :         case IEEE80211_CIPHER_TKIP:
     124           0 :                 return 32;
     125             :         case IEEE80211_CIPHER_CCMP:
     126           0 :                 return 16;
     127             :         case IEEE80211_CIPHER_WEP104:
     128           0 :                 return 13;
     129             :         case IEEE80211_CIPHER_BIP:
     130           0 :                 return 16;
     131             :         default:        /* unknown cipher */
     132           0 :                 return 0;
     133             :         }
     134           0 : }
     135             : 
     136             : int
     137           0 : ieee80211_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
     138             :     struct ieee80211_key *k)
     139             : {
     140             :         int error;
     141             : 
     142           0 :         switch (k->k_cipher) {
     143             :         case IEEE80211_CIPHER_WEP40:
     144             :         case IEEE80211_CIPHER_WEP104:
     145           0 :                 error = ieee80211_wep_set_key(ic, k);
     146           0 :                 break;
     147             :         case IEEE80211_CIPHER_TKIP:
     148           0 :                 error = ieee80211_tkip_set_key(ic, k);
     149           0 :                 break;
     150             :         case IEEE80211_CIPHER_CCMP:
     151           0 :                 error = ieee80211_ccmp_set_key(ic, k);
     152           0 :                 break;
     153             :         case IEEE80211_CIPHER_BIP:
     154           0 :                 error = ieee80211_bip_set_key(ic, k);
     155           0 :                 break;
     156             :         default:
     157             :                 /* should not get there */
     158             :                 error = EINVAL;
     159           0 :         }
     160           0 :         return error;
     161             : }
     162             : 
     163             : void
     164           0 : ieee80211_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
     165             :     struct ieee80211_key *k)
     166             : {
     167           0 :         switch (k->k_cipher) {
     168             :         case IEEE80211_CIPHER_WEP40:
     169             :         case IEEE80211_CIPHER_WEP104:
     170           0 :                 ieee80211_wep_delete_key(ic, k);
     171           0 :                 break;
     172             :         case IEEE80211_CIPHER_TKIP:
     173           0 :                 ieee80211_tkip_delete_key(ic, k);
     174           0 :                 break;
     175             :         case IEEE80211_CIPHER_CCMP:
     176           0 :                 ieee80211_ccmp_delete_key(ic, k);
     177           0 :                 break;
     178             :         case IEEE80211_CIPHER_BIP:
     179           0 :                 ieee80211_bip_delete_key(ic, k);
     180           0 :                 break;
     181             :         default:
     182             :                 /* should not get there */
     183             :                 break;
     184             :         }
     185           0 :         explicit_bzero(k, sizeof(*k));
     186           0 : }
     187             : 
     188             : struct ieee80211_key *
     189           0 : ieee80211_get_txkey(struct ieee80211com *ic, const struct ieee80211_frame *wh,
     190             :     struct ieee80211_node *ni)
     191             : {
     192             :         int kid;
     193             : 
     194           0 :         if ((ic->ic_flags & IEEE80211_F_RSNON) &&
     195           0 :             !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
     196           0 :             ni->ni_rsncipher != IEEE80211_CIPHER_USEGROUP)
     197           0 :                 return &ni->ni_pairwise_key;
     198             : 
     199           0 :         if ((ic->ic_flags & IEEE80211_F_WEPON) ||
     200           0 :             !IEEE80211_IS_MULTICAST(wh->i_addr1) ||
     201           0 :             (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
     202             :             IEEE80211_FC0_TYPE_MGT)
     203           0 :                 kid = ic->ic_def_txkey;
     204             :         else
     205           0 :                 kid = ic->ic_igtk_kid;
     206           0 :         return &ic->ic_nw_keys[kid];
     207           0 : }
     208             : 
     209             : struct mbuf *
     210           0 : ieee80211_encrypt(struct ieee80211com *ic, struct mbuf *m0,
     211             :     struct ieee80211_key *k)
     212             : {
     213           0 :         switch (k->k_cipher) {
     214             :         case IEEE80211_CIPHER_WEP40:
     215             :         case IEEE80211_CIPHER_WEP104:
     216           0 :                 m0 = ieee80211_wep_encrypt(ic, m0, k);
     217           0 :                 break;
     218             :         case IEEE80211_CIPHER_TKIP:
     219           0 :                 m0 = ieee80211_tkip_encrypt(ic, m0, k);
