Line data Source code
1 : /* $OpenBSD: tcp_input.c,v 1.358 2018/07/23 21:14:00 bluhm Exp $ */
2 : /* $NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $ */
3 :
4 : /*
5 : * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6 : * The Regents of the University of California. All rights reserved.
7 : *
8 : * Redistribution and use in source and binary forms, with or without
9 : * modification, are permitted provided that the following conditions
10 : * are met:
11 : * 1. Redistributions of source code must retain the above copyright
12 : * notice, this list of conditions and the following disclaimer.
13 : * 2. Redistributions in binary form must reproduce the above copyright
14 : * notice, this list of conditions and the following disclaimer in the
15 : * documentation and/or other materials provided with the distribution.
16 : * 3. Neither the name of the University nor the names of its contributors
17 : * may be used to endorse or promote products derived from this software
18 : * without specific prior written permission.
19 : *
20 : * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 : * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 : * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 : * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 : * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 : * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 : * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 : * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 : * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 : * SUCH DAMAGE.
31 : *
32 : * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
33 : *
34 : * NRL grants permission for redistribution and use in source and binary
35 : * forms, with or without modification, of the software and documentation
36 : * created at NRL provided that the following conditions are met:
37 : *
38 : * 1. Redistributions of source code must retain the above copyright
39 : * notice, this list of conditions and the following disclaimer.
40 : * 2. Redistributions in binary form must reproduce the above copyright
41 : * notice, this list of conditions and the following disclaimer in the
42 : * documentation and/or other materials provided with the distribution.
43 : * 3. All advertising materials mentioning features or use of this software
44 : * must display the following acknowledgements:
45 : * This product includes software developed by the University of
46 : * California, Berkeley and its contributors.
47 : * This product includes software developed at the Information
48 : * Technology Division, US Naval Research Laboratory.
49 : * 4. Neither the name of the NRL nor the names of its contributors
50 : * may be used to endorse or promote products derived from this software
51 : * without specific prior written permission.
52 : *
53 : * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54 : * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 : * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56 : * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
57 : * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58 : * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59 : * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60 : * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61 : * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62 : * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63 : * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64 : *
65 : * The views and conclusions contained in the software and documentation
66 : * are those of the authors and should not be interpreted as representing
67 : * official policies, either expressed or implied, of the US Naval
68 : * Research Laboratory (NRL).
69 : */
70 :
71 : #include "pf.h"
72 :
73 : #include <sys/param.h>
74 : #include <sys/systm.h>
75 : #include <sys/mbuf.h>
76 : #include <sys/protosw.h>
77 : #include <sys/socket.h>
78 : #include <sys/socketvar.h>
79 : #include <sys/timeout.h>
80 : #include <sys/kernel.h>
81 : #include <sys/pool.h>
82 :
83 : #include <net/if.h>
84 : #include <net/if_var.h>
85 : #include <net/route.h>
86 :
87 : #include <netinet/in.h>
88 : #include <netinet/ip.h>
89 : #include <netinet/in_pcb.h>
90 : #include <netinet/ip_var.h>
91 : #include <netinet/tcp.h>
92 : #include <netinet/tcp_fsm.h>
93 : #include <netinet/tcp_seq.h>
94 : #include <netinet/tcp_timer.h>
95 : #include <netinet/tcp_var.h>
96 : #include <netinet/tcp_debug.h>
97 :
98 : #if NPF > 0
99 : #include <net/pfvar.h>
100 : #endif
101 :
102 : struct tcpiphdr tcp_saveti;
103 :
104 : int tcp_mss_adv(struct mbuf *, int);
105 : int tcp_flush_queue(struct tcpcb *);
106 :
107 : #ifdef INET6
108 : #include <netinet6/in6_var.h>
109 : #include <netinet6/nd6.h>
110 :
111 : struct tcpipv6hdr tcp_saveti6;
112 :
113 : /* for the packet header length in the mbuf */
114 : #define M_PH_LEN(m) (((struct mbuf *)(m))->m_pkthdr.len)
115 : #define M_V6_LEN(m) (M_PH_LEN(m) - sizeof(struct ip6_hdr))
116 : #define M_V4_LEN(m) (M_PH_LEN(m) - sizeof(struct ip))
117 : #endif /* INET6 */
118 :
119 : int tcprexmtthresh = 3;
120 : int tcptv_keep_init = TCPTV_KEEP_INIT;
121 :
122 : int tcp_rst_ppslim = 100; /* 100pps */
123 : int tcp_rst_ppslim_count = 0;
124 : struct timeval tcp_rst_ppslim_last;
125 :
126 : int tcp_ackdrop_ppslim = 100; /* 100pps */
127 : int tcp_ackdrop_ppslim_count = 0;
128 : struct timeval tcp_ackdrop_ppslim_last;
129 :
130 : #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
131 :
132 : /* for modulo comparisons of timestamps */
133 : #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
134 : #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
135 :
136 : /* for TCP SACK comparisons */
137 : #define SEQ_MIN(a,b) (SEQ_LT(a,b) ? (a) : (b))
138 : #define SEQ_MAX(a,b) (SEQ_GT(a,b) ? (a) : (b))
139 :
140 : /*
141 : * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
142 : */
143 : #ifdef INET6
144 : #define ND6_HINT(tp) \
145 : do { \
146 : if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
147 : rtisvalid(tp->t_inpcb->inp_route6.ro_rt)) { \
148 : nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt); \
149 : } \
150 : } while (0)
151 : #else
152 : #define ND6_HINT(tp)
153 : #endif
154 :
155 : #ifdef TCP_ECN
156 : /*
157 : * ECN (Explicit Congestion Notification) support based on RFC3168
158 : * implementation note:
159 : * snd_last is used to track a recovery phase.
160 : * when cwnd is reduced, snd_last is set to snd_max.
161 : * while snd_last > snd_una, the sender is in a recovery phase and
162 : * its cwnd should not be reduced again.
163 : * snd_last follows snd_una when not in a recovery phase.
164 : */
165 : #endif
166 :
167 : /*
168 : * Macro to compute ACK transmission behavior. Delay the ACK unless
169 : * we have already delayed an ACK (must send an ACK every two segments).
170 : * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
171 : * option is enabled or when the packet is coming from a loopback
172 : * interface.
173 : */
174 : #define TCP_SETUP_ACK(tp, tiflags, m) \
175 : do { \
176 : struct ifnet *ifp = NULL; \
177 : if (m && (m->m_flags & M_PKTHDR)) \
178 : ifp = if_get(m->m_pkthdr.ph_ifidx); \
179 : if (TCP_TIMER_ISARMED(tp, TCPT_DELACK) || \
180 : (tcp_ack_on_push && (tiflags) & TH_PUSH) || \
181 : (ifp && (ifp->if_flags & IFF_LOOPBACK))) \
182 : tp->t_flags |= TF_ACKNOW; \
183 : else \
184 : TCP_TIMER_ARM_MSEC(tp, TCPT_DELACK, tcp_delack_msecs); \
185 : if_put(ifp); \
186 : } while (0)
187 :
188 : void tcp_sack_partialack(struct tcpcb *, struct tcphdr *);
189 : void tcp_newreno_partialack(struct tcpcb *, struct tcphdr *);
190 :
191 : void syn_cache_put(struct syn_cache *);
192 : void syn_cache_rm(struct syn_cache *);
193 : int syn_cache_respond(struct syn_cache *, struct mbuf *);
194 : void syn_cache_timer(void *);
195 : void syn_cache_reaper(void *);
196 : void syn_cache_insert(struct syn_cache *, struct tcpcb *);
197 : void syn_cache_reset(struct sockaddr *, struct sockaddr *,
198 : struct tcphdr *, u_int);
199 : int syn_cache_add(struct sockaddr *, struct sockaddr *, struct tcphdr *,
200 : unsigned int, struct socket *, struct mbuf *, u_char *, int,
201 : struct tcp_opt_info *, tcp_seq *);
202 : struct socket *syn_cache_get(struct sockaddr *, struct sockaddr *,
203 : struct tcphdr *, unsigned int, unsigned int, struct socket *,
204 : struct mbuf *);
205 : struct syn_cache *syn_cache_lookup(struct sockaddr *, struct sockaddr *,
206 : struct syn_cache_head **, u_int);
207 :
208 : /*
209 : * Insert segment ti into reassembly queue of tcp with
210 : * control block tp. Return TH_FIN if reassembly now includes
211 : * a segment with FIN. The macro form does the common case inline
212 : * (segment is the next to be received on an established connection,
213 : * and the queue is empty), avoiding linkage into and removal
214 : * from the queue and repetition of various conversions.
215 : * Set DELACK for segments received in order, but ack immediately
216 : * when segments are out of order (so fast retransmit can work).
217 : */
218 :
219 : int
220 0 : tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
221 : {
222 : struct tcpqent *p, *q, *nq, *tiqe;
223 :
224 : /*
225 : * Allocate a new queue entry, before we throw away any data.
226 : * If we can't, just drop the packet. XXX
227 : */
228 0 : tiqe = pool_get(&tcpqe_pool, PR_NOWAIT);
229 0 : if (tiqe == NULL) {
230 0 : tiqe = TAILQ_LAST(&tp->t_segq, tcpqehead);
231 0 : if (tiqe != NULL && th->th_seq == tp->rcv_nxt) {
232 : /* Reuse last entry since new segment fills a hole */
233 0 : m_freem(tiqe->tcpqe_m);
234 0 : TAILQ_REMOVE(&tp->t_segq, tiqe, tcpqe_q);
235 0 : }
236 0 : if (tiqe == NULL || th->th_seq != tp->rcv_nxt) {
237 : /* Flush segment queue for this connection */
238 0 : tcp_freeq(tp);
239 0 : tcpstat_inc(tcps_rcvmemdrop);
240 0 : m_freem(m);
241 0 : return (0);
242 : }
243 : }
244 :
245 : /*
246 : * Find a segment which begins after this one does.
247 : */
248 0 : for (p = NULL, q = TAILQ_FIRST(&tp->t_segq); q != NULL;
249 0 : p = q, q = TAILQ_NEXT(q, tcpqe_q))
250 0 : if (SEQ_GT(q->tcpqe_tcp->th_seq, th->th_seq))
251 : break;
252 :
253 : /*
254 : * If there is a preceding segment, it may provide some of
255 : * our data already. If so, drop the data from the incoming
256 : * segment. If it provides all of our data, drop us.
257 : */
258 0 : if (p != NULL) {
259 0 : struct tcphdr *phdr = p->tcpqe_tcp;
260 : int i;
261 :
262 : /* conversion to int (in i) handles seq wraparound */
263 0 : i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
264 0 : if (i > 0) {
265 0 : if (i >= *tlen) {
266 0 : tcpstat_pkt(tcps_rcvduppack, tcps_rcvdupbyte,
267 0 : *tlen);
268 0 : m_freem(m);
269 0 : pool_put(&tcpqe_pool, tiqe);
270 0 : return (0);
271 : }
272 0 : m_adj(m, i);
273 0 : *tlen -= i;
274 0 : th->th_seq += i;
275 0 : }
276 0 : }
277 0 : tcpstat_pkt(tcps_rcvoopack, tcps_rcvoobyte, *tlen);
278 :
279 : /*
280 : * While we overlap succeeding segments trim them or,
281 : * if they are completely covered, dequeue them.
282 : */
283 0 : for (; q != NULL; q = nq) {
284 0 : struct tcphdr *qhdr = q->tcpqe_tcp;
285 0 : int i = (th->th_seq + *tlen) - qhdr->th_seq;
286 :
287 0 : if (i <= 0)
288 0 : break;
289 0 : if (i < qhdr->th_reseqlen) {
290 0 : qhdr->th_seq += i;
291 0 : qhdr->th_reseqlen -= i;
292 0 : m_adj(q->tcpqe_m, i);
293 0 : break;
294 : }
295 0 : nq = TAILQ_NEXT(q, tcpqe_q);
296 0 : m_freem(q->tcpqe_m);
297 0 : TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
298 0 : pool_put(&tcpqe_pool, q);
299 0 : }
300 :
301 : /* Insert the new segment queue entry into place. */
302 0 : tiqe->tcpqe_m = m;
303 0 : th->th_reseqlen = *tlen;
304 0 : tiqe->tcpqe_tcp = th;
305 0 : if (p == NULL) {
306 0 : TAILQ_INSERT_HEAD(&tp->t_segq, tiqe, tcpqe_q);
307 0 : } else {
308 0 : TAILQ_INSERT_AFTER(&tp->t_segq, p, tiqe, tcpqe_q);
309 : }
310 :
311 0 : if (th->th_seq != tp->rcv_nxt)
312 0 : return (0);
313 :
314 0 : return (tcp_flush_queue(tp));
315 0 : }
316 :
317 : int
318 0 : tcp_flush_queue(struct tcpcb *tp)
319 : {
320 0 : struct socket *so = tp->t_inpcb->inp_socket;
321 : struct tcpqent *q, *nq;
322 : int flags;
323 :
324 : /*
325 : * Present data to user, advancing rcv_nxt through
326 : * completed sequence space.
327 : */
328 0 : if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
329 0 : return (0);
330 0 : q = TAILQ_FIRST(&tp->t_segq);
331 0 : if (q == NULL || q->tcpqe_tcp->th_seq != tp->rcv_nxt)
332 0 : return (0);
333 0 : if (tp->t_state == TCPS_SYN_RECEIVED && q->tcpqe_tcp->th_reseqlen)
334 0 : return (0);
335 0 : do {
336 0 : tp->rcv_nxt += q->tcpqe_tcp->th_reseqlen;
337 0 : flags = q->tcpqe_tcp->th_flags & TH_FIN;
338 :
339 0 : nq = TAILQ_NEXT(q, tcpqe_q);
340 0 : TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
341 0 : ND6_HINT(tp);
342 0 : if (so->so_state & SS_CANTRCVMORE)
343 0 : m_freem(q->tcpqe_m);
344 : else
345 0 : sbappendstream(so, &so->so_rcv, q->tcpqe_m);
346 0 : pool_put(&tcpqe_pool, q);
347 : q = nq;
348 0 : } while (q != NULL && q->tcpqe_tcp->th_seq == tp->rcv_nxt);
349 0 : tp->t_flags |= TF_BLOCKOUTPUT;
350 0 : sorwakeup(so);
351 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
352 0 : return (flags);
353 0 : }
354 :
355 : /*
356 : * TCP input routine, follows pages 65-76 of the
357 : * protocol specification dated September, 1981 very closely.
358 : */
359 : int
360 0 : tcp_input(struct mbuf **mp, int *offp, int proto, int af)
361 : {
362 0 : struct mbuf *m = *mp;
363 0 : int iphlen = *offp;
364 : struct ip *ip = NULL;
365 : struct inpcb *inp = NULL;
366 : u_int8_t *optp = NULL;
367 : int optlen = 0;
368 0 : int tlen, off;
369 : struct tcpcb *otp = NULL, *tp = NULL;
370 : int tiflags;
371 : struct socket *so = NULL;
372 : int todrop, acked, ourfinisacked;
373 : int hdroptlen = 0;
374 : short ostate;
375 : caddr_t saveti;
376 0 : tcp_seq iss, *reuse = NULL;
377 : u_long tiwin;
378 0 : struct tcp_opt_info opti;
379 : struct tcphdr *th;
380 : #ifdef INET6
381 : struct ip6_hdr *ip6 = NULL;
382 : #endif /* INET6 */
383 : #ifdef IPSEC
384 : struct m_tag *mtag;
385 : struct tdb_ident *tdbi;
386 : struct tdb *tdb;
387 0 : int error;
388 : #endif /* IPSEC */
389 : #ifdef TCP_ECN
390 : u_char iptos;
391 : #endif
392 :
393 0 : tcpstat_inc(tcps_rcvtotal);
394 :
395 0 : opti.ts_present = 0;
396 0 : opti.maxseg = 0;
397 :
398 : /*
399 : * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
400 : */
401 0 : if (m->m_flags & (M_BCAST|M_MCAST))
402 : goto drop;
403 :
404 : /*
405 : * Get IP and TCP header together in first mbuf.
406 : * Note: IP leaves IP header in first mbuf.
407 : */
408 0 : IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, sizeof(*th));
409 0 : if (!th) {
410 0 : tcpstat_inc(tcps_rcvshort);
411 0 : return IPPROTO_DONE;
412 : }
413 :
414 0 : tlen = m->m_pkthdr.len - iphlen;
415 0 : switch (af) {
416 : case AF_INET:
417 0 : ip = mtod(m, struct ip *);
418 : #ifdef TCP_ECN
419 : /* save ip_tos before clearing it for checksum */
420 0 : iptos = ip->ip_tos;
421 : #endif
422 0 : break;
423 : #ifdef INET6
424 : case AF_INET6:
425 0 : ip6 = mtod(m, struct ip6_hdr *);
426 : #ifdef TCP_ECN
427 0 : iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
428 : #endif
429 :
430 : /*
431 : * Be proactive about unspecified IPv6 address in source.
432 : * As we use all-zero to indicate unbounded/unconnected pcb,
433 : * unspecified IPv6 address can be used to confuse us.
434 : *
435 : * Note that packets with unspecified IPv6 destination is
436 : * already dropped in ip6_input.
437 : */
438 0 : if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
439 : /* XXX stat */
440 : goto drop;
441 : }
442 :
443 : /* Discard packets to multicast */
444 0 : if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
445 : /* XXX stat */
446 : goto drop;
447 : }
448 : break;
449 : #endif
450 : default:
451 0 : unhandled_af(af);
452 : }
453 :
454 : /*
455 : * Checksum extended TCP header and data.