     220           0 :                 break;
     221             :         case IEEE80211_CIPHER_CCMP:
     222           0 :                 m0 = ieee80211_ccmp_encrypt(ic, m0, k);
     223           0 :                 break;
     224             :         case IEEE80211_CIPHER_BIP:
     225           0 :                 m0 = ieee80211_bip_encap(ic, m0, k);
     226           0 :                 break;
     227             :         default:
     228             :                 /* should not get there */
     229           0 :                 panic("invalid key cipher 0x%x", k->k_cipher);
     230             :         }
     231           0 :         return m0;
     232             : }
     233             : 
     234             : struct mbuf *
     235           0 : ieee80211_decrypt(struct ieee80211com *ic, struct mbuf *m0,
     236             :     struct ieee80211_node *ni)
     237             : {
     238             :         struct ieee80211_frame *wh;
     239             :         struct ieee80211_key *k;
     240             :         u_int8_t *ivp, *mmie;
     241             :         u_int16_t kid;
     242             :         int hdrlen;
     243             : 
     244             :         /* find key for decryption */
     245           0 :         wh = mtod(m0, struct ieee80211_frame *);
     246           0 :         if ((ic->ic_flags & IEEE80211_F_RSNON) &&
     247           0 :             !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
     248           0 :             ni->ni_rsncipher != IEEE80211_CIPHER_USEGROUP) {
     249           0 :                 k = &ni->ni_pairwise_key;
     250             : 
     251           0 :         } else if (!IEEE80211_IS_MULTICAST(wh->i_addr1) ||
     252           0 :             (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
     253             :             IEEE80211_FC0_TYPE_MGT) {
     254             :                 /* retrieve group data key id from IV field */
     255           0 :                 hdrlen = ieee80211_get_hdrlen(wh);
     256             :                 /* check that IV field is present */
     257           0 :                 if (m0->m_len < hdrlen + 4) {
     258           0 :                         m_freem(m0);
     259           0 :                         return NULL;
     260             :                 }
     261           0 :                 ivp = (u_int8_t *)wh + hdrlen;
     262           0 :                 kid = ivp[3] >> 6;
     263           0 :                 k = &ic->ic_nw_keys[kid];
     264           0 :         } else {
     265             :                 /* retrieve integrity group key id from MMIE */
     266           0 :                 if (m0->m_len < sizeof(*wh) + IEEE80211_MMIE_LEN) {
     267           0 :                         m_freem(m0);
     268           0 :                         return NULL;
     269             :                 }
     270             :                 /* it is assumed management frames are contiguous */
     271           0 :                 mmie = (u_int8_t *)wh + m0->m_len - IEEE80211_MMIE_LEN;
     272             :                 /* check that MMIE is valid */
     273           0 :                 if (mmie[0] != IEEE80211_ELEMID_MMIE || mmie[1] != 16) {
     274           0 :                         m_freem(m0);
     275           0 :                         return NULL;
     276             :                 }
     277           0 :                 kid = LE_READ_2(&mmie[2]);
     278           0 :                 if (kid != 4 && kid != 5) {
     279           0 :                         m_freem(m0);
     280           0 :                         return NULL;
     281             :                 }
     282           0 :                 k = &ic->ic_nw_keys[kid];
     283             :         }
     284           0 :         switch (k->k_cipher) {
     285             :         case IEEE80211_CIPHER_WEP40:
     286             :         case IEEE80211_CIPHER_WEP104:
     287           0 :                 m0 = ieee80211_wep_decrypt(ic, m0, k);
     288           0 :                 break;
     289             :         case IEEE80211_CIPHER_TKIP:
     290           0 :                 m0 = ieee80211_tkip_decrypt(ic, m0, k);
     291           0 :                 break;
     292             :         case IEEE80211_CIPHER_CCMP:
     293           0 :                 m0 = ieee80211_ccmp_decrypt(ic, m0, k);
     294           0 :                 break;
     295             :         case IEEE80211_CIPHER_BIP:
     296           0 :                 m0 = ieee80211_bip_decap(ic, m0, k);
     297           0 :                 break;
     298             :         default:
     299             :                 /* key not defined */
     300           0 :                 m_freem(m0);
     301             :                 m0 = NULL;
     302           0 :         }
     303           0 :         return m0;
     304           0 : }
     305             : 
     306             : /*
     307             :  * SHA1-based Pseudo-Random Function (see 8.5.1.1).