456 : */
457 0 : if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_OK) == 0) {
458 : int sum;
459 :
460 0 : if (m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_BAD) {
461 0 : tcpstat_inc(tcps_rcvbadsum);
462 0 : goto drop;
463 : }
464 0 : tcpstat_inc(tcps_inswcsum);
465 0 : switch (af) {
466 : case AF_INET:
467 0 : sum = in4_cksum(m, IPPROTO_TCP, iphlen, tlen);
468 0 : break;
469 : #ifdef INET6
470 : case AF_INET6:
471 0 : sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
472 0 : tlen);
473 0 : break;
474 : #endif
475 : }
476 0 : if (sum != 0) {
477 0 : tcpstat_inc(tcps_rcvbadsum);
478 0 : goto drop;
479 : }
480 0 : }
481 :
482 : /*
483 : * Check that TCP offset makes sense,
484 : * pull out TCP options and adjust length. XXX
485 : */
486 0 : off = th->th_off << 2;
487 0 : if (off < sizeof(struct tcphdr) || off > tlen) {
488 0 : tcpstat_inc(tcps_rcvbadoff);
489 0 : goto drop;
490 : }
491 0 : tlen -= off;
492 0 : if (off > sizeof(struct tcphdr)) {
493 0 : IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, off);
494 0 : if (!th) {
495 0 : tcpstat_inc(tcps_rcvshort);
496 0 : return IPPROTO_DONE;
497 : }
498 0 : optlen = off - sizeof(struct tcphdr);
499 0 : optp = (u_int8_t *)(th + 1);
500 : /*
501 : * Do quick retrieval of timestamp options ("options
502 : * prediction?"). If timestamp is the only option and it's
503 : * formatted as recommended in RFC 1323 appendix A, we
504 : * quickly get the values now and not bother calling
505 : * tcp_dooptions(), etc.
506 : */
507 0 : if ((optlen == TCPOLEN_TSTAMP_APPA ||
508 0 : (optlen > TCPOLEN_TSTAMP_APPA &&
509 0 : optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
510 0 : *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
511 0 : (th->th_flags & TH_SYN) == 0) {
512 0 : opti.ts_present = 1;
513 0 : opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
514 0 : opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
515 : optp = NULL; /* we've parsed the options */
516 0 : }
517 : }
518 0 : tiflags = th->th_flags;
519 :
520 : /*
521 : * Convert TCP protocol specific fields to host format.
522 : */
523 0 : th->th_seq = ntohl(th->th_seq);
524 0 : th->th_ack = ntohl(th->th_ack);
525 0 : th->th_win = ntohs(th->th_win);
526 0 : th->th_urp = ntohs(th->th_urp);
527 :
528 : /*
529 : * Locate pcb for segment.
530 : */
531 : #if NPF > 0
532 0 : inp = pf_inp_lookup(m);
533 : #endif
534 : findpcb:
535 0 : if (inp == NULL) {
536 0 : switch (af) {
537 : #ifdef INET6
538 : case AF_INET6:
539 0 : inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src,
540 0 : th->th_sport, &ip6->ip6_dst, th->th_dport,
541 0 : m->m_pkthdr.ph_rtableid);
542 0 : break;
543 : #endif
544 : case AF_INET:
545 0 : inp = in_pcbhashlookup(&tcbtable, ip->ip_src,
546 0 : th->th_sport, ip->ip_dst, th->th_dport,
547 0 : m->m_pkthdr.ph_rtableid);
548 0 : break;
549 : }
550 : }
551 0 : if (inp == NULL) {
552 0 : tcpstat_inc(tcps_pcbhashmiss);
553 0 : switch (af) {
554 : #ifdef INET6
555 : case AF_INET6:
556 0 : inp = in6_pcblookup_listen(&tcbtable, &ip6->ip6_dst,
557 0 : th->th_dport, m, m->m_pkthdr.ph_rtableid);
558 0 : break;
559 : #endif /* INET6 */
560 : case AF_INET:
561 0 : inp = in_pcblookup_listen(&tcbtable, ip->ip_dst,
562 0 : th->th_dport, m, m->m_pkthdr.ph_rtableid);
563 0 : break;
564 : }
565 : /*
566 : * If the state is CLOSED (i.e., TCB does not exist) then
567 : * all data in the incoming segment is discarded.
568 : * If the TCB exists but is in CLOSED state, it is embryonic,
569 : * but should either do a listen or a connect soon.
570 : */
571 0 : if (inp == NULL) {
572 0 : tcpstat_inc(tcps_noport);
573 0 : goto dropwithreset_ratelim;
574 : }
575 : }
576 0 : KASSERT(sotoinpcb(inp->inp_socket) == inp);
577 0 : KASSERT(intotcpcb(inp) == NULL || intotcpcb(inp)->t_inpcb == inp);
578 0 : soassertlocked(inp->inp_socket);
579 :
580 : /* Check the minimum TTL for socket. */
581 0 : switch (af) {
582 : case AF_INET:
583 0 : if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
584 : goto drop;
585 : break;
586 : #ifdef INET6
587 : case AF_INET6:
588 0 : if (inp->inp_ip6_minhlim &&
589 0 : inp->inp_ip6_minhlim > ip6->ip6_hlim)
590 : goto drop;
591 : break;
592 : #endif
593 : }
594 :
595 0 : tp = intotcpcb(inp);
596 0 : if (tp == NULL)
597 : goto dropwithreset_ratelim;
598 0 : if (tp->t_state == TCPS_CLOSED)
599 : goto drop;
600 :
601 : /* Unscale the window into a 32-bit value. */
602 0 : if ((tiflags & TH_SYN) == 0)
603 0 : tiwin = th->th_win << tp->snd_scale;
604 : else
605 0 : tiwin = th->th_win;
606 :
607 0 : so = inp->inp_socket;
608 0 : if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
609 0 : union syn_cache_sa src;
610 0 : union syn_cache_sa dst;
611 :
612 0 : bzero(&src, sizeof(src));
613 0 : bzero(&dst, sizeof(dst));
614 0 : switch (af) {
615 : case AF_INET:
616 0 : src.sin.sin_len = sizeof(struct sockaddr_in);
617 0 : src.sin.sin_family = AF_INET;
618 0 : src.sin.sin_addr = ip->ip_src;
619 0 : src.sin.sin_port = th->th_sport;
620 :
621 0 : dst.sin.sin_len = sizeof(struct sockaddr_in);
622 0 : dst.sin.sin_family = AF_INET;
623 0 : dst.sin.sin_addr = ip->ip_dst;
624 0 : dst.sin.sin_port = th->th_dport;
625 0 : break;
626 : #ifdef INET6
627 : case AF_INET6:
628 0 : src.sin6.sin6_len = sizeof(struct sockaddr_in6);
629 0 : src.sin6.sin6_family = AF_INET6;
630 0 : src.sin6.sin6_addr = ip6->ip6_src;
631 0 : src.sin6.sin6_port = th->th_sport;
632 :
633 0 : dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
634 0 : dst.sin6.sin6_family = AF_INET6;
635 0 : dst.sin6.sin6_addr = ip6->ip6_dst;
636 0 : dst.sin6.sin6_port = th->th_dport;
637 0 : break;
638 : #endif /* INET6 */
639 : }
640 :
641 0 : if (so->so_options & SO_DEBUG) {
642 : otp = tp;
643 0 : ostate = tp->t_state;
644 0 : switch (af) {
645 : #ifdef INET6
646 : case AF_INET6:
647 : saveti = (caddr_t) &tcp_saveti6;
648 0 : memcpy(&tcp_saveti6.ti6_i, ip6, sizeof(*ip6));
649 0 : memcpy(&tcp_saveti6.ti6_t, th, sizeof(*th));
650 0 : break;
651 : #endif
652 : case AF_INET:
653 : saveti = (caddr_t) &tcp_saveti;
654 0 : memcpy(&tcp_saveti.ti_i, ip, sizeof(*ip));
655 0 : memcpy(&tcp_saveti.ti_t, th, sizeof(*th));
656 0 : break;
657 : }
658 : }
659 0 : if (so->so_options & SO_ACCEPTCONN) {
660 0 : switch (tiflags & (TH_RST|TH_SYN|TH_ACK)) {
661 :
662 : case TH_SYN|TH_ACK|TH_RST:
663 : case TH_SYN|TH_RST:
664 : case TH_ACK|TH_RST:
665 : case TH_RST:
666 0 : syn_cache_reset(&src.sa, &dst.sa, th,
667 0 : inp->inp_rtableid);
668 0 : goto drop;
669 :
670 : case TH_SYN|TH_ACK:
671 : /*
672 : * Received a SYN,ACK. This should
673 : * never happen while we are in
674 : * LISTEN. Send an RST.
675 : */
676 0 : goto badsyn;
677 :
678 : case TH_ACK:
679 0 : so = syn_cache_get(&src.sa, &dst.sa,
680 0 : th, iphlen, tlen, so, m);
681 0 : if (so == NULL) {
682 : /*
683 : * We don't have a SYN for
684 : * this ACK; send an RST.
685 : */
686 0 : goto badsyn;
687 0 : } else if (so == (struct socket *)(-1)) {
688 : /*
689 : * We were unable to create
690 : * the connection. If the
691 : * 3-way handshake was
692 : * completed, and RST has
693 : * been sent to the peer.
694 : * Since the mbuf might be
695 : * in use for the reply,
696 : * do not free it.
697 : */
698 0 : m = *mp = NULL;
699 0 : goto drop;
700 : } else {
701 : /*
702 : * We have created a
703 : * full-blown connection.
704 : */
705 : tp = NULL;
706 0 : inp = sotoinpcb(so);
707 0 : tp = intotcpcb(inp);
708 0 : if (tp == NULL)
709 0 : goto badsyn; /*XXX*/
710 :
711 : }
712 : break;
713 :
714 : default:
715 : /*
716 : * None of RST, SYN or ACK was set.
717 : * This is an invalid packet for a
718 : * TCB in LISTEN state. Send a RST.
719 : */
720 0 : goto badsyn;
721 :
722 : case TH_SYN:
723 : /*
724 : * Received a SYN.
725 : */
726 : #ifdef INET6
727 : /*
728 : * If deprecated address is forbidden, we do
729 : * not accept SYN to deprecated interface
730 : * address to prevent any new inbound
731 : * connection from getting established.
732 : * When we do not accept SYN, we send a TCP
733 : * RST, with deprecated source address (instead
734 : * of dropping it). We compromise it as it is
735 : * much better for peer to send a RST, and
736 : * RST will be the final packet for the
737 : * exchange.
738 : *
739 : * If we do not forbid deprecated addresses, we
740 : * accept the SYN packet. RFC2462 does not
741 : * suggest dropping SYN in this case.
742 : * If we decipher RFC2462 5.5.4, it says like
743 : * this:
744 : * 1. use of deprecated addr with existing
745 : * communication is okay - "SHOULD continue
746 : * to be used"
747 : * 2. use of it with new communication:
748 : * (2a) "SHOULD NOT be used if alternate
749 : * address with sufficient scope is
750 : * available"
751 : * (2b) nothing mentioned otherwise.
752 : * Here we fall into (2b) case as we have no
753 : * choice in our source address selection - we
754 : * must obey the peer.
755 : *
756 : * The wording in RFC2462 is confusing, and
757 : * there are multiple description text for
758 : * deprecated address handling - worse, they
759 : * are not exactly the same. I believe 5.5.4
760 : * is the best one, so we follow 5.5.4.
761 : */
762 0 : if (ip6 && !ip6_use_deprecated) {
763 : struct in6_ifaddr *ia6;
764 : struct ifnet *ifp =
765 0 : if_get(m->m_pkthdr.ph_ifidx);
766 :
767 0 : if (ifp &&
768 0 : (ia6 = in6ifa_ifpwithaddr(ifp,
769 0 : &ip6->ip6_dst)) &&
770 0 : (ia6->ia6_flags &
771 : IN6_IFF_DEPRECATED)) {
772 : tp = NULL;
773 0 : if_put(ifp);
774 0 : goto dropwithreset;
775 : }
776 0 : if_put(ifp);
777 0 : }
778 : #endif
779 :
780 : /*
781 : * LISTEN socket received a SYN
782 : * from itself? This can't possibly
783 : * be valid; drop the packet.
784 : */
785 0 : if (th->th_dport == th->th_sport) {
786 0 : switch (af) {
787 : #ifdef INET6
788 : case AF_INET6:
789 0 : if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
790 : &ip6->ip6_dst)) {
791 0 : tcpstat_inc(tcps_badsyn);
792 0 : goto drop;
793 : }
794 : break;
795 : #endif /* INET6 */
796 : case AF_INET:
797 0 : if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
798 0 : tcpstat_inc(tcps_badsyn);
799 0 : goto drop;
800 : }
801 : break;
802 : }
803 : }
804 :
805 : /*
806 : * SYN looks ok; create compressed TCP
807 : * state for it.
808 : */
809 0 : if (so->so_qlen > so->so_qlimit ||
810 0 : syn_cache_add(&src.sa, &dst.sa, th, iphlen,
811 0 : so, m, optp, optlen, &opti, reuse) == -1) {
812 0 : tcpstat_inc(tcps_dropsyn);
813 0 : goto drop;
814 : }
815 0 : return IPPROTO_DONE;
816 : }
817 : }
818 0 : }
819 :
820 : #ifdef DIAGNOSTIC
821 : /*
822 : * Should not happen now that all embryonic connections
823 : * are handled with compressed state.
824 : */
825 0 : if (tp->t_state == TCPS_LISTEN)
826 0 : panic("tcp_input: TCPS_LISTEN");
827 : #endif
828 :
829 : #if NPF > 0
830 0 : pf_inp_link(m, inp);
831 : #endif
832 :
833 : #ifdef IPSEC
834 : /* Find most recent IPsec tag */
835 0 : mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
836 0 : if (mtag != NULL) {
837 0 : tdbi = (struct tdb_ident *)(mtag + 1);
838 0 : tdb = gettdb(tdbi->rdomain, tdbi->spi,
839 0 : &tdbi->dst, tdbi->proto);
840 0 : } else
841 : tdb = NULL;
842 0 : ipsp_spd_lookup(m, af, iphlen, &error, IPSP_DIRECTION_IN,
843 : tdb, inp, 0);
844 0 : if (error) {
845 0 : tcpstat_inc(tcps_rcvnosec);
846 0 : goto drop;
847 : }
848 : #endif /* IPSEC */
849 :
850 : /*
851 : * Segment received on connection.
852 : * Reset idle time and keep-alive timer.
853 : */
854 0 : tp->t_rcvtime = tcp_now;
855 0 : if (TCPS_HAVEESTABLISHED(tp->t_state))
856 0 : TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
857 :
858 0 : if (tp->sack_enable)
859 0 : tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
860 :
861 : /*
862 : * Process options.
863 : */
864 : #ifdef TCP_SIGNATURE
865 0 : if (optp || (tp->t_flags & TF_SIGNATURE))
866 : #else
867 : if (optp)
868 : #endif
869 0 : if (tcp_dooptions(tp, optp, optlen, th, m, iphlen, &opti,
870 0 : m->m_pkthdr.ph_rtableid))
871 : goto drop;
872 :
873 0 : if (opti.ts_present && opti.ts_ecr) {
874 : int rtt_test;
875 :
876 : /* subtract out the tcp timestamp modulator */
877 0 : opti.ts_ecr -= tp->ts_modulate;
878 :
879 : /* make sure ts_ecr is sensible */
880 0 : rtt_test = tcp_now - opti.ts_ecr;
881 0 : if (rtt_test < 0 || rtt_test > TCP_RTT_MAX)
882 0 : opti.ts_ecr = 0;
883 0 : }
884 :
885 : #ifdef TCP_ECN
886 : /* if congestion experienced, set ECE bit in subsequent packets. */
887 0 : if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
888 0 : tp->t_flags |= TF_RCVD_CE;
889 0 : tcpstat_inc(tcps_ecn_rcvce);
890 0 : }
891 : #endif
892 : /*
893 : * Header prediction: check for the two common cases
894 : * of a uni-directional data xfer. If the packet has
895 : * no control flags, is in-sequence, the window didn't
896 : * change and we're not retransmitting, it's a
897 : * candidate. If the length is zero and the ack moved
898 : * forward, we're the sender side of the xfer. Just
899 : * free the data acked & wake any higher level process
900 : * that was blocked waiting for space. If the length
901 : * is non-zero and the ack didn't move, we're the
902 : * receiver side. If we're getting packets in-order
903 : * (the reassembly queue is empty), add the data to
904 : * the socket buffer and note that we need a delayed ack.
905 : */
906 0 : if (tp->t_state == TCPS_ESTABLISHED &&
907 : #ifdef TCP_ECN
908 0 : (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
909 : #else
910 : (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
911 : #endif
912 0 : (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
913 0 : th->th_seq == tp->rcv_nxt &&
914 0 : tiwin && tiwin == tp->snd_wnd &&
915 0 : tp->snd_nxt == tp->snd_max) {
916 :
917 : /*
918 : * If last ACK falls within this segment's sequence numbers,
919 : * record the timestamp.
920 : * Fix from Braden, see Stevens p. 870
921 : */
922 0 : if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
923 0 : tp->ts_recent_age = tcp_now;
924 0 : tp->ts_recent = opti.ts_val;
925 0 : }
926 :
927 0 : if (tlen == 0) {
928 0 : if (SEQ_GT(th->th_ack, tp->snd_una) &&
929 0 : SEQ_LEQ(th->th_ack, tp->snd_max) &&
930 0 : tp->snd_cwnd >= tp->snd_wnd &&
931 0 : tp->t_dupacks == 0) {
932 : /*
933 : * this is a pure ack for outstanding data.
934 : */
935 0 : tcpstat_inc(tcps_predack);
936 0 : if (opti.ts_present && opti.ts_ecr)
937 0 : tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
938 0 : else if (tp->t_rtttime &&
939 0 : SEQ_GT(th->th_ack, tp->t_rtseq))
940 0 : tcp_xmit_timer(tp,
941 0 : tcp_now - tp->t_rtttime);
942 0 : acked = th->th_ack - tp->snd_una;
943 0 : tcpstat_pkt(tcps_rcvackpack, tcps_rcvackbyte,
944 0 : acked);
945 0 : ND6_HINT(tp);
946 0 : sbdrop(so, &so->so_snd, acked);
947 :
948 : /*
949 : * If we had a pending ICMP message that
950 : * refers to data that have just been
951 : * acknowledged, disregard the recorded ICMP
952 : * message.