     308             :  */
     309             : void
     310           0 : ieee80211_prf(const u_int8_t *key, size_t key_len, const u_int8_t *label,
     311             :     size_t label_len, const u_int8_t *context, size_t context_len,
     312             :     u_int8_t *output, size_t len)
     313             : {
     314           0 :         HMAC_SHA1_CTX ctx;
     315           0 :         u_int8_t digest[SHA1_DIGEST_LENGTH];
     316           0 :         u_int8_t count;
     317             : 
     318           0 :         for (count = 0; len != 0; count++) {
     319           0 :                 HMAC_SHA1_Init(&ctx, key, key_len);
     320           0 :                 HMAC_SHA1_Update(&ctx, label, label_len);
     321           0 :                 HMAC_SHA1_Update(&ctx, context, context_len);
     322           0 :                 HMAC_SHA1_Update(&ctx, &count, 1);
     323           0 :                 if (len < SHA1_DIGEST_LENGTH) {
     324           0 :                         HMAC_SHA1_Final(digest, &ctx);
     325             :                         /* truncate HMAC-SHA1 to len bytes */
     326           0 :                         memcpy(output, digest, len);
     327           0 :                         break;
     328             :                 }
     329           0 :                 HMAC_SHA1_Final(output, &ctx);
     330           0 :                 output += SHA1_DIGEST_LENGTH;
     331           0 :                 len -= SHA1_DIGEST_LENGTH;
     332             :         }
     333           0 : }
     334             : 
     335             : /*
     336             :  * SHA256-based Key Derivation Function (see 8.5.1.5.2).
     337             :  */
     338             : void
     339           0 : ieee80211_kdf(const u_int8_t *key, size_t key_len, const u_int8_t *label,
     340             :     size_t label_len, const u_int8_t *context, size_t context_len,
     341             :     u_int8_t *output, size_t len)
     342             : {
     343           0 :         HMAC_SHA256_CTX ctx;
     344           0 :         u_int8_t digest[SHA256_DIGEST_LENGTH];
     345           0 :         u_int16_t i, iter, length;
     346             : 
     347           0 :         length = htole16(len * NBBY);
     348           0 :         for (i = 1; len != 0; i++) {
     349           0 :                 HMAC_SHA256_Init(&ctx, key, key_len);
     350           0 :                 iter = htole16(i);
     351           0 :                 HMAC_SHA256_Update(&ctx, (u_int8_t *)&iter, sizeof iter);
     352           0 :                 HMAC_SHA256_Update(&ctx, label, label_len);
     353           0 :                 HMAC_SHA256_Update(&ctx, context, context_len);
     354           0 :                 HMAC_SHA256_Update(&ctx, (u_int8_t *)&length, sizeof length);
     355           0 :                 if (len < SHA256_DIGEST_LENGTH) {
     356           0 :                         HMAC_SHA256_Final(digest, &ctx);
     357             :                         /* truncate HMAC-SHA-256 to len bytes */
     358           0 :                         memcpy(output, digest, len);
     359           0 :                         break;
     360             :                 }
     361           0 :                 HMAC_SHA256_Final(output, &ctx);
     362           0 :                 output += SHA256_DIGEST_LENGTH;
     363           0 :                 len -= SHA256_DIGEST_LENGTH;
     364             :         }
     365           0 : }
     366             : 
     367             : /*
     368             :  * Derive Pairwise Transient Key (PTK) (see 8.5.1.2).