953 : */
954 0 : if ((tp->t_flags & TF_PMTUD_PEND) &&
955 0 : SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
956 0 : tp->t_flags &= ~TF_PMTUD_PEND;
957 :
958 : /*
959 : * Keep track of the largest chunk of data
960 : * acknowledged since last PMTU update
961 : */
962 0 : if (tp->t_pmtud_mss_acked < acked)
963 0 : tp->t_pmtud_mss_acked = acked;
964 :
965 0 : tp->snd_una = th->th_ack;
966 : /*
967 : * We want snd_last to track snd_una so
968 : * as to avoid sequence wraparound problems
969 : * for very large transfers.
970 : */
971 : #ifdef TCP_ECN
972 0 : if (SEQ_GT(tp->snd_una, tp->snd_last))
973 : #endif
974 0 : tp->snd_last = tp->snd_una;
975 0 : m_freem(m);
976 :
977 : /*
978 : * If all outstanding data are acked, stop
979 : * retransmit timer, otherwise restart timer
980 : * using current (possibly backed-off) value.
981 : * If process is waiting for space,
982 : * wakeup/selwakeup/signal. If data
983 : * are ready to send, let tcp_output
984 : * decide between more output or persist.
985 : */
986 0 : if (tp->snd_una == tp->snd_max)
987 0 : TCP_TIMER_DISARM(tp, TCPT_REXMT);
988 0 : else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
989 0 : TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
990 :
991 0 : tcp_update_sndspace(tp);
992 0 : if (sb_notify(so, &so->so_snd)) {
993 0 : tp->t_flags |= TF_BLOCKOUTPUT;
994 0 : sowwakeup(so);
995 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
996 0 : }
997 0 : if (so->so_snd.sb_cc ||
998 0 : tp->t_flags & TF_NEEDOUTPUT)
999 0 : (void) tcp_output(tp);
1000 0 : return IPPROTO_DONE;
1001 : }
1002 0 : } else if (th->th_ack == tp->snd_una &&
1003 0 : TAILQ_EMPTY(&tp->t_segq) &&
1004 0 : tlen <= sbspace(so, &so->so_rcv)) {
1005 : /*
1006 : * This is a pure, in-sequence data packet
1007 : * with nothing on the reassembly queue and
1008 : * we have enough buffer space to take it.
1009 : */
1010 : /* Clean receiver SACK report if present */
1011 0 : if (tp->sack_enable && tp->rcv_numsacks)
1012 0 : tcp_clean_sackreport(tp);
1013 0 : tcpstat_inc(tcps_preddat);
1014 0 : tp->rcv_nxt += tlen;
1015 0 : tcpstat_pkt(tcps_rcvpack, tcps_rcvbyte, tlen);
1016 0 : ND6_HINT(tp);
1017 :
1018 0 : TCP_SETUP_ACK(tp, tiflags, m);
1019 : /*
1020 : * Drop TCP, IP headers and TCP options then add data
1021 : * to socket buffer.
1022 : */
1023 0 : if (so->so_state & SS_CANTRCVMORE)
1024 0 : m_freem(m);
1025 : else {
1026 0 : if (opti.ts_present && opti.ts_ecr) {
1027 0 : if (tp->rfbuf_ts < opti.ts_ecr &&
1028 0 : opti.ts_ecr - tp->rfbuf_ts < hz) {
1029 0 : tcp_update_rcvspace(tp);
1030 : /* Start over with next RTT. */
1031 0 : tp->rfbuf_cnt = 0;
1032 0 : tp->rfbuf_ts = 0;
1033 0 : } else
1034 0 : tp->rfbuf_cnt += tlen;
1035 : }
1036 0 : m_adj(m, iphlen + off);
1037 0 : sbappendstream(so, &so->so_rcv, m);
1038 : }
1039 0 : tp->t_flags |= TF_BLOCKOUTPUT;
1040 0 : sorwakeup(so);
1041 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
1042 0 : if (tp->t_flags & (TF_ACKNOW|TF_NEEDOUTPUT))
1043 0 : (void) tcp_output(tp);
1044 0 : return IPPROTO_DONE;
1045 : }
1046 : }
1047 :
1048 : /*
1049 : * Compute mbuf offset to TCP data segment.
1050 : */
1051 0 : hdroptlen = iphlen + off;
1052 :
1053 : /*
1054 : * Calculate amount of space in receive window,
1055 : * and then do TCP input processing.
1056 : * Receive window is amount of space in rcv queue,
1057 : * but not less than advertised window.
1058 : */
1059 : { int win;
1060 :
1061 0 : win = sbspace(so, &so->so_rcv);
1062 0 : if (win < 0)
1063 : win = 0;
1064 0 : tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1065 : }
1066 :
1067 : /* Reset receive buffer auto scaling when not in bulk receive mode. */
1068 0 : tp->rfbuf_cnt = 0;
1069 0 : tp->rfbuf_ts = 0;
1070 :
1071 0 : switch (tp->t_state) {
1072 :
1073 : /*
1074 : * If the state is SYN_RECEIVED:
1075 : * if seg contains SYN/ACK, send an RST.
1076 : * if seg contains an ACK, but not for our SYN/ACK, send an RST
1077 : */
1078 :
1079 : case TCPS_SYN_RECEIVED:
1080 0 : if (tiflags & TH_ACK) {
1081 0 : if (tiflags & TH_SYN) {
1082 0 : tcpstat_inc(tcps_badsyn);
1083 0 : goto dropwithreset;
1084 : }
1085 0 : if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1086 0 : SEQ_GT(th->th_ack, tp->snd_max))
1087 : goto dropwithreset;
1088 : }
1089 : break;
1090 :
1091 : /*
1092 : * If the state is SYN_SENT:
1093 : * if seg contains an ACK, but not for our SYN, drop the input.
1094 : * if seg contains a RST, then drop the connection.
1095 : * if seg does not contain SYN, then drop it.
1096 : * Otherwise this is an acceptable SYN segment
1097 : * initialize tp->rcv_nxt and tp->irs
1098 : * if seg contains ack then advance tp->snd_una
1099 : * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1100 : * arrange for segment to be acked (eventually)
1101 : * continue processing rest of data/controls, beginning with URG
1102 : */
1103 : case TCPS_SYN_SENT:
1104 0 : if ((tiflags & TH_ACK) &&
1105 0 : (SEQ_LEQ(th->th_ack, tp->iss) ||
1106 0 : SEQ_GT(th->th_ack, tp->snd_max)))
1107 : goto dropwithreset;
1108 0 : if (tiflags & TH_RST) {
1109 : #ifdef TCP_ECN
1110 : /* if ECN is enabled, fall back to non-ecn at rexmit */
1111 0 : if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1112 : goto drop;
1113 : #endif
1114 0 : if (tiflags & TH_ACK)
1115 0 : tp = tcp_drop(tp, ECONNREFUSED);
1116 : goto drop;
1117 : }
1118 0 : if ((tiflags & TH_SYN) == 0)
1119 : goto drop;
1120 0 : if (tiflags & TH_ACK) {
1121 0 : tp->snd_una = th->th_ack;
1122 0 : if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1123 0 : tp->snd_nxt = tp->snd_una;
1124 : }
1125 0 : TCP_TIMER_DISARM(tp, TCPT_REXMT);
1126 0 : tp->irs = th->th_seq;
1127 0 : tcp_mss(tp, opti.maxseg);
1128 : /* Reset initial window to 1 segment for retransmit */
1129 0 : if (tp->t_rxtshift > 0)
1130 0 : tp->snd_cwnd = tp->t_maxseg;
1131 0 : tcp_rcvseqinit(tp);
1132 0 : tp->t_flags |= TF_ACKNOW;
1133 : /*
1134 : * If we've sent a SACK_PERMITTED option, and the peer
1135 : * also replied with one, then TF_SACK_PERMIT should have
1136 : * been set in tcp_dooptions(). If it was not, disable SACKs.
1137 : */
1138 0 : if (tp->sack_enable)
1139 0 : tp->sack_enable = tp->t_flags & TF_SACK_PERMIT;
1140 : #ifdef TCP_ECN
1141 : /*
1142 : * if ECE is set but CWR is not set for SYN-ACK, or
1143 : * both ECE and CWR are set for simultaneous open,
1144 : * peer is ECN capable.
1145 : */
1146 0 : if (tcp_do_ecn) {
1147 0 : switch (tiflags & (TH_ACK|TH_ECE|TH_CWR)) {
1148 : case TH_ACK|TH_ECE:
1149 : case TH_ECE|TH_CWR:
1150 0 : tp->t_flags |= TF_ECN_PERMIT;
1151 0 : tiflags &= ~(TH_ECE|TH_CWR);
1152 0 : tcpstat_inc(tcps_ecn_accepts);
1153 0 : }
1154 : }
1155 : #endif
1156 :
1157 0 : if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1158 0 : tcpstat_inc(tcps_connects);
1159 0 : tp->t_flags |= TF_BLOCKOUTPUT;
1160 0 : soisconnected(so);
1161 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
1162 0 : tp->t_state = TCPS_ESTABLISHED;
1163 0 : TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1164 : /* Do window scaling on this connection? */
1165 0 : if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1166 : (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1167 0 : tp->snd_scale = tp->requested_s_scale;
1168 0 : tp->rcv_scale = tp->request_r_scale;
1169 0 : }
1170 0 : tcp_flush_queue(tp);
1171 :
1172 : /*
1173 : * if we didn't have to retransmit the SYN,
1174 : * use its rtt as our initial srtt & rtt var.
1175 : */
1176 0 : if (tp->t_rtttime)
1177 0 : tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1178 : /*
1179 : * Since new data was acked (the SYN), open the
1180 : * congestion window by one MSS. We do this
1181 : * here, because we won't go through the normal
1182 : * ACK processing below. And since this is the
1183 : * start of the connection, we know we are in
1184 : * the exponential phase of slow-start.
1185 : */
1186 0 : tp->snd_cwnd += tp->t_maxseg;
1187 0 : } else
1188 0 : tp->t_state = TCPS_SYN_RECEIVED;
1189 :
1190 : #if 0
1191 : trimthenstep6:
1192 : #endif
1193 : /*
1194 : * Advance th->th_seq to correspond to first data byte.
1195 : * If data, trim to stay within window,
1196 : * dropping FIN if necessary.
1197 : */
1198 0 : th->th_seq++;
1199 0 : if (tlen > tp->rcv_wnd) {
1200 0 : todrop = tlen - tp->rcv_wnd;
1201 0 : m_adj(m, -todrop);
1202 0 : tlen = tp->rcv_wnd;
1203 0 : tiflags &= ~TH_FIN;
1204 0 : tcpstat_pkt(tcps_rcvpackafterwin, tcps_rcvbyteafterwin,
1205 0 : todrop);
1206 0 : }
1207 0 : tp->snd_wl1 = th->th_seq - 1;
1208 0 : tp->rcv_up = th->th_seq;
1209 0 : goto step6;
1210 : /*
1211 : * If a new connection request is received while in TIME_WAIT,
1212 : * drop the old connection and start over if the if the
1213 : * timestamp or the sequence numbers are above the previous
1214 : * ones.
1215 : */
1216 : case TCPS_TIME_WAIT:
1217 0 : if (((tiflags & (TH_SYN|TH_ACK)) == TH_SYN) &&
1218 0 : ((opti.ts_present &&
1219 0 : TSTMP_LT(tp->ts_recent, opti.ts_val)) ||
1220 0 : SEQ_GT(th->th_seq, tp->rcv_nxt))) {
1221 : #if NPF > 0
1222 : /*
1223 : * The socket will be recreated but the new state
1224 : * has already been linked to the socket. Remove the
1225 : * link between old socket and new state.
1226 : */
1227 0 : pf_inp_unlink(inp);
1228 : #endif
1229 : /*
1230 : * Advance the iss by at least 32768, but
1231 : * clear the msb in order to make sure
1232 : * that SEG_LT(snd_nxt, iss).
1233 : */
1234 0 : iss = tp->snd_nxt +
1235 0 : ((arc4random() & 0x7fffffff) | 0x8000);
1236 : reuse = &iss;
1237 0 : tp = tcp_close(tp);
1238 : inp = NULL;
1239 0 : goto findpcb;
1240 : }
1241 : }
1242 :
1243 : /*
1244 : * States other than LISTEN or SYN_SENT.
1245 : * First check timestamp, if present.
1246 : * Then check that at least some bytes of segment are within
1247 : * receive window. If segment begins before rcv_nxt,
1248 : * drop leading data (and SYN); if nothing left, just ack.
1249 : *
1250 : * RFC 1323 PAWS: If we have a timestamp reply on this segment
1251 : * and it's less than opti.ts_recent, drop it.
1252 : */
1253 0 : if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1254 0 : TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1255 :
1256 : /* Check to see if ts_recent is over 24 days old. */
1257 0 : if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1258 : /*
1259 : * Invalidate ts_recent. If this segment updates
1260 : * ts_recent, the age will be reset later and ts_recent
1261 : * will get a valid value. If it does not, setting
1262 : * ts_recent to zero will at least satisfy the
1263 : * requirement that zero be placed in the timestamp
1264 : * echo reply when ts_recent isn't valid. The
1265 : * age isn't reset until we get a valid ts_recent
1266 : * because we don't want out-of-order segments to be
1267 : * dropped when ts_recent is old.
1268 : */
1269 0 : tp->ts_recent = 0;
1270 : } else {
1271 0 : tcpstat_pkt(tcps_rcvduppack, tcps_rcvdupbyte, tlen);
1272 0 : tcpstat_inc(tcps_pawsdrop);
1273 0 : goto dropafterack;
1274 : }
1275 0 : }
1276 :
1277 0 : todrop = tp->rcv_nxt - th->th_seq;
1278 0 : if (todrop > 0) {
1279 0 : if (tiflags & TH_SYN) {
1280 0 : tiflags &= ~TH_SYN;
1281 0 : th->th_seq++;
1282 0 : if (th->th_urp > 1)
1283 0 : th->th_urp--;
1284 : else
1285 0 : tiflags &= ~TH_URG;
1286 0 : todrop--;
1287 0 : }
1288 0 : if (todrop > tlen ||
1289 0 : (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1290 : /*
1291 : * Any valid FIN must be to the left of the
1292 : * window. At this point, FIN must be a
1293 : * duplicate or out-of-sequence, so drop it.
1294 : */
1295 0 : tiflags &= ~TH_FIN;
1296 : /*
1297 : * Send ACK to resynchronize, and drop any data,
1298 : * but keep on processing for RST or ACK.
1299 : */
1300 0 : tp->t_flags |= TF_ACKNOW;
1301 0 : todrop = tlen;
1302 0 : tcpstat_pkt(tcps_rcvduppack, tcps_rcvdupbyte, todrop);
1303 0 : } else {
1304 0 : tcpstat_pkt(tcps_rcvpartduppack, tcps_rcvpartdupbyte,
1305 0 : todrop);
1306 : }
1307 0 : hdroptlen += todrop; /* drop from head afterwards */
1308 0 : th->th_seq += todrop;
1309 0 : tlen -= todrop;
1310 0 : if (th->th_urp > todrop)
1311 0 : th->th_urp -= todrop;
1312 : else {
1313 0 : tiflags &= ~TH_URG;
1314 0 : th->th_urp = 0;
1315 : }
1316 : }
1317 :
1318 : /*
1319 : * If new data are received on a connection after the
1320 : * user processes are gone, then RST the other end.
1321 : */
1322 0 : if ((so->so_state & SS_NOFDREF) &&
1323 0 : tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1324 0 : tp = tcp_close(tp);
1325 0 : tcpstat_inc(tcps_rcvafterclose);
1326 0 : goto dropwithreset;
1327 : }
1328 :
1329 : /*
1330 : * If segment ends after window, drop trailing data
1331 : * (and PUSH and FIN); if nothing left, just ACK.
1332 : */
1333 0 : todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1334 0 : if (todrop > 0) {
1335 0 : tcpstat_inc(tcps_rcvpackafterwin);
1336 0 : if (todrop >= tlen) {
1337 0 : tcpstat_add(tcps_rcvbyteafterwin, tlen);
1338 : /*
1339 : * If window is closed can only take segments at
1340 : * window edge, and have to drop data and PUSH from
1341 : * incoming segments. Continue processing, but
1342 : * remember to ack. Otherwise, drop segment
1343 : * and ack.
1344 : */
1345 0 : if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1346 0 : tp->t_flags |= TF_ACKNOW;
1347 0 : tcpstat_inc(tcps_rcvwinprobe);
1348 : } else
1349 : goto dropafterack;
1350 0 : } else
1351 0 : tcpstat_add(tcps_rcvbyteafterwin, todrop);
1352 0 : m_adj(m, -todrop);
1353 0 : tlen -= todrop;
1354 0 : tiflags &= ~(TH_PUSH|TH_FIN);
1355 0 : }
1356 :
1357 : /*
1358 : * If last ACK falls within this segment's sequence numbers,
1359 : * record its timestamp if it's more recent.
1360 : * NOTE that the test is modified according to the latest
1361 : * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1362 : */
1363 0 : if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1364 0 : SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1365 0 : tp->ts_recent_age = tcp_now;
1366 0 : tp->ts_recent = opti.ts_val;
1367 0 : }
1368 :
1369 : /*
1370 : * If the RST bit is set examine the state:
1371 : * SYN_RECEIVED STATE:
1372 : * If passive open, return to LISTEN state.
1373 : * If active open, inform user that connection was refused.
1374 : * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1375 : * Inform user that connection was reset, and close tcb.
1376 : * CLOSING, LAST_ACK, TIME_WAIT STATES
1377 : * Close the tcb.
1378 : */
1379 0 : if (tiflags & TH_RST) {
1380 0 : if (th->th_seq != tp->last_ack_sent &&
1381 0 : th->th_seq != tp->rcv_nxt &&
1382 0 : th->th_seq != (tp->rcv_nxt + 1))
1383 : goto drop;
1384 :
1385 0 : switch (tp->t_state) {
1386 : case TCPS_SYN_RECEIVED:
1387 : #ifdef TCP_ECN
1388 : /* if ECN is enabled, fall back to non-ecn at rexmit */
1389 0 : if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1390 : goto drop;
1391 : #endif
1392 0 : so->so_error = ECONNREFUSED;
1393 0 : goto close;
1394 :
1395 : case TCPS_ESTABLISHED:
1396 : case TCPS_FIN_WAIT_1:
1397 : case TCPS_FIN_WAIT_2:
1398 : case TCPS_CLOSE_WAIT:
1399 0 : so->so_error = ECONNRESET;
1400 : close:
1401 0 : tp->t_state = TCPS_CLOSED;
1402 0 : tcpstat_inc(tcps_drops);
1403 0 : tp = tcp_close(tp);
1404 0 : goto drop;
1405 : case TCPS_CLOSING:
1406 : case TCPS_LAST_ACK:
1407 : case TCPS_TIME_WAIT:
1408 0 : tp = tcp_close(tp);
1409 0 : goto drop;
1410 : }
1411 : }
1412 :
1413 : /*
1414 : * If a SYN is in the window, then this is an
1415 : * error and we ACK and drop the packet.
1416 : */
1417 0 : if (tiflags & TH_SYN)
1418 : goto dropafterack_ratelim;
1419 :
1420 : /*
1421 : * If the ACK bit is off we drop the segment and return.
1422 : */
1423 0 : if ((tiflags & TH_ACK) == 0) {
1424 0 : if (tp->t_flags & TF_ACKNOW)
1425 : goto dropafterack;
1426 : else
1427 : goto drop;
1428 : }
1429 :
1430 : /*
1431 : * Ack processing.
1432 : */
1433 0 : switch (tp->t_state) {
1434 :
1435 : /*
1436 : * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1437 : * ESTABLISHED state and continue processing.
1438 : * The ACK was checked above.
1439 : */
1440 : case TCPS_SYN_RECEIVED:
1441 0 : tcpstat_inc(tcps_connects);
1442 0 : tp->t_flags |= TF_BLOCKOUTPUT;
1443 0 : soisconnected(so);
1444 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
1445 0 : tp->t_state = TCPS_ESTABLISHED;
1446 0 : TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1447 : /* Do window scaling? */
1448 0 : if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1449 : (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1450 0 : tp->snd_scale = tp->requested_s_scale;
1451 0 : tp->rcv_scale = tp->request_r_scale;
1452 0 : tiwin = th->th_win << tp->snd_scale;
1453 0 : }
1454 0 : tcp_flush_queue(tp);
1455 0 : tp->snd_wl1 = th->th_seq - 1;
1456 : /* fall into ... */
1457 :
1458 : /*
1459 : * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1460 : * ACKs. If the ack is in the range
1461 : * tp->snd_una < th->th_ack <= tp->snd_max
1462 : * then advance tp->snd_una to th->th_ack and drop
1463 : * data from the retransmission queue. If this ACK reflects
1464 : * more up to date window information we update our window information.
1465 : */
1466 : case TCPS_ESTABLISHED:
1467 : case TCPS_FIN_WAIT_1:
1468 : case TCPS_FIN_WAIT_2:
1469 : case TCPS_CLOSE_WAIT:
1470 : case TCPS_CLOSING:
1471 : case TCPS_LAST_ACK:
1472 : case TCPS_TIME_WAIT:
1473 : #ifdef TCP_ECN
1474 : /*
1475 : * if we receive ECE and are not already in recovery phase,
1476 : * reduce cwnd by half but don't slow-start.
1477 : * advance snd_last to snd_max not to reduce cwnd again
1478 : * until all outstanding packets are acked.
1479 : */
1480 0 : if (tcp_do_ecn && (tiflags & TH_ECE)) {
1481 0 : if ((tp->t_flags & TF_ECN_PERMIT) &&
1482 0 : SEQ_GEQ(tp->snd_una, tp->snd_last)) {
1483 : u_int win;
1484 :
1485 0 : win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1486 0 : if (win > 1) {
1487 0 : tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1488 0 : tp->snd_cwnd = tp->snd_ssthresh;
1489 0 : tp->snd_last = tp->snd_max;
1490 0 : tp->t_flags |= TF_SEND_CWR;
1491 0 : tcpstat_inc(tcps_cwr_ecn);
1492 0 : }
1493 0 : }
1494 0 : tcpstat_inc(tcps_ecn_rcvece);
1495 0 : }
1496 : /*
1497 : * if we receive CWR, we know that the peer has reduced
1498 : * its congestion window. stop sending ecn-echo.
1499 : */
1500 0 : if ((tiflags & TH_CWR)) {
1501 0 : tp->t_flags &= ~TF_RCVD_CE;
1502 0 : tcpstat_inc(tcps_ecn_rcvcwr);
1503 0 : }
1504 : #endif /* TCP_ECN */
1505 :
1506 0 : if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1507 : /*
1508 : * Duplicate/old ACK processing.
1509 : * Increments t_dupacks:
1510 : * Pure duplicate (same seq/ack/window, no data)
1511 : * Doesn't affect t_dupacks:
1512 : * Data packets.
1513 : * Normal window updates (window opens)
1514 : * Resets t_dupacks:
1515 : * New data ACKed.
1516 : * Window shrinks
1517 : * Old ACK
1518 : */
1519 0 : if (tlen) {
1520 : /* Drop very old ACKs unless th_seq matches */
1521 0 : if (th->th_seq != tp->rcv_nxt &&
1522 0 : SEQ_LT(th->th_ack,
1523 : tp->snd_una - tp->max_sndwnd)) {
1524 0 : tcpstat_inc(tcps_rcvacktooold);
1525 0 : goto drop;
1526 : }
1527 : break;
1528 : }
1529 : /*
1530 : * If we get an old ACK, there is probably packet
1531 : * reordering going on. Be conservative and reset
1532 : * t_dupacks so that we are less aggressive in
1533 : * doing a fast retransmit.
1534 : */
1535 0 : if (th->th_ack != tp->snd_una) {
1536 0 : tp->t_dupacks = 0;
1537 0 : break;
1538 : }
1539 0 : if (tiwin == tp->snd_wnd) {
1540 0 : tcpstat_inc(tcps_rcvdupack);
1541 : /*
1542 : * If we have outstanding data (other than
1543 : * a window probe), this is a completely
1544 : * duplicate ack (ie, window info didn't
1545 : * change), the ack is the biggest we've
1546 : * seen and we've seen exactly our rexmt
1547 : * threshold of them, assume a packet
1548 : * has been dropped and retransmit it.
1549 : * Kludge snd_nxt & the congestion
1550 : * window so we send only this one
1551 : * packet.
1552 : *
1553 : * We know we're losing at the current
1554 : * window size so do congestion avoidance
1555 : * (set ssthresh to half the current window
1556 : * and pull our congestion window back to
1557 : * the new ssthresh).
1558 : *
1559 : * Dup acks mean that packets have left the
1560 : * network (they're now cached at the receiver)
1561 : * so bump cwnd by the amount in the receiver
1562 : * to keep a constant cwnd packets in the
1563 : * network.
1564 : */
1565 0 : if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
1566 0 : tp->t_dupacks = 0;
1567 0 : else if (++tp->t_dupacks == tcprexmtthresh) {
1568 0 : tcp_seq onxt = tp->snd_nxt;
1569 : u_long win =
1570 0 : ulmin(tp->snd_wnd, tp->snd_cwnd) /
1571 0 : 2 / tp->t_maxseg;
1572 :
1573 0 : if (SEQ_LT(th->th_ack, tp->snd_last)){
1574 : /*
1575 : * False fast retx after
1576 : * timeout. Do not cut window.
1577 : */
1578 0 : tp->t_dupacks = 0;
1579 0 : goto drop;
1580 : }
1581 0 : if (win < 2)
1582 0 : win = 2;
1583 0 : tp->snd_ssthresh = win * tp->t_maxseg;
1584 0 : tp->snd_last = tp->snd_max;
1585 0 : if (tp->sack_enable) {
1586 : TCP_TIMER_DISARM(tp, TCPT_REXMT);
1587 : tp->t_rtttime = 0;
1588 : #ifdef TCP_ECN
1589 0 : tp->t_flags |= TF_SEND_CWR;
1590 : #endif
1591 0 : tcpstat_inc(tcps_cwr_frecovery);
1592 0 : tcpstat_inc(tcps_sack_recovery_episode);
1593 : /*
1594 : * tcp_output() will send
1595 : * oldest SACK-eligible rtx.
1596 : */
1597 0 : (void) tcp_output(tp);
1598 0 : tp->snd_cwnd = tp->snd_ssthresh+
1599 0 : tp->t_maxseg * tp->t_dupacks;
1600 0 : goto drop;
1601 : }
1602 : TCP_TIMER_DISARM(tp, TCPT_REXMT);
1603 : tp->t_rtttime = 0;
1604 0 : tp->snd_nxt = th->th_ack;
1605 0 : tp->snd_cwnd = tp->t_maxseg;
1606 : #ifdef TCP_ECN
1607 0 : tp->t_flags |= TF_SEND_CWR;
1608 : #endif
1609 0 : tcpstat_inc(tcps_cwr_frecovery);
1610 0 : tcpstat_inc(tcps_sndrexmitfast);
1611 0 : (void) tcp_output(tp);
1612 :
1613 0 : tp->snd_cwnd = tp->snd_ssthresh +
1614 0 : tp->t_maxseg * tp->t_dupacks;
1615 0 : if (SEQ_GT(onxt, tp->snd_nxt))
1616 0 : tp->snd_nxt = onxt;
1617 0 : goto drop;
1618 0 : } else if (tp->t_dupacks > tcprexmtthresh) {
1619 0 : tp->snd_cwnd += tp->t_maxseg;
1620 0 : (void) tcp_output(tp);
1621 0 : goto drop;
1622 : }
1623 0 : } else if (tiwin < tp->snd_wnd) {
1624 : /*
1625 : * The window was retracted! Previous dup
1626 : * ACKs may have been due to packets arriving
1627 : * after the shrunken window, not a missing
1628 : * packet, so play it safe and reset t_dupacks
1629 : */
1630 0 : tp->t_dupacks = 0;
1631 0 : }
1632 : break;
1633 : }
1634 : /*
1635 : * If the congestion window was inflated to account
1636 : * for the other side's cached packets, retract it.
1637 : */
1638 0 : if (tp->t_dupacks >= tcprexmtthresh) {
1639 : /* Check for a partial ACK */
1640 0 : if (SEQ_LT(th->th_ack, tp->snd_last)) {
1641 0 : if (tp->sack_enable)
1642 0 : tcp_sack_partialack(tp, th);
1643 : else
1644 0 : tcp_newreno_partialack(tp, th);
1645 : } else {
1646 : /* Out of fast recovery */
1647 0 : tp->snd_cwnd = tp->snd_ssthresh;
1648 0 : if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1649 0 : tp->snd_ssthresh)
1650 0 : tp->snd_cwnd =
1651 0 : tcp_seq_subtract(tp->snd_max,
1652 0 : th->th_ack);
1653 0 : tp->t_dupacks = 0;
1654 : }
1655 : } else {
1656 : /*
1657 : * Reset the duplicate ACK counter if we
1658 : * were not in fast recovery.
1659 : */
1660 0 : tp->t_dupacks = 0;
1661 : }
1662 0 : if (SEQ_GT(th->th_ack, tp->snd_max)) {
1663 0 : tcpstat_inc(tcps_rcvacktoomuch);
1664 0 : goto dropafterack_ratelim;
1665 : }
1666 0 : acked = th->th_ack - tp->snd_una;
1667 0 : tcpstat_pkt(tcps_rcvackpack, tcps_rcvackbyte, acked);
1668 :
1669 : /*
1670 : * If we have a timestamp reply, update smoothed
1671 : * round trip time. If no timestamp is present but
1672 : * transmit timer is running and timed sequence
1673 : * number was acked, update smoothed round trip time.
1674 : * Since we now have an rtt measurement, cancel the
1675 : * timer backoff (cf., Phil Karn's retransmit alg.).
1676 : * Recompute the initial retransmit timer.
1677 : */
1678 0 : if (opti.ts_present && opti.ts_ecr)
1679 0 : tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1680 0 : else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1681 0 : tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1682 :
1683 : /*
1684 : * If all outstanding data is acked, stop retransmit
1685 : * timer and remember to restart (more output or persist).
1686 : * If there is more data to be acked, restart retransmit
1687 : * timer, using current (possibly backed-off) value.
1688 : */
1689 0 : if (th->th_ack == tp->snd_max) {
1690 0 : TCP_TIMER_DISARM(tp, TCPT_REXMT);
1691 0 : tp->t_flags |= TF_NEEDOUTPUT;
1692 0 : } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1693 0 : TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1694 : /*
1695 : * When new data is acked, open the congestion window.
1696 : * If the window gives us less than ssthresh packets
1697 : * in flight, open exponentially (maxseg per packet).
1698 : * Otherwise open linearly: maxseg per window
1699 : * (maxseg^2 / cwnd per packet).
1700 : */
1701 : {
1702 0 : u_int cw = tp->snd_cwnd;
1703 0 : u_int incr = tp->t_maxseg;
1704 :
1705 0 : if (cw > tp->snd_ssthresh)
1706 0 : incr = incr * incr / cw;
1707 0 : if (tp->t_dupacks < tcprexmtthresh)
1708 0 : tp->snd_cwnd = ulmin(cw + incr,
1709 0 : TCP_MAXWIN << tp->snd_scale);
1710 : }
1711 0 : ND6_HINT(tp);
1712 0 : if (acked > so->so_snd.sb_cc) {
1713 0 : tp->snd_wnd -= so->so_snd.sb_cc;
1714 0 : sbdrop(so, &so->so_snd, (int)so->so_snd.sb_cc);
1715 : ourfinisacked = 1;
1716 0 : } else {
1717 0 : sbdrop(so, &so->so_snd, acked);
1718 0 : tp->snd_wnd -= acked;
1719 : ourfinisacked = 0;
1720 : }
1721 :
1722 0 : tcp_update_sndspace(tp);
1723 0 : if (sb_notify(so, &so->so_snd)) {
1724 0 : tp->t_flags |= TF_BLOCKOUTPUT;
1725 0 : sowwakeup(so);
1726 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
1727 0 : }
1728 :
1729 : /*
1730 : * If we had a pending ICMP message that referred to data
1731 : * that have just been acknowledged, disregard the recorded
1732 : * ICMP message.
1733 : */
1734 0 : if ((tp->t_flags & TF_PMTUD_PEND) &&
1735 0 : SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1736 0 : tp->t_flags &= ~TF_PMTUD_PEND;
1737 :
1738 : /*
1739 : * Keep track of the largest chunk of data acknowledged
1740 : * since last PMTU update
1741 : */
1742 0 : if (tp->t_pmtud_mss_acked < acked)
1743 0 : tp->t_pmtud_mss_acked = acked;
1744 :
1745 0 : tp->snd_una = th->th_ack;
1746 : #ifdef TCP_ECN
1747 : /* sync snd_last with snd_una */
1748 0 : if (SEQ_GT(tp->snd_una, tp->snd_last))
1749 0 : tp->snd_last = tp->snd_una;
1750 : #endif
1751 0 : if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1752 0 : tp->snd_nxt = tp->snd_una;
1753 :
1754 0 : switch (tp->t_state) {
1755 :
1756 : /*
1757 : * In FIN_WAIT_1 STATE in addition to the processing
1758 : * for the ESTABLISHED state if our FIN is now acknowledged
1759 : * then enter FIN_WAIT_2.
1760 : */
1761 : case TCPS_FIN_WAIT_1:
1762 0 : if (ourfinisacked) {
1763 : /*
1764 : * If we can't receive any more
1765 : * data, then closing user can proceed.
1766 : * Starting the timer is contrary to the
1767 : * specification, but if we don't get a FIN
1768 : * we'll hang forever.
1769 : */
1770 0 : if (so->so_state & SS_CANTRCVMORE) {
1771 0 : tp->t_flags |= TF_BLOCKOUTPUT;
1772 0 : soisdisconnected(so);
1773 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
1774 0 : TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
1775 0 : }
1776 0 : tp->t_state = TCPS_FIN_WAIT_2;
1777 0 : }
1778 : break;
1779 :
1780 : /*
1781 : * In CLOSING STATE in addition to the processing for
1782 : * the ESTABLISHED state if the ACK acknowledges our FIN
1783 : * then enter the TIME-WAIT state, otherwise ignore
1784 : * the segment.
1785 : */
1786 : case TCPS_CLOSING:
1787 0 : if (ourfinisacked) {
1788 0 : tp->t_state = TCPS_TIME_WAIT;
1789 0 : tcp_canceltimers(tp);
1790 0 : TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1791 0 : tp->t_flags |= TF_BLOCKOUTPUT;
1792 0 : soisdisconnected(so);
1793 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
1794 0 : }
1795 : break;
1796 :
1797 : /*
1798 : * In LAST_ACK, we may still be waiting for data to drain
1799 : * and/or to be acked, as well as for the ack of our FIN.
1800 : * If our FIN is now acknowledged, delete the TCB,
1801 : * enter the closed state and return.
1802 : */
1803 : case TCPS_LAST_ACK:
1804 0 : if (ourfinisacked) {
1805 0 : tp = tcp_close(tp);
1806 0 : goto drop;
1807 : }
1808 : break;
1809 :
1810 : /*
1811 : * In TIME_WAIT state the only thing that should arrive
1812 : * is a retransmission of the remote FIN. Acknowledge
1813 : * it and restart the finack timer.
1814 : */
1815 : case TCPS_TIME_WAIT:
1816 0 : TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1817 0 : goto dropafterack;
1818 : }
1819 : }
1820 :
1821 : step6:
1822 : /*
1823 : * Update window information.
1824 : * Don't look at window if no ACK: TAC's send garbage on first SYN.