     369             :  */
     370             : void
     371           0 : ieee80211_derive_ptk(enum ieee80211_akm akm, const u_int8_t *pmk,
     372             :     const u_int8_t *aa, const u_int8_t *spa, const u_int8_t *anonce,
     373             :     const u_int8_t *snonce, struct ieee80211_ptk *ptk)
     374             : {
     375             :         void (*kdf)(const u_int8_t *, size_t, const u_int8_t *, size_t,
     376             :             const u_int8_t *, size_t, u_int8_t *, size_t);
     377           0 :         u_int8_t buf[2 * IEEE80211_ADDR_LEN + 2 * EAPOL_KEY_NONCE_LEN];
     378             :         int ret;
     379             : 
     380             :         /* Min(AA,SPA) || Max(AA,SPA) */
     381           0 :         ret = memcmp(aa, spa, IEEE80211_ADDR_LEN) < 0;
     382           0 :         memcpy(&buf[ 0], ret ? aa : spa, IEEE80211_ADDR_LEN);
     383           0 :         memcpy(&buf[ 6], ret ? spa : aa, IEEE80211_ADDR_LEN);
     384             : 
     385             :         /* Min(ANonce,SNonce) || Max(ANonce,SNonce) */
     386           0 :         ret = memcmp(anonce, snonce, EAPOL_KEY_NONCE_LEN) < 0;
     387           0 :         memcpy(&buf[12], ret ? anonce : snonce, EAPOL_KEY_NONCE_LEN);
     388           0 :         memcpy(&buf[44], ret ? snonce : anonce, EAPOL_KEY_NONCE_LEN);
     389             : 
     390           0 :         kdf = ieee80211_is_sha256_akm(akm) ? ieee80211_kdf : ieee80211_prf;
     391           0 :         (*kdf)(pmk, IEEE80211_PMK_LEN, "Pairwise key expansion", 23,
     392           0 :             buf, sizeof buf, (u_int8_t *)ptk, sizeof(*ptk));
     393           0 : }
     394             : 
     395             : static void
     396           0 : ieee80211_pmkid_sha1(const u_int8_t *pmk, const u_int8_t *aa,
     397             :     const u_int8_t *spa, u_int8_t *pmkid)
     398             : {
     399           0 :         HMAC_SHA1_CTX ctx;
     400           0 :         u_int8_t digest[SHA1_DIGEST_LENGTH];
     401             : 
     402           0 :         HMAC_SHA1_Init(&ctx, pmk, IEEE80211_PMK_LEN);
     403           0 :         HMAC_SHA1_Update(&ctx, "PMK Name", 8);
     404           0 :         HMAC_SHA1_Update(&ctx, aa, IEEE80211_ADDR_LEN);
     405           0 :         HMAC_SHA1_Update(&ctx, spa, IEEE80211_ADDR_LEN);
     406           0 :         HMAC_SHA1_Final(digest, &ctx);
     407             :         /* use the first 128 bits of HMAC-SHA1 */
     408           0 :         memcpy(pmkid, digest, IEEE80211_PMKID_LEN);
     409           0 : }
     410             : 
     411             : static void
     412           0 : ieee80211_pmkid_sha256(const u_int8_t *pmk, const u_int8_t *aa,
     413             :     const u_int8_t *spa, u_int8_t *pmkid)
     414             : {
     415           0 :         HMAC_SHA256_CTX ctx;
     416           0 :         u_int8_t digest[SHA256_DIGEST_LENGTH];
     417             : 
     418           0 :         HMAC_SHA256_Init(&ctx, pmk, IEEE80211_PMK_LEN);
     419           0 :         HMAC_SHA256_Update(&ctx, "PMK Name", 8);
     420           0 :         HMAC_SHA256_Update(&ctx, aa, IEEE80211_ADDR_LEN);
     421           0 :         HMAC_SHA256_Update(&ctx, spa, IEEE80211_ADDR_LEN);
     422           0 :         HMAC_SHA256_Final(digest, &ctx);
     423             :         /* use the first 128 bits of HMAC-SHA-256 */
     424           0 :         memcpy(pmkid, digest, IEEE80211_PMKID_LEN);
     425           0 : }
     426             : 
     427             : /*
     428             :  * Derive Pairwise Master Key Identifier (PMKID) (see 8.5.1.2).
     429             :  */
     430             : void
     431           0 : ieee80211_derive_pmkid(enum ieee80211_akm akm, const u_int8_t *pmk,
     432             :     const u_int8_t *aa, const u_int8_t *spa, u_int8_t *pmkid)
     433             : {
     434           0 :         if (ieee80211_is_sha256_akm(akm))
     435           0 :                 ieee80211_pmkid_sha256(pmk, aa, spa, pmkid);
     436             :         else
     437           0 :                 ieee80211_pmkid_sha1(pmk, aa, spa, pmkid);
     438           0 : }
     439             : 
     440             : typedef union _ANY_CTX {
     441             :         HMAC_MD5_CTX    md5;
     442             :         HMAC_SHA1_CTX   sha1;
     443             :         AES_CMAC_CTX    cmac;
     444             : } ANY_CTX;
     445             : 
     446             : /*
     447             :  * Compute the Key MIC field of an EAPOL-Key frame using the specified Key
     448             :  * Confirmation Key (KCK).  The hash function can be HMAC-MD5, HMAC-SHA1
     449             :  * or AES-128-CMAC depending on the EAPOL-Key Key Descriptor Version.