1825 : */
1826 0 : if ((tiflags & TH_ACK) &&
1827 0 : (SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq &&
1828 0 : (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1829 0 : (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1830 : /* keep track of pure window updates */
1831 0 : if (tlen == 0 &&
1832 0 : tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1833 0 : tcpstat_inc(tcps_rcvwinupd);
1834 0 : tp->snd_wnd = tiwin;
1835 0 : tp->snd_wl1 = th->th_seq;
1836 0 : tp->snd_wl2 = th->th_ack;
1837 0 : if (tp->snd_wnd > tp->max_sndwnd)
1838 0 : tp->max_sndwnd = tp->snd_wnd;
1839 0 : tp->t_flags |= TF_NEEDOUTPUT;
1840 0 : }
1841 :
1842 : /*
1843 : * Process segments with URG.
1844 : */
1845 0 : if ((tiflags & TH_URG) && th->th_urp &&
1846 0 : TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1847 : /*
1848 : * This is a kludge, but if we receive and accept
1849 : * random urgent pointers, we'll crash in
1850 : * soreceive. It's hard to imagine someone
1851 : * actually wanting to send this much urgent data.
1852 : */
1853 0 : if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1854 0 : th->th_urp = 0; /* XXX */
1855 0 : tiflags &= ~TH_URG; /* XXX */
1856 0 : goto dodata; /* XXX */
1857 : }
1858 : /*
1859 : * If this segment advances the known urgent pointer,
1860 : * then mark the data stream. This should not happen
1861 : * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1862 : * a FIN has been received from the remote side.
1863 : * In these states we ignore the URG.
1864 : *
1865 : * According to RFC961 (Assigned Protocols),
1866 : * the urgent pointer points to the last octet
1867 : * of urgent data. We continue, however,
1868 : * to consider it to indicate the first octet
1869 : * of data past the urgent section as the original
1870 : * spec states (in one of two places).
1871 : */
1872 0 : if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1873 0 : tp->rcv_up = th->th_seq + th->th_urp;
1874 0 : so->so_oobmark = so->so_rcv.sb_cc +
1875 0 : (tp->rcv_up - tp->rcv_nxt) - 1;
1876 0 : if (so->so_oobmark == 0)
1877 0 : so->so_state |= SS_RCVATMARK;
1878 0 : sohasoutofband(so);
1879 0 : tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1880 0 : }
1881 : /*
1882 : * Remove out of band data so doesn't get presented to user.
1883 : * This can happen independent of advancing the URG pointer,
1884 : * but if two URG's are pending at once, some out-of-band
1885 : * data may creep in... ick.
1886 : */
1887 0 : if (th->th_urp <= (u_int16_t) tlen &&
1888 0 : (so->so_options & SO_OOBINLINE) == 0)
1889 0 : tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
1890 : } else
1891 : /*
1892 : * If no out of band data is expected,
1893 : * pull receive urgent pointer along
1894 : * with the receive window.
1895 : */
1896 0 : if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1897 0 : tp->rcv_up = tp->rcv_nxt;
1898 : dodata: /* XXX */
1899 :
1900 : /*
1901 : * Process the segment text, merging it into the TCP sequencing queue,
1902 : * and arranging for acknowledgment of receipt if necessary.
1903 : * This process logically involves adjusting tp->rcv_wnd as data
1904 : * is presented to the user (this happens in tcp_usrreq.c,
1905 : * case PRU_RCVD). If a FIN has already been received on this
1906 : * connection then we just ignore the text.
1907 : */
1908 0 : if ((tlen || (tiflags & TH_FIN)) &&
1909 0 : TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1910 0 : tcp_seq laststart = th->th_seq;
1911 0 : tcp_seq lastend = th->th_seq + tlen;
1912 :
1913 0 : if (th->th_seq == tp->rcv_nxt && TAILQ_EMPTY(&tp->t_segq) &&
1914 0 : tp->t_state == TCPS_ESTABLISHED) {
1915 0 : TCP_SETUP_ACK(tp, tiflags, m);
1916 0 : tp->rcv_nxt += tlen;
1917 0 : tiflags = th->th_flags & TH_FIN;
1918 0 : tcpstat_pkt(tcps_rcvpack, tcps_rcvbyte, tlen);
1919 0 : ND6_HINT(tp);
1920 0 : if (so->so_state & SS_CANTRCVMORE)
1921 0 : m_freem(m);
1922 : else {
1923 0 : m_adj(m, hdroptlen);
1924 0 : sbappendstream(so, &so->so_rcv, m);
1925 : }
1926 0 : tp->t_flags |= TF_BLOCKOUTPUT;
1927 0 : sorwakeup(so);
1928 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
1929 0 : } else {
1930 0 : m_adj(m, hdroptlen);
1931 0 : tiflags = tcp_reass(tp, th, m, &tlen);
1932 0 : tp->t_flags |= TF_ACKNOW;
1933 : }
1934 0 : if (tp->sack_enable)
1935 0 : tcp_update_sack_list(tp, laststart, lastend);
1936 :
1937 : /*
1938 : * variable len never referenced again in modern BSD,
1939 : * so why bother computing it ??
1940 : */
1941 : #if 0
1942 : /*
1943 : * Note the amount of data that peer has sent into
1944 : * our window, in order to estimate the sender's
1945 : * buffer size.
1946 : */
1947 : len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1948 : #endif /* 0 */
1949 0 : } else {
1950 0 : m_freem(m);
1951 0 : tiflags &= ~TH_FIN;
1952 : }
1953 :
1954 : /*
1955 : * If FIN is received ACK the FIN and let the user know
1956 : * that the connection is closing. Ignore a FIN received before
1957 : * the connection is fully established.
1958 : */
1959 0 : if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1960 0 : if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1961 0 : tp->t_flags |= TF_BLOCKOUTPUT;
1962 0 : socantrcvmore(so);
1963 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
1964 0 : tp->t_flags |= TF_ACKNOW;
1965 0 : tp->rcv_nxt++;
1966 0 : }
1967 0 : switch (tp->t_state) {
1968 :
1969 : /*
1970 : * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1971 : */
1972 : case TCPS_ESTABLISHED:
1973 0 : tp->t_state = TCPS_CLOSE_WAIT;
1974 0 : break;
1975 :
1976 : /*
1977 : * If still in FIN_WAIT_1 STATE FIN has not been acked so
1978 : * enter the CLOSING state.
1979 : */
1980 : case TCPS_FIN_WAIT_1:
1981 0 : tp->t_state = TCPS_CLOSING;
1982 0 : break;
1983 :
1984 : /*
1985 : * In FIN_WAIT_2 state enter the TIME_WAIT state,
1986 : * starting the time-wait timer, turning off the other
1987 : * standard timers.
1988 : */
1989 : case TCPS_FIN_WAIT_2:
1990 0 : tp->t_state = TCPS_TIME_WAIT;
1991 0 : tcp_canceltimers(tp);
1992 0 : TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1993 0 : tp->t_flags |= TF_BLOCKOUTPUT;
1994 0 : soisdisconnected(so);
1995 0 : tp->t_flags &= ~TF_BLOCKOUTPUT;
1996 0 : break;
1997 :
1998 : /*
1999 : * In TIME_WAIT state restart the 2 MSL time_wait timer.
2000 : */
2001 : case TCPS_TIME_WAIT:
2002 0 : TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2003 0 : break;
2004 : }
2005 : }
2006 0 : if (otp)
2007 0 : tcp_trace(TA_INPUT, ostate, tp, otp, saveti, 0, tlen);
2008 :
2009 : /*
2010 : * Return any desired output.
2011 : */
2012 0 : if (tp->t_flags & (TF_ACKNOW|TF_NEEDOUTPUT))
2013 0 : (void) tcp_output(tp);
2014 0 : return IPPROTO_DONE;
2015 :
2016 : badsyn:
2017 : /*
2018 : * Received a bad SYN. Increment counters and dropwithreset.
2019 : */
2020 0 : tcpstat_inc(tcps_badsyn);
2021 : tp = NULL;
2022 0 : goto dropwithreset;
2023 :
2024 : dropafterack_ratelim:
2025 0 : if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2026 0 : tcp_ackdrop_ppslim) == 0) {
2027 : /* XXX stat */
2028 : goto drop;
2029 : }
2030 : /* ...fall into dropafterack... */
2031 :
2032 : dropafterack:
2033 : /*
2034 : * Generate an ACK dropping incoming segment if it occupies
2035 : * sequence space, where the ACK reflects our state.
2036 : */
2037 0 : if (tiflags & TH_RST)
2038 : goto drop;
2039 0 : m_freem(m);
2040 0 : tp->t_flags |= TF_ACKNOW;
2041 0 : (void) tcp_output(tp);
2042 0 : return IPPROTO_DONE;
2043 :
2044 : dropwithreset_ratelim:
2045 : /*
2046 : * We may want to rate-limit RSTs in certain situations,
2047 : * particularly if we are sending an RST in response to
2048 : * an attempt to connect to or otherwise communicate with
2049 : * a port for which we have no socket.
2050 : */
2051 0 : if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2052 0 : tcp_rst_ppslim) == 0) {
2053 : /* XXX stat */
2054 : goto drop;
2055 : }
2056 : /* ...fall into dropwithreset... */
2057 :
2058 : dropwithreset:
2059 : /*
2060 : * Generate a RST, dropping incoming segment.
2061 : * Make ACK acceptable to originator of segment.
2062 : * Don't bother to respond to RST.
2063 : */
2064 0 : if (tiflags & TH_RST)
2065 : goto drop;
2066 0 : if (tiflags & TH_ACK) {
2067 0 : tcp_respond(tp, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack,
2068 0 : TH_RST, m->m_pkthdr.ph_rtableid);
2069 0 : } else {
2070 0 : if (tiflags & TH_SYN)
2071 0 : tlen++;
2072 0 : tcp_respond(tp, mtod(m, caddr_t), th, th->th_seq + tlen,
2073 0 : (tcp_seq)0, TH_RST|TH_ACK, m->m_pkthdr.ph_rtableid);
2074 : }
2075 0 : m_freem(m);
2076 0 : return IPPROTO_DONE;
2077 :
2078 : drop:
2079 : /*
2080 : * Drop space held by incoming segment and return.
2081 : */
2082 0 : if (otp)
2083 0 : tcp_trace(TA_DROP, ostate, tp, otp, saveti, 0, tlen);
2084 :
2085 0 : m_freem(m);
2086 0 : return IPPROTO_DONE;
2087 0 : }
2088 :
2089 : int
2090 0 : tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2091 : struct mbuf *m, int iphlen, struct tcp_opt_info *oi,
2092 : u_int rtableid)
2093 : {
2094 : u_int16_t mss = 0;
2095 : int opt, optlen;
2096 : #ifdef TCP_SIGNATURE
2097 : caddr_t sigp = NULL;
2098 : struct tdb *tdb = NULL;
2099 : #endif /* TCP_SIGNATURE */
2100 :
2101 0 : for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2102 0 : opt = cp[0];
2103 0 : if (opt == TCPOPT_EOL)
2104 : break;
2105 0 : if (opt == TCPOPT_NOP)
2106 0 : optlen = 1;
2107 : else {
2108 0 : if (cnt < 2)
2109 : break;
2110 0 : optlen = cp[1];
2111 0 : if (optlen < 2 || optlen > cnt)
2112 : break;
2113 : }
2114 0 : switch (opt) {
2115 :
2116 : default:
2117 : continue;
2118 :
2119 : case TCPOPT_MAXSEG:
2120 0 : if (optlen != TCPOLEN_MAXSEG)
2121 : continue;
2122 0 : if (!(th->th_flags & TH_SYN))
2123 : continue;
2124 0 : if (TCPS_HAVERCVDSYN(tp->t_state))
2125 : continue;
2126 0 : memcpy(&mss, cp + 2, sizeof(mss));
2127 0 : mss = ntohs(mss);
2128 0 : oi->maxseg = mss;
2129 0 : break;
2130 :
2131 : case TCPOPT_WINDOW:
2132 0 : if (optlen != TCPOLEN_WINDOW)
2133 : continue;
2134 0 : if (!(th->th_flags & TH_SYN))
2135 : continue;
2136 0 : if (TCPS_HAVERCVDSYN(tp->t_state))
2137 : continue;
2138 0 : tp->t_flags |= TF_RCVD_SCALE;
2139 0 : tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2140 0 : break;
2141 :
2142 : case TCPOPT_TIMESTAMP:
2143 0 : if (optlen != TCPOLEN_TIMESTAMP)
2144 : continue;
2145 0 : oi->ts_present = 1;
2146 0 : memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
2147 0 : oi->ts_val = ntohl(oi->ts_val);
2148 0 : memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
2149 0 : oi->ts_ecr = ntohl(oi->ts_ecr);
2150 :
2151 0 : if (!(th->th_flags & TH_SYN))
2152 : continue;
2153 0 : if (TCPS_HAVERCVDSYN(tp->t_state))
2154 : continue;
2155 : /*
2156 : * A timestamp received in a SYN makes
2157 : * it ok to send timestamp requests and replies.
2158 : */
2159 0 : tp->t_flags |= TF_RCVD_TSTMP;
2160 0 : tp->ts_recent = oi->ts_val;
2161 0 : tp->ts_recent_age = tcp_now;
2162 0 : break;
2163 :
2164 : case TCPOPT_SACK_PERMITTED:
2165 0 : if (!tp->sack_enable || optlen!=TCPOLEN_SACK_PERMITTED)
2166 : continue;
2167 0 : if (!(th->th_flags & TH_SYN))
2168 : continue;
2169 0 : if (TCPS_HAVERCVDSYN(tp->t_state))
2170 : continue;
2171 : /* MUST only be set on SYN */
2172 0 : tp->t_flags |= TF_SACK_PERMIT;
2173 0 : break;
2174 : case TCPOPT_SACK:
2175 0 : tcp_sack_option(tp, th, cp, optlen);
2176 0 : break;
2177 : #ifdef TCP_SIGNATURE
2178 : case TCPOPT_SIGNATURE:
2179 0 : if (optlen != TCPOLEN_SIGNATURE)
2180 : continue;
2181 :
2182 0 : if (sigp && timingsafe_bcmp(sigp, cp + 2, 16))
2183 0 : return (-1);
2184 :
2185 0 : sigp = cp + 2;
2186 0 : break;
2187 : #endif /* TCP_SIGNATURE */
2188 : }
2189 : }
2190 :
2191 : #ifdef TCP_SIGNATURE
2192 0 : if (tp->t_flags & TF_SIGNATURE) {
2193 0 : union sockaddr_union src, dst;
2194 :
2195 0 : memset(&src, 0, sizeof(union sockaddr_union));
2196 0 : memset(&dst, 0, sizeof(union sockaddr_union));
2197 :
2198 0 : switch (tp->pf) {
2199 : case 0:
2200 : case AF_INET:
2201 0 : src.sa.sa_len = sizeof(struct sockaddr_in);
2202 0 : src.sa.sa_family = AF_INET;
2203 0 : src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
2204 0 : dst.sa.sa_len = sizeof(struct sockaddr_in);
2205 0 : dst.sa.sa_family = AF_INET;
2206 0 : dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
2207 0 : break;
2208 : #ifdef INET6
2209 : case AF_INET6:
2210 0 : src.sa.sa_len = sizeof(struct sockaddr_in6);
2211 0 : src.sa.sa_family = AF_INET6;
2212 0 : src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
2213 0 : dst.sa.sa_len = sizeof(struct sockaddr_in6);
2214 0 : dst.sa.sa_family = AF_INET6;
2215 0 : dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
2216 0 : break;
2217 : #endif /* INET6 */
2218 : }
2219 :
2220 0 : tdb = gettdbbysrcdst(rtable_l2(rtableid),
2221 : 0, &src, &dst, IPPROTO_TCP);
2222 :
2223 : /*
2224 : * We don't have an SA for this peer, so we turn off
2225 : * TF_SIGNATURE on the listen socket
2226 : */
2227 0 : if (tdb == NULL && tp->t_state == TCPS_LISTEN)
2228 0 : tp->t_flags &= ~TF_SIGNATURE;
2229 :
2230 0 : }
2231 :
2232 0 : if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2233 0 : tcpstat_inc(tcps_rcvbadsig);
2234 0 : return (-1);
2235 : }
2236 :
2237 0 : if (sigp) {
2238 0 : char sig[16];
2239 :
2240 0 : if (tdb == NULL) {
2241 0 : tcpstat_inc(tcps_rcvbadsig);
2242 0 : return (-1);
2243 : }
2244 :
2245 0 : if (tcp_signature(tdb, tp->pf, m, th, iphlen, 1, sig) < 0)
2246 0 : return (-1);
2247 :
2248 0 : if (timingsafe_bcmp(sig, sigp, 16)) {
2249 0 : tcpstat_inc(tcps_rcvbadsig);
2250 0 : return (-1);
2251 : }
2252 :
2253 0 : tcpstat_inc(tcps_rcvgoodsig);
2254 0 : }
2255 : #endif /* TCP_SIGNATURE */
2256 :
2257 0 : return (0);
2258 0 : }
2259 :
2260 : u_long
2261 0 : tcp_seq_subtract(u_long a, u_long b)
2262 : {
2263 0 : return ((long)(a - b));
2264 : }
2265 :
2266 : /*
2267 : * This function is called upon receipt of new valid data (while not in header
2268 : * prediction mode), and it updates the ordered list of sacks.
2269 : */
2270 : void
2271 0 : tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_laststart,
2272 : tcp_seq rcv_lastend)
2273 : {
2274 : /*
2275 : * First reported block MUST be the most recent one. Subsequent
2276 : * blocks SHOULD be in the order in which they arrived at the
2277 : * receiver. These two conditions make the implementation fully
2278 : * compliant with RFC 2018.