     450             :  */
     451             : void
     452           0 : ieee80211_eapol_key_mic(struct ieee80211_eapol_key *key, const u_int8_t *kck)
     453             : {
     454           0 :         u_int8_t digest[SHA1_DIGEST_LENGTH];
     455           0 :         ANY_CTX ctx;    /* XXX off stack? */
     456             :         u_int len;
     457             : 
     458           0 :         len = BE_READ_2(key->len) + 4;
     459             : 
     460           0 :         switch (BE_READ_2(key->info) & EAPOL_KEY_VERSION_MASK) {
     461             :         case EAPOL_KEY_DESC_V1:
     462           0 :                 HMAC_MD5_Init(&ctx.md5, kck, 16);
     463           0 :                 HMAC_MD5_Update(&ctx.md5, (u_int8_t *)key, len);
     464           0 :                 HMAC_MD5_Final(key->mic, &ctx.md5);
     465           0 :                 break;
     466             :         case EAPOL_KEY_DESC_V2:
     467           0 :                 HMAC_SHA1_Init(&ctx.sha1, kck, 16);
     468           0 :                 HMAC_SHA1_Update(&ctx.sha1, (u_int8_t *)key, len);
     469           0 :                 HMAC_SHA1_Final(digest, &ctx.sha1);
     470             :                 /* truncate HMAC-SHA1 to its 128 MSBs */
     471           0 :                 memcpy(key->mic, digest, EAPOL_KEY_MIC_LEN);
     472           0 :                 break;
     473             :         case EAPOL_KEY_DESC_V3:
     474           0 :                 AES_CMAC_Init(&ctx.cmac);
     475           0 :                 AES_CMAC_SetKey(&ctx.cmac, kck);
     476           0 :                 AES_CMAC_Update(&ctx.cmac, (u_int8_t *)key, len);
     477           0 :                 AES_CMAC_Final(key->mic, &ctx.cmac);
     478           0 :                 break;
     479             :         }
     480           0 : }
     481             : 
     482             : /*
     483             :  * Check the MIC of a received EAPOL-Key frame using the specified Key
     484             :  * Confirmation Key (KCK).
     485             :  */
     486             : int
     487           0 : ieee80211_eapol_key_check_mic(struct ieee80211_eapol_key *key,
     488             :     const u_int8_t *kck)
     489             : {
     490           0 :         u_int8_t mic[EAPOL_KEY_MIC_LEN];
     491             : 
     492           0 :         memcpy(mic, key->mic, EAPOL_KEY_MIC_LEN);
     493           0 :         memset(key->mic, 0, EAPOL_KEY_MIC_LEN);
     494           0 :         ieee80211_eapol_key_mic(key, kck);
     495             : 
     496           0 :         return timingsafe_bcmp(key->mic, mic, EAPOL_KEY_MIC_LEN) != 0;
     497           0 : }
     498             : 
     499             : #ifndef IEEE80211_STA_ONLY
     500             : /*
     501             :  * Encrypt the Key Data field of an EAPOL-Key frame using the specified Key
     502             :  * Encryption Key (KEK).  The encryption algorithm can be either ARC4 or
     503             :  * AES Key Wrap depending on the EAPOL-Key Key Descriptor Version.