2279 : */
2280 : int i, j = 0, count = 0, lastpos = -1;
2281 0 : struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
2282 :
2283 : /* First clean up current list of sacks */
2284 0 : for (i = 0; i < tp->rcv_numsacks; i++) {
2285 0 : sack = tp->sackblks[i];
2286 0 : if (sack.start == 0 && sack.end == 0) {
2287 0 : count++; /* count = number of blocks to be discarded */
2288 0 : continue;
2289 : }
2290 0 : if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
2291 0 : tp->sackblks[i].start = tp->sackblks[i].end = 0;
2292 0 : count++;
2293 0 : } else {
2294 0 : temp[j].start = tp->sackblks[i].start;
2295 0 : temp[j++].end = tp->sackblks[i].end;
2296 : }
2297 : }
2298 0 : tp->rcv_numsacks -= count;
2299 0 : if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2300 0 : tcp_clean_sackreport(tp);
2301 0 : if (SEQ_LT(tp->rcv_nxt, rcv_laststart)) {
2302 : /* ==> need first sack block */
2303 0 : tp->sackblks[0].start = rcv_laststart;
2304 0 : tp->sackblks[0].end = rcv_lastend;
2305 0 : tp->rcv_numsacks = 1;
2306 0 : }
2307 0 : return;
2308 : }
2309 : /* Otherwise, sack blocks are already present. */
2310 0 : for (i = 0; i < tp->rcv_numsacks; i++)
2311 0 : tp->sackblks[i] = temp[i]; /* first copy back sack list */
2312 0 : if (SEQ_GEQ(tp->rcv_nxt, rcv_lastend))
2313 0 : return; /* sack list remains unchanged */
2314 : /*
2315 : * From here, segment just received should be (part of) the 1st sack.
2316 : * Go through list, possibly coalescing sack block entries.
2317 : */
2318 : firstsack.start = rcv_laststart;
2319 : firstsack.end = rcv_lastend;
2320 0 : for (i = 0; i < tp->rcv_numsacks; i++) {
2321 0 : sack = tp->sackblks[i];
2322 0 : if (SEQ_LT(sack.end, firstsack.start) ||
2323 0 : SEQ_GT(sack.start, firstsack.end))
2324 : continue; /* no overlap */
2325 0 : if (sack.start == firstsack.start && sack.end == firstsack.end){
2326 : /*
2327 : * identical block; delete it here since we will
2328 : * move it to the front of the list.
2329 : */
2330 0 : tp->sackblks[i].start = tp->sackblks[i].end = 0;
2331 : lastpos = i; /* last posn with a zero entry */
2332 0 : continue;
2333 : }
2334 0 : if (SEQ_LEQ(sack.start, firstsack.start))
2335 0 : firstsack.start = sack.start; /* merge blocks */
2336 0 : if (SEQ_GEQ(sack.end, firstsack.end))
2337 0 : firstsack.end = sack.end; /* merge blocks */
2338 0 : tp->sackblks[i].start = tp->sackblks[i].end = 0;
2339 : lastpos = i; /* last posn with a zero entry */
2340 0 : }
2341 0 : if (lastpos != -1) { /* at least one merge */
2342 0 : for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2343 0 : sack = tp->sackblks[i];
2344 0 : if (sack.start == 0 && sack.end == 0)
2345 : continue;
2346 0 : temp[j++] = sack;
2347 0 : }
2348 0 : tp->rcv_numsacks = j; /* including first blk (added later) */
2349 0 : for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2350 0 : tp->sackblks[i] = temp[i];
2351 : } else { /* no merges -- shift sacks by 1 */
2352 0 : if (tp->rcv_numsacks < MAX_SACK_BLKS)
2353 0 : tp->rcv_numsacks++;
2354 0 : for (i = tp->rcv_numsacks-1; i > 0; i--)
2355 0 : tp->sackblks[i] = tp->sackblks[i-1];
2356 : }
2357 0 : tp->sackblks[0] = firstsack;
2358 0 : return;
2359 0 : }
2360 :
2361 : /*
2362 : * Process the TCP SACK option. tp->snd_holes is an ordered list
2363 : * of holes (oldest to newest, in terms of the sequence space).
2364 : */
2365 : void
2366 0 : tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2367 : {
2368 : int tmp_olen;
2369 : u_char *tmp_cp;
2370 : struct sackhole *cur, *p, *temp;
2371 :
2372 0 : if (!tp->sack_enable)
2373 0 : return;
2374 : /* SACK without ACK doesn't make sense. */
2375 0 : if ((th->th_flags & TH_ACK) == 0)
2376 0 : return;
2377 : /* Make sure the ACK on this segment is in [snd_una, snd_max]. */
2378 0 : if (SEQ_LT(th->th_ack, tp->snd_una) ||
2379 0 : SEQ_GT(th->th_ack, tp->snd_max))
2380 0 : return;
2381 : /* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2382 0 : if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2383 0 : return;
2384 : /* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2385 0 : tmp_cp = cp + 2;
2386 : tmp_olen = optlen - 2;
2387 0 : tcpstat_inc(tcps_sack_rcv_opts);
2388 0 : if (tp->snd_numholes < 0)
2389 0 : tp->snd_numholes = 0;
2390 0 : if (tp->t_maxseg == 0)
2391 0 : panic("tcp_sack_option"); /* Should never happen */
2392 0 : while (tmp_olen > 0) {
2393 : struct sackblk sack;
2394 :
2395 0 : memcpy(&sack.start, tmp_cp, sizeof(tcp_seq));
2396 0 : sack.start = ntohl(sack.start);
2397 0 : memcpy(&sack.end, tmp_cp + sizeof(tcp_seq), sizeof(tcp_seq));
2398 0 : sack.end = ntohl(sack.end);
2399 0 : tmp_olen -= TCPOLEN_SACK;
2400 0 : tmp_cp += TCPOLEN_SACK;
2401 0 : if (SEQ_LEQ(sack.end, sack.start))
2402 0 : continue; /* bad SACK fields */
2403 0 : if (SEQ_LEQ(sack.end, tp->snd_una))
2404 0 : continue; /* old block */
2405 0 : if (SEQ_GT(th->th_ack, tp->snd_una)) {
2406 0 : if (SEQ_LT(sack.start, th->th_ack))
2407 0 : continue;
2408 : }
2409 0 : if (SEQ_GT(sack.end, tp->snd_max))
2410 0 : continue;
2411 0 : if (tp->snd_holes == NULL) { /* first hole */
2412 0 : tp->snd_holes = (struct sackhole *)
2413 0 : pool_get(&sackhl_pool, PR_NOWAIT);
2414 0 : if (tp->snd_holes == NULL) {
2415 : /* ENOBUFS, so ignore SACKed block for now*/
2416 0 : goto done;
2417 : }
2418 : cur = tp->snd_holes;
2419 0 : cur->start = th->th_ack;
2420 0 : cur->end = sack.start;
2421 0 : cur->rxmit = cur->start;
2422 0 : cur->next = NULL;
2423 0 : tp->snd_numholes = 1;
2424 0 : tp->rcv_lastsack = sack.end;
2425 : /*
2426 : * dups is at least one. If more data has been
2427 : * SACKed, it can be greater than one.
2428 : */
2429 0 : cur->dups = min(tcprexmtthresh,
2430 0 : ((sack.end - cur->end)/tp->t_maxseg));
2431 0 : if (cur->dups < 1)
2432 0 : cur->dups = 1;
2433 0 : continue; /* with next sack block */
2434 : }
2435 : /* Go thru list of holes: p = previous, cur = current */
2436 : p = cur = tp->snd_holes;
2437 0 : while (cur) {
2438 0 : if (SEQ_LEQ(sack.end, cur->start))
2439 : /* SACKs data before the current hole */
2440 : break; /* no use going through more holes */
2441 0 : if (SEQ_GEQ(sack.start, cur->end)) {
2442 : /* SACKs data beyond the current hole */
2443 0 : cur->dups++;
2444 0 : if (((sack.end - cur->end)/tp->t_maxseg) >=
2445 0 : tcprexmtthresh)
2446 0 : cur->dups = tcprexmtthresh;
2447 : p = cur;
2448 0 : cur = cur->next;
2449 0 : continue;
2450 : }
2451 0 : if (SEQ_LEQ(sack.start, cur->start)) {
2452 : /* Data acks at least the beginning of hole */
2453 0 : if (SEQ_GEQ(sack.end, cur->end)) {
2454 : /* Acks entire hole, so delete hole */
2455 0 : if (p != cur) {
2456 0 : p->next = cur->next;
2457 0 : pool_put(&sackhl_pool, cur);
2458 0 : cur = p->next;
2459 0 : } else {
2460 : cur = cur->next;
2461 0 : pool_put(&sackhl_pool, p);
2462 : p = cur;
2463 0 : tp->snd_holes = p;
2464 : }
2465 0 : tp->snd_numholes--;
2466 0 : continue;
2467 : }
2468 : /* otherwise, move start of hole forward */
2469 0 : cur->start = sack.end;
2470 0 : cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
2471 : p = cur;
2472 0 : cur = cur->next;
2473 0 : continue;
2474 : }
2475 : /* move end of hole backward */
2476 0 : if (SEQ_GEQ(sack.end, cur->end)) {
2477 0 : cur->end = sack.start;
2478 0 : cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2479 0 : cur->dups++;
2480 0 : if (((sack.end - cur->end)/tp->t_maxseg) >=
2481 0 : tcprexmtthresh)
2482 0 : cur->dups = tcprexmtthresh;
2483 : p = cur;
2484 0 : cur = cur->next;
2485 0 : continue;
2486 : }
2487 0 : if (SEQ_LT(cur->start, sack.start) &&
2488 0 : SEQ_GT(cur->end, sack.end)) {
2489 : /*
2490 : * ACKs some data in middle of a hole; need to
2491 : * split current hole
2492 : */
2493 0 : temp = (struct sackhole *)
2494 0 : pool_get(&sackhl_pool, PR_NOWAIT);
2495 0 : if (temp == NULL)
2496 0 : goto done; /* ENOBUFS */
2497 0 : temp->next = cur->next;
2498 0 : temp->start = sack.end;
2499 0 : temp->end = cur->end;
2500 0 : temp->dups = cur->dups;
2501 0 : temp->rxmit = SEQ_MAX(cur->rxmit, temp->start);
2502 0 : cur->end = sack.start;
2503 0 : cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2504 0 : cur->dups++;
2505 0 : if (((sack.end - cur->end)/tp->t_maxseg) >=
2506 0 : tcprexmtthresh)
2507 0 : cur->dups = tcprexmtthresh;
2508 0 : cur->next = temp;
2509 : p = temp;
2510 0 : cur = p->next;
2511 0 : tp->snd_numholes++;
2512 0 : }
2513 : }
2514 : /* At this point, p points to the last hole on the list */
2515 0 : if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
2516 : /*
2517 : * Need to append new hole at end.
2518 : * Last hole is p (and it's not NULL).
2519 : */
2520 0 : temp = (struct sackhole *)
2521 0 : pool_get(&sackhl_pool, PR_NOWAIT);
2522 0 : if (temp == NULL)
2523 0 : goto done; /* ENOBUFS */
2524 0 : temp->start = tp->rcv_lastsack;
2525 0 : temp->end = sack.start;
2526 0 : temp->dups = min(tcprexmtthresh,
2527 0 : ((sack.end - sack.start)/tp->t_maxseg));
2528 0 : if (temp->dups < 1)
2529 0 : temp->dups = 1;
2530 0 : temp->rxmit = temp->start;
2531 0 : temp->next = 0;
2532 0 : p->next = temp;
2533 0 : tp->rcv_lastsack = sack.end;
2534 0 : tp->snd_numholes++;
2535 0 : }
2536 0 : }
2537 : done:
2538 0 : return;
2539 0 : }
2540 :
2541 : /*
2542 : * Delete stale (i.e, cumulatively ack'd) holes. Hole is deleted only if
2543 : * it is completely acked; otherwise, tcp_sack_option(), called from
2544 : * tcp_dooptions(), will fix up the hole.
2545 : */
2546 : void
2547 0 : tcp_del_sackholes(struct tcpcb *tp, struct tcphdr *th)
2548 : {
2549 0 : if (tp->sack_enable && tp->t_state != TCPS_LISTEN) {
2550 : /* max because this could be an older ack just arrived */
2551 0 : tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
2552 : th->th_ack : tp->snd_una;
2553 0 : struct sackhole *cur = tp->snd_holes;
2554 : struct sackhole *prev;
2555 0 : while (cur)
2556 0 : if (SEQ_LEQ(cur->end, lastack)) {
2557 : prev = cur;
2558 0 : cur = cur->next;
2559 0 : pool_put(&sackhl_pool, prev);
2560 0 : tp->snd_numholes--;
2561 0 : } else if (SEQ_LT(cur->start, lastack)) {
2562 0 : cur->start = lastack;
2563 0 : if (SEQ_LT(cur->rxmit, cur->start))
2564 0 : cur->rxmit = cur->start;
2565 : break;
2566 : } else
2567 : break;
2568 0 : tp->snd_holes = cur;
2569 0 : }
2570 0 : }
2571 :
2572 : /*
2573 : * Delete all receiver-side SACK information.
2574 : */
2575 : void
2576 0 : tcp_clean_sackreport(struct tcpcb *tp)
2577 : {
2578 : int i;
2579 :
2580 0 : tp->rcv_numsacks = 0;
2581 0 : for (i = 0; i < MAX_SACK_BLKS; i++)
2582 0 : tp->sackblks[i].start = tp->sackblks[i].end=0;
2583 :
2584 0 : }
2585 :
2586 : /*
2587 : * Partial ack handling within a sack recovery episode. When a partial ack
2588 : * arrives, turn off retransmission timer, deflate the window, do not clear
2589 : * tp->t_dupacks.
2590 : */
2591 : void
2592 0 : tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
2593 : {
2594 : /* Turn off retx. timer (will start again next segment) */
2595 0 : TCP_TIMER_DISARM(tp, TCPT_REXMT);
2596 0 : tp->t_rtttime = 0;
2597 : /*
2598 : * Partial window deflation. This statement relies on the
2599 : * fact that tp->snd_una has not been updated yet.
2600 : */
2601 0 : if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2602 0 : tp->snd_cwnd -= th->th_ack - tp->snd_una;
2603 0 : tp->snd_cwnd += tp->t_maxseg;
2604 0 : } else
2605 0 : tp->snd_cwnd = tp->t_maxseg;
2606 0 : tp->snd_cwnd += tp->t_maxseg;
2607 0 : tp->t_flags |= TF_NEEDOUTPUT;
2608 0 : }
2609 :
2610 : /*
2611 : * Pull out of band byte out of a segment so
2612 : * it doesn't appear in the user's data queue.
2613 : * It is still reflected in the segment length for
2614 : * sequencing purposes.
2615 : */
2616 : void
2617 0 : tcp_pulloutofband(struct socket *so, u_int urgent, struct mbuf *m, int off)
2618 : {
2619 0 : int cnt = off + urgent - 1;
2620 :
2621 0 : while (cnt >= 0) {
2622 0 : if (m->m_len > cnt) {
2623 0 : char *cp = mtod(m, caddr_t) + cnt;
2624 0 : struct tcpcb *tp = sototcpcb(so);
2625 :
2626 0 : tp->t_iobc = *cp;
2627 0 : tp->t_oobflags |= TCPOOB_HAVEDATA;
2628 0 : memmove(cp, cp + 1, m->m_len - cnt - 1);
2629 0 : m->m_len--;
2630 : return;
2631 : }
2632 0 : cnt -= m->m_len;
2633 0 : m = m->m_next;
2634 0 : if (m == NULL)
2635 : break;
2636 : }
2637 0 : panic("tcp_pulloutofband");
2638 0 : }
2639 :
2640 : /*
2641 : * Collect new round-trip time estimate
2642 : * and update averages and current timeout.
2643 : */
2644 : void
2645 0 : tcp_xmit_timer(struct tcpcb *tp, int rtt)
2646 : {
2647 : short delta;
2648 : short rttmin;
2649 :
2650 0 : if (rtt < 0)
2651 0 : rtt = 0;
2652 0 : else if (rtt > TCP_RTT_MAX)
2653 0 : rtt = TCP_RTT_MAX;
2654 :
2655 0 : tcpstat_inc(tcps_rttupdated);
2656 0 : if (tp->t_srtt != 0) {
2657 : /*
2658 : * delta is fixed point with 2 (TCP_RTT_BASE_SHIFT) bits
2659 : * after the binary point (scaled by 4), whereas
2660 : * srtt is stored as fixed point with 5 bits after the
2661 : * binary point (i.e., scaled by 32). The following magic
2662 : * is equivalent to the smoothing algorithm in rfc793 with
2663 : * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2664 : * point).
2665 : */
2666 0 : delta = (rtt << TCP_RTT_BASE_SHIFT) -
2667 0 : (tp->t_srtt >> TCP_RTT_SHIFT);
2668 0 : if ((tp->t_srtt += delta) <= 0)
2669 0 : tp->t_srtt = 1 << TCP_RTT_BASE_SHIFT;
2670 : /*
2671 : * We accumulate a smoothed rtt variance (actually, a
2672 : * smoothed mean difference), then set the retransmit
2673 : * timer to smoothed rtt + 4 times the smoothed variance.
2674 : * rttvar is stored as fixed point with 4 bits after the
2675 : * binary point (scaled by 16). The following is
2676 : * equivalent to rfc793 smoothing with an alpha of .75
2677 : * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2678 : * rfc793's wired-in beta.
2679 : */
2680 0 : if (delta < 0)
2681 0 : delta = -delta;
2682 0 : delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2683 0 : if ((tp->t_rttvar += delta) <= 0)
2684 0 : tp->t_rttvar = 1 << TCP_RTT_BASE_SHIFT;
2685 : } else {
2686 : /*
2687 : * No rtt measurement yet - use the unsmoothed rtt.
2688 : * Set the variance to half the rtt (so our first
2689 : * retransmit happens at 3*rtt).
2690 : */
2691 0 : tp->t_srtt = (rtt + 1) << (TCP_RTT_SHIFT + TCP_RTT_BASE_SHIFT);
2692 0 : tp->t_rttvar = (rtt + 1) <<
2693 : (TCP_RTTVAR_SHIFT + TCP_RTT_BASE_SHIFT - 1);
2694 : }
2695 0 : tp->t_rtttime = 0;
2696 0 : tp->t_rxtshift = 0;
2697 :
2698 : /*
2699 : * the retransmit should happen at rtt + 4 * rttvar.
2700 : * Because of the way we do the smoothing, srtt and rttvar
2701 : * will each average +1/2 tick of bias. When we compute
2702 : * the retransmit timer, we want 1/2 tick of rounding and
2703 : * 1 extra tick because of +-1/2 tick uncertainty in the
2704 : * firing of the timer. The bias will give us exactly the
2705 : * 1.5 tick we need. But, because the bias is
2706 : * statistical, we have to test that we don't drop below
2707 : * the minimum feasible timer (which is 2 ticks).
2708 : */
2709 0 : rttmin = min(max(rtt + 2, tp->t_rttmin), TCPTV_REXMTMAX);
2710 0 : TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2711 :
2712 : /*
2713 : * We received an ack for a packet that wasn't retransmitted;
2714 : * it is probably safe to discard any error indications we've
2715 : * received recently. This isn't quite right, but close enough
2716 : * for now (a route might have failed after we sent a segment,
2717 : * and the return path might not be symmetrical).
2718 : */
2719 0 : tp->t_softerror = 0;
2720 0 : }
2721 :
2722 : /*
2723 : * Determine a reasonable value for maxseg size.
2724 : * If the route is known, check route for mtu.
2725 : * If none, use an mss that can be handled on the outgoing
2726 : * interface without forcing IP to fragment; if bigger than
2727 : * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2728 : * to utilize large mbufs. If no route is found, route has no mtu,
2729 : * or the destination isn't local, use a default, hopefully conservative
2730 : * size (usually 512 or the default IP max size, but no more than the mtu
2731 : * of the interface), as we can't discover anything about intervening
2732 : * gateways or networks. We also initialize the congestion/slow start
2733 : * window to be a single segment if the destination isn't local.
2734 : * While looking at the routing entry, we also initialize other path-dependent
2735 : * parameters from pre-set or cached values in the routing entry.
2736 : *
2737 : * Also take into account the space needed for options that we
2738 : * send regularly. Make maxseg shorter by that amount to assure
2739 : * that we can send maxseg amount of data even when the options
2740 : * are present. Store the upper limit of the length of options plus
2741 : * data in maxopd.
2742 : *
2743 : * NOTE: offer == -1 indicates that the maxseg size changed due to
2744 : * Path MTU discovery.
2745 : */
2746 : int
2747 0 : tcp_mss(struct tcpcb *tp, int offer)
2748 : {
2749 : struct rtentry *rt;
2750 : struct ifnet *ifp = NULL;
2751 : int mss, mssopt;
2752 : int iphlen;
2753 : struct inpcb *inp;
2754 :
2755 0 : inp = tp->t_inpcb;
2756 :
2757 0 : mssopt = mss = tcp_mssdflt;
2758 :
2759 0 : rt = in_pcbrtentry(inp);
2760 :
2761 0 : if (rt == NULL)
2762 : goto out;
2763 :
2764 0 : ifp = if_get(rt->rt_ifidx);
2765 0 : if (ifp == NULL)
2766 : goto out;
2767 :
2768 0 : switch (tp->pf) {
2769 : #ifdef INET6
2770 : case AF_INET6:
2771 : iphlen = sizeof(struct ip6_hdr);
2772 0 : break;
2773 : #endif
2774 : case AF_INET:
2775 : iphlen = sizeof(struct ip);
2776 0 : break;
2777 : default:
2778 : /* the family does not support path MTU discovery */
2779 : goto out;
2780 : }
2781 :
2782 : /*
2783 : * if there's an mtu associated with the route and we support
2784 : * path MTU discovery for the underlying protocol family, use it.
2785 : */
2786 0 : if (rt->rt_mtu) {
2787 : /*
2788 : * One may wish to lower MSS to take into account options,
2789 : * especially security-related options.
2790 : */
2791 0 : if (tp->pf == AF_INET6 && rt->rt_mtu < IPV6_MMTU) {
2792 : /*
2793 : * RFC2460 section 5, last paragraph: if path MTU is
2794 : * smaller than 1280, use 1280 as packet size and
2795 : * attach fragment header.
2796 : */
2797 0 : mss = IPV6_MMTU - iphlen - sizeof(struct ip6_frag) -
2798 : sizeof(struct tcphdr);
2799 0 : } else {
2800 0 : mss = rt->rt_mtu - iphlen -
2801 : sizeof(struct tcphdr);
2802 : }
2803 0 : } else if (ifp->if_flags & IFF_LOOPBACK) {
2804 0 : mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2805 0 : } else if (tp->pf == AF_INET) {
2806 0 : if (ip_mtudisc)
2807 0 : mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2808 : }
2809 : #ifdef INET6
2810 0 : else if (tp->pf == AF_INET6) {
2811 : /*
2812 : * for IPv6, path MTU discovery is always turned on,
2813 : * or the node must use packet size <= 1280.
2814 : */
2815 0 : mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2816 0 : }
2817 : #endif /* INET6 */
2818 :
2819 : /* Calculate the value that we offer in TCPOPT_MAXSEG */
2820 0 : if (offer != -1) {
2821 0 : mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2822 0 : mssopt = max(tcp_mssdflt, mssopt);
2823 0 : }
2824 : out:
2825 0 : if_put(ifp);
2826 : /*
2827 : * The current mss, t_maxseg, is initialized to the default value.
2828 : * If we compute a smaller value, reduce the current mss.
2829 : * If we compute a larger value, return it for use in sending
2830 : * a max seg size option, but don't store it for use
2831 : * unless we received an offer at least that large from peer.
2832 : *
2833 : * However, do not accept offers lower than the minimum of
2834 : * the interface MTU and 216.
2835 : */
2836 0 : if (offer > 0)
2837 0 : tp->t_peermss = offer;
2838 0 : if (tp->t_peermss)
2839 0 : mss = min(mss, max(tp->t_peermss, 216));
2840 :
2841 : /* sanity - at least max opt. space */
2842 0 : mss = max(mss, 64);
2843 :
2844 : /*
2845 : * maxopd stores the maximum length of data AND options
2846 : * in a segment; maxseg is the amount of data in a normal
2847 : * segment. We need to store this value (maxopd) apart
2848 : * from maxseg, because now every segment carries options
2849 : * and thus we normally have somewhat less data in segments.
2850 : */
2851 0 : tp->t_maxopd = mss;
2852 :
2853 0 : if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2854 0 : (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2855 0 : mss -= TCPOLEN_TSTAMP_APPA;
2856 : #ifdef TCP_SIGNATURE
2857 0 : if (tp->t_flags & TF_SIGNATURE)
2858 0 : mss -= TCPOLEN_SIGLEN;
2859 : #endif
2860 :
2861 0 : if (offer == -1) {
2862 : /* mss changed due to Path MTU discovery */
2863 0 : tp->t_flags &= ~TF_PMTUD_PEND;
2864 0 : tp->t_pmtud_mtu_sent = 0;
2865 0 : tp->t_pmtud_mss_acked = 0;
2866 0 : if (mss < tp->t_maxseg) {
2867 : /*
2868 : * Follow suggestion in RFC 2414 to reduce the
2869 : * congestion window by the ratio of the old
2870 : * segment size to the new segment size.
2871 : */
2872 0 : tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
2873 0 : mss, mss);
2874 0 : }
2875 0 : } else if (tcp_do_rfc3390 == 2) {
2876 : /* increase initial window */
2877 0 : tp->snd_cwnd = ulmin(10 * mss, ulmax(2 * mss, 14600));
2878 0 : } else if (tcp_do_rfc3390) {
2879 : /* increase initial window */
2880 0 : tp->snd_cwnd = ulmin(4 * mss, ulmax(2 * mss, 4380));
2881 0 : } else
2882 0 : tp->snd_cwnd = mss;
2883 :
2884 0 : tp->t_maxseg = mss;
2885 :
2886 0 : return (offer != -1 ? mssopt : mss);
2887 : }
2888 :
2889 : u_int
2890 0 : tcp_hdrsz(struct tcpcb *tp)
2891 : {
2892 : u_int hlen;
2893 :
2894 0 : switch (tp->pf) {
2895 : #ifdef INET6
2896 : case AF_INET6:
2897 : hlen = sizeof(struct ip6_hdr);
2898 0 : break;
2899 : #endif
2900 : case AF_INET:
2901 : hlen = sizeof(struct ip);
2902 0 : break;
2903 : default:
2904 : hlen = 0;
2905 0 : break;
2906 : }
2907 0 : hlen += sizeof(struct tcphdr);
2908 :
2909 0 : if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2910 0 : (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2911 0 : hlen += TCPOLEN_TSTAMP_APPA;
2912 : #ifdef TCP_SIGNATURE
2913 0 : if (tp->t_flags & TF_SIGNATURE)
2914 0 : hlen += TCPOLEN_SIGLEN;
2915 : #endif
2916 0 : return (hlen);
2917 : }
2918 :
2919 : /*
2920 : * Set connection variables based on the effective MSS.
2921 : * We are passed the TCPCB for the actual connection. If we
2922 : * are the server, we are called by the compressed state engine
2923 : * when the 3-way handshake is complete. If we are the client,
2924 : * we are called when we receive the SYN,ACK from the server.
2925 : *
2926 : * NOTE: The t_maxseg value must be initialized in the TCPCB
2927 : * before this routine is called!
2928 : */
2929 : void
2930 0 : tcp_mss_update(struct tcpcb *tp)
2931 : {
2932 : int mss;
2933 : u_long bufsize;
2934 : struct rtentry *rt;
2935 : struct socket *so;
2936 :
2937 0 : so = tp->t_inpcb->inp_socket;
2938 0 : mss = tp->t_maxseg;
2939 :
2940 0 : rt = in_pcbrtentry(tp->t_inpcb);
2941 :
2942 0 : if (rt == NULL)
2943 0 : return;
2944 :
2945 0 : bufsize = so->so_snd.sb_hiwat;
2946 0 : if (bufsize < mss) {
2947 0 : mss = bufsize;
2948 : /* Update t_maxseg and t_maxopd */
2949 0 : tcp_mss(tp, mss);
2950 0 : } else {
2951 0 : bufsize = roundup(bufsize, mss);
2952 0 : if (bufsize > sb_max)
2953 0 : bufsize = sb_max;
2954 0 : (void)sbreserve(so, &so->so_snd, bufsize);
2955 : }
2956 :
2957 0 : bufsize = so->so_rcv.sb_hiwat;
2958 0 : if (bufsize > mss) {
2959 0 : bufsize = roundup(bufsize, mss);
2960 0 : if (bufsize > sb_max)
2961 0 : bufsize = sb_max;
2962 0 : (void)sbreserve(so, &so->so_rcv, bufsize);
2963 0 : }
2964 :
2965 0 : }
2966 :
2967 : /*
2968 : * When a partial ack arrives, force the retransmission of the
2969 : * next unacknowledged segment. Do not clear tp->t_dupacks.
2970 : * By setting snd_nxt to ti_ack, this forces retransmission timer
2971 : * to be started again.
2972 : */
2973 : void
2974 0 : tcp_newreno_partialack(struct tcpcb *tp, struct tcphdr *th)
2975 : {
2976 : /*
2977 : * snd_una has not been updated and the socket send buffer
2978 : * not yet drained of the acked data, so we have to leave
2979 : * snd_una as it was to get the correct data offset in
2980 : * tcp_output().
2981 : */
2982 0 : tcp_seq onxt = tp->snd_nxt;
2983 0 : u_long ocwnd = tp->snd_cwnd;
2984 :
2985 0 : TCP_TIMER_DISARM(tp, TCPT_REXMT);
2986 0 : tp->t_rtttime = 0;
2987 0 : tp->snd_nxt = th->th_ack;
2988 : /*
2989 : * Set snd_cwnd to one segment beyond acknowledged offset
2990 : * (tp->snd_una not yet updated when this function is called)
2991 : */
2992 0 : tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2993 0 : (void)tcp_output(tp);
2994 0 : tp->snd_cwnd = ocwnd;
2995 0 : if (SEQ_GT(onxt, tp->snd_nxt))
2996 0 : tp->snd_nxt = onxt;
2997 : /*
2998 : * Partial window deflation. Relies on fact that tp->snd_una
2999 : * not updated yet.
3000 : */
3001 0 : if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3002 0 : tp->snd_cwnd -= th->th_ack - tp->snd_una;
3003 : else
3004 0 : tp->snd_cwnd = 0;
3005 0 : tp->snd_cwnd += tp->t_maxseg;
3006 0 : }
3007 :
3008 : int
3009 0 : tcp_mss_adv(struct mbuf *m, int af)
3010 : {
3011 : int mss = 0;
3012 : int iphlen;
3013 : struct ifnet *ifp = NULL;
3014 :
3015 0 : if (m && (m->m_flags & M_PKTHDR))
3016 0 : ifp = if_get(m->m_pkthdr.ph_ifidx);
3017 :
3018 0 : switch (af) {
3019 : case AF_INET:
3020 0 : if (ifp != NULL)
3021 0 : mss = ifp->if_mtu;
3022 : iphlen = sizeof(struct ip);
3023 0 : break;
3024 : #ifdef INET6
3025 : case AF_INET6:
3026 0 : if (ifp != NULL)
3027 0 : mss = ifp->if_mtu;
3028 : iphlen = sizeof(struct ip6_hdr);
3029 0 : break;
3030 : #endif
3031 : default:
3032 0 : unhandled_af(af);
3033 : }
3034 0 : if_put(ifp);
3035 0 : mss = mss - iphlen - sizeof(struct tcphdr);
3036 0 : return (max(mss, tcp_mssdflt));
3037 : }
3038 :
3039 : /*
3040 : * TCP compressed state engine. Currently used to hold compressed
3041 : * state for SYN_RECEIVED.
3042 : */
3043 :
3044 : /* syn hash parameters */
3045 : int tcp_syn_hash_size = TCP_SYN_HASH_SIZE;
3046 : int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
3047 : int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
3048 : int tcp_syn_use_limit = 100000;
3049 :
3050 : struct syn_cache_set tcp_syn_cache[2];
3051 : int tcp_syn_cache_active;
3052 :
3053 : #define SYN_HASH(sa, sp, dp, rand) \
3054 : (((sa)->s_addr ^ (rand)[0]) * \
3055 : (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp))) ^ (rand)[4]))
3056 : #ifndef INET6
3057 : #define SYN_HASHALL(hash, src, dst, rand) \
3058 : do { \
3059 : hash = SYN_HASH(&satosin(src)->sin_addr, \
3060 : satosin(src)->sin_port, \
3061 : satosin(dst)->sin_port, (rand)); \
3062 : } while (/*CONSTCOND*/ 0)
3063 : #else
3064 : #define SYN_HASH6(sa, sp, dp, rand) \
3065 : (((sa)->s6_addr32[0] ^ (rand)[0]) * \
3066 : ((sa)->s6_addr32[1] ^ (rand)[1]) * \
3067 : ((sa)->s6_addr32[2] ^ (rand)[2]) * \
3068 : ((sa)->s6_addr32[3] ^ (rand)[3]) * \
3069 : (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp))) ^ (rand)[4]))
3070 :
3071 : #define SYN_HASHALL(hash, src, dst, rand) \
3072 : do { \
3073 : switch ((src)->sa_family) { \
3074 : case AF_INET: \
3075 : hash = SYN_HASH(&satosin(src)->sin_addr, \
3076 : satosin(src)->sin_port, \
3077 : satosin(dst)->sin_port, (rand)); \
3078 : break; \
3079 : case AF_INET6: \
3080 : hash = SYN_HASH6(&satosin6(src)->sin6_addr, \
3081 : satosin6(src)->sin6_port, \
3082 : satosin6(dst)->sin6_port, (rand)); \
3083 : break; \
3084 : default: \
3085 : hash = 0; \
3086 : } \
3087 : } while (/*CONSTCOND*/0)
3088 : #endif /* INET6 */
3089 :
3090 : void
3091 0 : syn_cache_rm(struct syn_cache *sc)
3092 : {
3093 0 : sc->sc_flags |= SCF_DEAD;
3094 0 : TAILQ_REMOVE(&sc->sc_buckethead->sch_bucket, sc, sc_bucketq);
3095 0 : sc->sc_tp = NULL;
3096 0 : LIST_REMOVE(sc, sc_tpq);
3097 0 : sc->sc_buckethead->sch_length--;
3098 0 : timeout_del(&sc->sc_timer);
3099 0 : sc->sc_set->scs_count--;
3100 0 : }
3101 :
3102 : void
3103 0 : syn_cache_put(struct syn_cache *sc)
3104 : {
3105 0 : m_free(sc->sc_ipopts);
3106 0 : if (sc->sc_route4.ro_rt != NULL) {
3107 0 : rtfree(sc->sc_route4.ro_rt);
3108 0 : sc->sc_route4.ro_rt = NULL;
3109 0 : }
3110 0 : timeout_set(&sc->sc_timer, syn_cache_reaper, sc);
3111 0 : timeout_add(&sc->sc_timer, 0);
3112 0 : }
3113 :
3114 : struct pool syn_cache_pool;
3115 :
3116 : /*
3117 : * We don't estimate RTT with SYNs, so each packet starts with the default
3118 : * RTT and each timer step has a fixed timeout value.