     504             :  */
     505             : void
     506           0 : ieee80211_eapol_key_encrypt(struct ieee80211com *ic,
     507             :     struct ieee80211_eapol_key *key, const u_int8_t *kek)
     508             : {
     509           0 :         union {
     510             :                 struct rc4_ctx rc4;
     511             :                 aes_key_wrap_ctx aes;
     512             :         } ctx;  /* XXX off stack? */
     513           0 :         u_int8_t keybuf[EAPOL_KEY_IV_LEN + 16];
     514             :         u_int16_t len, info;
     515             :         u_int8_t *data;
     516             :         int n;
     517             : 
     518           0 :         len  = BE_READ_2(key->paylen);
     519           0 :         info = BE_READ_2(key->info);
     520           0 :         data = (u_int8_t *)(key + 1);
     521             : 
     522           0 :         switch (info & EAPOL_KEY_VERSION_MASK) {
     523             :         case EAPOL_KEY_DESC_V1:
     524             :                 /* set IV to the lower 16 octets of our global key counter */
     525           0 :                 memcpy(key->iv, ic->ic_globalcnt + 16, 16);
     526             :                 /* increment our global key counter (256-bit, big-endian) */
     527           0 :                 for (n = 31; n >= 0 && ++ic->ic_globalcnt[n] == 0; n--);
     528             : 
     529             :                 /* concatenate the EAPOL-Key IV field and the KEK */
     530           0 :                 memcpy(keybuf, key->iv, EAPOL_KEY_IV_LEN);
     531           0 :                 memcpy(keybuf + EAPOL_KEY_IV_LEN, kek, 16);
     532             : 
     533           0 :                 rc4_keysetup(&ctx.rc4, keybuf, sizeof keybuf);
     534             :                 /* discard the first 256 octets of the ARC4 key stream */
     535           0 :                 rc4_skip(&ctx.rc4, RC4STATE);
     536           0 :                 rc4_crypt(&ctx.rc4, data, data, len);
     537           0 :                 break;
     538             :         case EAPOL_KEY_DESC_V2:
     539             :         case EAPOL_KEY_DESC_V3:
     540           0 :                 if (len < 16 || (len & 7) != 0) {
     541             :                         /* insert padding */
     542           0 :                         n = (len < 16) ? 16 - len : 8 - (len & 7);
     543           0 :                         data[len++] = IEEE80211_ELEMID_VENDOR;
     544           0 :                         memset(&data[len], 0, n - 1);
     545           0 :                         len += n - 1;
     546           0 :                 }
     547           0 :                 aes_key_wrap_set_key_wrap_only(&ctx.aes, kek, 16);
     548           0 :                 aes_key_wrap(&ctx.aes, data, len / 8, data);
     549           0 :                 len += 8;       /* AES Key Wrap adds 8 bytes */
     550             :                 /* update key data length */
     551           0 :                 BE_WRITE_2(key->paylen, len);
     552             :                 /* update packet body length */
     553           0 :                 BE_WRITE_2(key->len, sizeof(*key) + len - 4);
     554           0 :                 break;
     555             :         }
     556           0 : }
     557             : #endif  /* IEEE80211_STA_ONLY */
     558             : 
     559             : /*
     560             :  * Decrypt the Key Data field of an EAPOL-Key frame using the specified Key
     561             :  * Encryption Key (KEK).  The encryption algorithm can be either ARC4 or
     562             :  * AES Key Wrap depending on the EAPOL-Key Key Descriptor Version.
     563             :  */
     564             : int
     565           0 : ieee80211_eapol_key_decrypt(struct ieee80211_eapol_key *key,
     566             :     const u_int8_t *kek)
     567             : {
     568           0 :         union {
     569             :                 struct rc4_ctx rc4;
     570             :                 aes_key_wrap_ctx aes;
     571             :         } ctx;  /* XXX off stack? */
     572           0 :         u_int8_t keybuf[EAPOL_KEY_IV_LEN + 16];
     573             :         u_int16_t len, info;
     574             :         u_int8_t *data;
     575             : 
     576           0 :         len  = BE_READ_2(key->paylen);
     577           0 :         info = BE_READ_2(key->info);
     578           0 :         data = (u_int8_t *)(key + 1);
     579             : 
     580           0 :         switch (info & EAPOL_KEY_VERSION_MASK) {
     581             :         case EAPOL_KEY_DESC_V1:
     582             :                 /* concatenate the EAPOL-Key IV field and the KEK */
     583           0 :                 memcpy(keybuf, key->iv, EAPOL_KEY_IV_LEN);
     584           0 :                 memcpy(keybuf + EAPOL_KEY_IV_LEN, kek, 16);
     585             : 
     586           0 :                 rc4_keysetup(&ctx.rc4, keybuf, sizeof keybuf);
     587             :                 /* discard the first 256 octets of the ARC4 key stream */
     588           0 :                 rc4_skip(&ctx.rc4, RC4STATE);
     589           0 :                 rc4_crypt(&ctx.rc4, data, data, len);
     590           0 :                 return 0;
     591             :         case EAPOL_KEY_DESC_V2:
     592             :         case EAPOL_KEY_DESC_V3:
     593             :                 /* Key Data Length must be a multiple of 8 */
     594           0 :                 if (len < 16 + 8 || (len & 7) != 0)
     595           0 :                         return 1;
     596           0 :                 len -= 8;       /* AES Key Wrap adds 8 bytes */
     597           0 :                 aes_key_wrap_set_key(&ctx.aes, kek, 16);
     598           0 :                 return aes_key_unwrap(&ctx.aes, data, data, len / 8);
     599             :         }
     600             : 
     601           0 :         return 1;       /* unknown Key Descriptor Version */
     602           0 : }
     603             : 
     604             : /*
     605             :  * Add a PMK entry to the PMKSA cache.
     606             :  */
     607             : struct ieee80211_pmk *
     608           0 : ieee80211_pmksa_add(struct ieee80211com *ic, enum ieee80211_akm akm,
     609             :     const u_int8_t *macaddr, const u_int8_t *key, u_int32_t lifetime)
     610             : {
     611             :         struct ieee80211_pmk *pmk;
     612             : 
     613             :         /* check if an entry already exists for this (STA,AKMP) */
     614           0 :         TAILQ_FOREACH(pmk, &ic->ic_pmksa, pmk_next) {
     615           0 :                 if (pmk->pmk_akm == akm &&
     616           0 :                     IEEE80211_ADDR_EQ(pmk->pmk_macaddr, macaddr))
     617             :                         break;
     618             :         }
     619           0 :         if (pmk == NULL) {
     620             :                 /* allocate a new PMKSA entry */
     621           0 :                 if ((pmk = malloc(sizeof(*pmk), M_DEVBUF, M_NOWAIT)) == NULL)
     622           0 :                         return NULL;
     623           0 :                 pmk->pmk_akm = akm;
     624           0 :                 IEEE80211_ADDR_COPY(pmk->pmk_macaddr, macaddr);
     625           0 :                 TAILQ_INSERT_TAIL(&ic->ic_pmksa, pmk, pmk_next);
     626           0 :         }
     627           0 :         memcpy(pmk->pmk_key, key, IEEE80211_PMK_LEN);
     628           0 :         pmk->pmk_lifetime = lifetime;        /* XXX not used yet */
     629             : #ifndef IEEE80211_STA_ONLY
     630           0 :         if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
     631           0 :                 ieee80211_derive_pmkid(pmk->pmk_akm, pmk->pmk_key,
     632           0 :                     ic->ic_myaddr, macaddr, pmk->pmk_pmkid);
     633           0 :         } else
     634             : #endif
     635             :         {
     636           0 :                 ieee80211_derive_pmkid(pmk->pmk_akm, pmk->pmk_key,
     637           0 :                     macaddr, ic->ic_myaddr, pmk->pmk_pmkid);
     638             :         }
     639           0 :         return pmk;
     640           0 : }
     641             : 
     642             : /*
     643             :  * Check if we have a cached PMK entry for the specified node and PMKID.
     644             :  */
     645             : struct ieee80211_pmk *
     646           0 : ieee80211_pmksa_find(struct ieee80211com *ic, struct ieee80211_node *ni,
     647             :     const u_int8_t *pmkid)
     648             : {
     649             :         struct ieee80211_pmk *pmk;
     650             : 
     651           0 :         TAILQ_FOREACH(pmk, &ic->ic_pmksa, pmk_next) {
     652           0 :                 if (pmk->pmk_akm == ni->ni_rsnakms &&
     653           0 :                     IEEE80211_ADDR_EQ(pmk->pmk_macaddr, ni->ni_macaddr) &&
     654           0 :                     (pmkid == NULL ||
     655           0 :                      memcmp(pmk->pmk_pmkid, pmkid, IEEE80211_PMKID_LEN) == 0))
     656             :                         break;
     657             :         }
     658           0 :         return pmk;
     659             : }

Generated by: LCOV version 1.13