3119 : */
3120 : #define SYN_CACHE_TIMER_ARM(sc) \
3121 : do { \
3122 : TCPT_RANGESET((sc)->sc_rxtcur, \
3123 : TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3124 : TCPTV_REXMTMAX); \
3125 : if (!timeout_initialized(&(sc)->sc_timer)) \
3126 : timeout_set_proc(&(sc)->sc_timer, syn_cache_timer, (sc)); \
3127 : timeout_add(&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / PR_SLOWHZ)); \
3128 : } while (/*CONSTCOND*/0)
3129 :
3130 : #define SYN_CACHE_TIMESTAMP(sc) tcp_now + (sc)->sc_modulate
3131 :
3132 : void
3133 0 : syn_cache_init(void)
3134 : {
3135 : int i;
3136 :
3137 : /* Initialize the hash buckets. */
3138 0 : tcp_syn_cache[0].scs_buckethead = mallocarray(tcp_syn_hash_size,
3139 : sizeof(struct syn_cache_head), M_SYNCACHE, M_WAITOK|M_ZERO);
3140 0 : tcp_syn_cache[1].scs_buckethead = mallocarray(tcp_syn_hash_size,
3141 : sizeof(struct syn_cache_head), M_SYNCACHE, M_WAITOK|M_ZERO);
3142 0 : tcp_syn_cache[0].scs_size = tcp_syn_hash_size;
3143 0 : tcp_syn_cache[1].scs_size = tcp_syn_hash_size;
3144 0 : for (i = 0; i < tcp_syn_hash_size; i++) {
3145 0 : TAILQ_INIT(&tcp_syn_cache[0].scs_buckethead[i].sch_bucket);
3146 0 : TAILQ_INIT(&tcp_syn_cache[1].scs_buckethead[i].sch_bucket);
3147 : }
3148 :
3149 : /* Initialize the syn cache pool. */
3150 0 : pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, IPL_SOFTNET,
3151 : 0, "syncache", NULL);
3152 0 : }
3153 :
3154 : void
3155 0 : syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3156 : {
3157 0 : struct syn_cache_set *set = &tcp_syn_cache[tcp_syn_cache_active];
3158 : struct syn_cache_head *scp;
3159 : struct syn_cache *sc2;
3160 : int i;
3161 :
3162 0 : NET_ASSERT_LOCKED();
3163 :
3164 : /*
3165 : * If there are no entries in the hash table, reinitialize
3166 : * the hash secrets. To avoid useless cache swaps and
3167 : * reinitialization, use it until the limit is reached.
3168 : * An emtpy cache is also the oportunity to resize the hash.
3169 : */
3170 0 : if (set->scs_count == 0 && set->scs_use <= 0) {
3171 0 : set->scs_use = tcp_syn_use_limit;
3172 0 : if (set->scs_size != tcp_syn_hash_size) {
3173 0 : scp = mallocarray(tcp_syn_hash_size, sizeof(struct
3174 : syn_cache_head), M_SYNCACHE, M_NOWAIT|M_ZERO);
3175 0 : if (scp == NULL) {
3176 : /* Try again next time. */
3177 0 : set->scs_use = 0;
3178 0 : } else {
3179 0 : free(set->scs_buckethead, M_SYNCACHE,
3180 0 : set->scs_size *
3181 : sizeof(struct syn_cache_head));
3182 0 : set->scs_buckethead = scp;
3183 0 : set->scs_size = tcp_syn_hash_size;
3184 0 : for (i = 0; i < tcp_syn_hash_size; i++)
3185 0 : TAILQ_INIT(&scp[i].sch_bucket);
3186 : }
3187 : }
3188 0 : arc4random_buf(set->scs_random, sizeof(set->scs_random));
3189 0 : tcpstat_inc(tcps_sc_seedrandom);
3190 0 : }
3191 :
3192 0 : SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa,
3193 : set->scs_random);
3194 0 : scp = &set->scs_buckethead[sc->sc_hash % set->scs_size];
3195 0 : sc->sc_buckethead = scp;
3196 :
3197 : /*
3198 : * Make sure that we don't overflow the per-bucket
3199 : * limit or the total cache size limit.
3200 : */
3201 0 : if (scp->sch_length >= tcp_syn_bucket_limit) {
3202 0 : tcpstat_inc(tcps_sc_bucketoverflow);
3203 : /*
3204 : * Someone might attack our bucket hash function. Reseed
3205 : * with random as soon as the passive syn cache gets empty.
3206 : */
3207 0 : set->scs_use = 0;
3208 : /*
3209 : * The bucket is full. Toss the oldest element in the
3210 : * bucket. This will be the first entry in the bucket.
3211 : */
3212 0 : sc2 = TAILQ_FIRST(&scp->sch_bucket);
3213 : #ifdef DIAGNOSTIC
3214 : /*
3215 : * This should never happen; we should always find an
3216 : * entry in our bucket.
3217 : */
3218 0 : if (sc2 == NULL)
3219 0 : panic("%s: bucketoverflow: impossible", __func__);
3220 : #endif
3221 0 : syn_cache_rm(sc2);
3222 0 : syn_cache_put(sc2);
3223 0 : } else if (set->scs_count >= tcp_syn_cache_limit) {
3224 : struct syn_cache_head *scp2, *sce;
3225 :
3226 0 : tcpstat_inc(tcps_sc_overflowed);
3227 : /*
3228 : * The cache is full. Toss the oldest entry in the
3229 : * first non-empty bucket we can find.
3230 : *
3231 : * XXX We would really like to toss the oldest
3232 : * entry in the cache, but we hope that this
3233 : * condition doesn't happen very often.
3234 : */
3235 : scp2 = scp;
3236 0 : if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3237 0 : sce = &set->scs_buckethead[set->scs_size];
3238 0 : for (++scp2; scp2 != scp; scp2++) {
3239 0 : if (scp2 >= sce)
3240 0 : scp2 = &set->scs_buckethead[0];
3241 0 : if (! TAILQ_EMPTY(&scp2->sch_bucket))
3242 : break;
3243 : }
3244 : #ifdef DIAGNOSTIC
3245 : /*
3246 : * This should never happen; we should always find a
3247 : * non-empty bucket.
3248 : */
3249 0 : if (scp2 == scp)
3250 0 : panic("%s: cacheoverflow: impossible",
3251 : __func__);
3252 : #endif
3253 : }
3254 0 : sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3255 0 : syn_cache_rm(sc2);
3256 0 : syn_cache_put(sc2);
3257 0 : }
3258 :
3259 : /*
3260 : * Initialize the entry's timer.
3261 : */
3262 0 : sc->sc_rxttot = 0;
3263 0 : sc->sc_rxtshift = 0;
3264 0 : SYN_CACHE_TIMER_ARM(sc);
3265 :
3266 : /* Link it from tcpcb entry */
3267 0 : LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3268 :
3269 : /* Put it into the bucket. */
3270 0 : TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3271 0 : scp->sch_length++;
3272 0 : sc->sc_set = set;
3273 0 : set->scs_count++;
3274 0 : set->scs_use--;
3275 :
3276 0 : tcpstat_inc(tcps_sc_added);
3277 :
3278 : /*
3279 : * If the active cache has exceeded its use limit and
3280 : * the passive syn cache is empty, exchange their roles.
3281 : */
3282 0 : if (set->scs_use <= 0 &&
3283 0 : tcp_syn_cache[!tcp_syn_cache_active].scs_count == 0)
3284 0 : tcp_syn_cache_active = !tcp_syn_cache_active;
3285 0 : }
3286 :
3287 : /*
3288 : * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3289 : * If we have retransmitted an entry the maximum number of times, expire
3290 : * that entry.
3291 : */
3292 : void
3293 0 : syn_cache_timer(void *arg)
3294 : {
3295 0 : struct syn_cache *sc = arg;
3296 :
3297 0 : NET_LOCK();
3298 0 : if (sc->sc_flags & SCF_DEAD)
3299 : goto out;
3300 :
3301 0 : if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3302 : /* Drop it -- too many retransmissions. */
3303 : goto dropit;
3304 : }
3305 :
3306 : /*
3307 : * Compute the total amount of time this entry has
3308 : * been on a queue. If this entry has been on longer
3309 : * than the keep alive timer would allow, expire it.
3310 : */
3311 0 : sc->sc_rxttot += sc->sc_rxtcur;
3312 0 : if (sc->sc_rxttot >= tcptv_keep_init)
3313 : goto dropit;
3314 :
3315 0 : tcpstat_inc(tcps_sc_retransmitted);
3316 0 : (void) syn_cache_respond(sc, NULL);
3317 :
3318 : /* Advance the timer back-off. */
3319 0 : sc->sc_rxtshift++;
3320 0 : SYN_CACHE_TIMER_ARM(sc);
3321 :
3322 : out:
3323 0 : NET_UNLOCK();
3324 0 : return;
3325 :
3326 : dropit:
3327 0 : tcpstat_inc(tcps_sc_timed_out);
3328 0 : syn_cache_rm(sc);
3329 0 : syn_cache_put(sc);
3330 0 : NET_UNLOCK();
3331 0 : }
3332 :
3333 : void
3334 0 : syn_cache_reaper(void *arg)
3335 : {
3336 0 : struct syn_cache *sc = arg;
3337 :
3338 0 : pool_put(&syn_cache_pool, (sc));
3339 : return;
3340 0 : }
3341 :
3342 : /*
3343 : * Remove syn cache created by the specified tcb entry,
3344 : * because this does not make sense to keep them
3345 : * (if there's no tcb entry, syn cache entry will never be used)
3346 : */
3347 : void
3348 0 : syn_cache_cleanup(struct tcpcb *tp)
3349 : {
3350 : struct syn_cache *sc, *nsc;
3351 :
3352 0 : NET_ASSERT_LOCKED();
3353 :
3354 0 : LIST_FOREACH_SAFE(sc, &tp->t_sc, sc_tpq, nsc) {
3355 : #ifdef DIAGNOSTIC
3356 0 : if (sc->sc_tp != tp)
3357 0 : panic("invalid sc_tp in syn_cache_cleanup");
3358 : #endif
3359 0 : syn_cache_rm(sc);
3360 0 : syn_cache_put(sc);
3361 : }
3362 : /* just for safety */
3363 0 : LIST_INIT(&tp->t_sc);
3364 0 : }
3365 :
3366 : /*
3367 : * Find an entry in the syn cache.
3368 : */
3369 : struct syn_cache *
3370 0 : syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3371 : struct syn_cache_head **headp, u_int rtableid)
3372 : {
3373 0 : struct syn_cache_set *sets[2];
3374 : struct syn_cache *sc;
3375 : struct syn_cache_head *scp;
3376 : u_int32_t hash;
3377 : int i;
3378 :
3379 0 : NET_ASSERT_LOCKED();
3380 :
3381 : /* Check the active cache first, the passive cache is likely emtpy. */
3382 0 : sets[0] = &tcp_syn_cache[tcp_syn_cache_active];
3383 0 : sets[1] = &tcp_syn_cache[!tcp_syn_cache_active];
3384 0 : for (i = 0; i < 2; i++) {
3385 0 : if (sets[i]->scs_count == 0)
3386 : continue;
3387 0 : SYN_HASHALL(hash, src, dst, sets[i]->scs_random);
3388 0 : scp = &sets[i]->scs_buckethead[hash % sets[i]->scs_size];
3389 0 : *headp = scp;
3390 0 : TAILQ_FOREACH(sc, &scp->sch_bucket, sc_bucketq) {
3391 0 : if (sc->sc_hash != hash)
3392 : continue;
3393 0 : if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3394 0 : !bcmp(&sc->sc_dst, dst, dst->sa_len) &&
3395 0 : rtable_l2(rtableid) == rtable_l2(sc->sc_rtableid))
3396 0 : return (sc);
3397 : }
3398 : }
3399 0 : return (NULL);
3400 0 : }
3401 :
3402 : /*
3403 : * This function gets called when we receive an ACK for a
3404 : * socket in the LISTEN state. We look up the connection
3405 : * in the syn cache, and if its there, we pull it out of
3406 : * the cache and turn it into a full-blown connection in
3407 : * the SYN-RECEIVED state.
3408 : *
3409 : * The return values may not be immediately obvious, and their effects
3410 : * can be subtle, so here they are:
3411 : *
3412 : * NULL SYN was not found in cache; caller should drop the
3413 : * packet and send an RST.
3414 : *
3415 : * -1 We were unable to create the new connection, and are
3416 : * aborting it. An ACK,RST is being sent to the peer
3417 : * (unless we got screwey sequence numbners; see below),
3418 : * because the 3-way handshake has been completed. Caller
3419 : * should not free the mbuf, since we may be using it. If
3420 : * we are not, we will free it.
3421 : *
3422 : * Otherwise, the return value is a pointer to the new socket
3423 : * associated with the connection.
3424 : */
3425 : struct socket *
3426 0 : syn_cache_get(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3427 : u_int hlen, u_int tlen, struct socket *so, struct mbuf *m)
3428 : {
3429 : struct syn_cache *sc;
3430 0 : struct syn_cache_head *scp;
3431 : struct inpcb *inp, *oldinp;
3432 : struct tcpcb *tp = NULL;
3433 : struct mbuf *am;
3434 : struct socket *oso;
3435 :
3436 0 : NET_ASSERT_LOCKED();
3437 :
3438 0 : sc = syn_cache_lookup(src, dst, &scp, sotoinpcb(so)->inp_rtableid);
3439 0 : if (sc == NULL)
3440 0 : return (NULL);
3441 :
3442 : /*
3443 : * Verify the sequence and ack numbers. Try getting the correct
3444 : * response again.
3445 : */
3446 0 : if ((th->th_ack != sc->sc_iss + 1) ||
3447 0 : SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3448 0 : SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3449 0 : (void) syn_cache_respond(sc, m);
3450 0 : return ((struct socket *)(-1));
3451 : }
3452 :
3453 : /* Remove this cache entry */
3454 0 : syn_cache_rm(sc);
3455 :
3456 : /*
3457 : * Ok, create the full blown connection, and set things up
3458 : * as they would have been set up if we had created the
3459 : * connection when the SYN arrived. If we can't create
3460 : * the connection, abort it.
3461 : */
3462 : oso = so;
3463 0 : so = sonewconn(so, SS_ISCONNECTED);
3464 0 : if (so == NULL)
3465 : goto resetandabort;
3466 :
3467 0 : oldinp = sotoinpcb(oso);
3468 0 : inp = sotoinpcb(so);
3469 :
3470 : #ifdef IPSEC
3471 : /*
3472 : * We need to copy the required security levels
3473 : * from the old pcb. Ditto for any other
3474 : * IPsec-related information.
3475 : */
3476 0 : memcpy(inp->inp_seclevel, oldinp->inp_seclevel,
3477 : sizeof(oldinp->inp_seclevel));
3478 : #endif /* IPSEC */
3479 : #ifdef INET6
3480 : /*
3481 : * inp still has the OLD in_pcb stuff, set the
3482 : * v6-related flags on the new guy, too.
3483 : */
3484 0 : inp->inp_flags |= (oldinp->inp_flags & INP_IPV6);
3485 0 : if (inp->inp_flags & INP_IPV6) {
3486 0 : inp->inp_ipv6.ip6_hlim = oldinp->inp_ipv6.ip6_hlim;
3487 0 : inp->inp_hops = oldinp->inp_hops;
3488 0 : } else
3489 : #endif /* INET6 */
3490 : {
3491 0 : inp->inp_ip.ip_ttl = oldinp->inp_ip.ip_ttl;
3492 : }
3493 :
3494 : #if NPF > 0
3495 0 : if (m->m_pkthdr.pf.flags & PF_TAG_DIVERTED) {
3496 : struct pf_divert *divert;
3497 :
3498 0 : divert = pf_find_divert(m);
3499 0 : KASSERT(divert != NULL);
3500 0 : inp->inp_rtableid = divert->rdomain;
3501 0 : } else
3502 : #endif
3503 : /* inherit rtable from listening socket */
3504 0 : inp->inp_rtableid = sc->sc_rtableid;
3505 :
3506 0 : inp->inp_lport = th->th_dport;
3507 0 : switch (src->sa_family) {
3508 : #ifdef INET6
3509 : case AF_INET6:
3510 0 : inp->inp_laddr6 = satosin6(dst)->sin6_addr;
3511 0 : break;
3512 : #endif /* INET6 */
3513 : case AF_INET:
3514 0 : inp->inp_laddr = satosin(dst)->sin_addr;
3515 0 : inp->inp_options = ip_srcroute(m);
3516 0 : if (inp->inp_options == NULL) {
3517 0 : inp->inp_options = sc->sc_ipopts;
3518 0 : sc->sc_ipopts = NULL;
3519 0 : }
3520 : break;
3521 : }
3522 0 : in_pcbrehash(inp);
3523 :
3524 : /*
3525 : * Give the new socket our cached route reference.
3526 : */
3527 0 : if (src->sa_family == AF_INET)
3528 0 : inp->inp_route = sc->sc_route4; /* struct assignment */
3529 : #ifdef INET6
3530 : else
3531 0 : inp->inp_route6 = sc->sc_route6;
3532 : #endif
3533 0 : sc->sc_route4.ro_rt = NULL;
3534 :
3535 0 : am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3536 0 : if (am == NULL)
3537 : goto resetandabort;
3538 0 : am->m_len = src->sa_len;
3539 0 : memcpy(mtod(am, caddr_t), src, src->sa_len);
3540 0 : if (in_pcbconnect(inp, am)) {
3541 : (void) m_free(am);
3542 : goto resetandabort;
3543 : }
3544 : (void) m_free(am);
3545 :
3546 0 : tp = intotcpcb(inp);
3547 0 : tp->t_flags = sototcpcb(oso)->t_flags & (TF_NOPUSH|TF_NODELAY);
3548 0 : if (sc->sc_request_r_scale != 15) {
3549 0 : tp->requested_s_scale = sc->sc_requested_s_scale;
3550 0 : tp->request_r_scale = sc->sc_request_r_scale;
3551 0 : tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3552 0 : }
3553 0 : if (sc->sc_flags & SCF_TIMESTAMP)
3554 0 : tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3555 :
3556 0 : tp->t_template = tcp_template(tp);
3557 0 : if (tp->t_template == 0) {
3558 0 : tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3559 : so = NULL;
3560 0 : goto abort;
3561 : }
3562 0 : tp->sack_enable = sc->sc_flags & SCF_SACK_PERMIT;
3563 0 : tp->ts_modulate = sc->sc_modulate;
3564 0 : tp->ts_recent = sc->sc_timestamp;
3565 0 : tp->iss = sc->sc_iss;
3566 0 : tp->irs = sc->sc_irs;
3567 0 : tcp_sendseqinit(tp);
3568 0 : tp->snd_last = tp->snd_una;
3569 : #ifdef TCP_ECN
3570 0 : if (sc->sc_flags & SCF_ECN_PERMIT) {
3571 0 : tp->t_flags |= TF_ECN_PERMIT;
3572 0 : tcpstat_inc(tcps_ecn_accepts);
3573 0 : }
3574 : #endif
3575 0 : if (sc->sc_flags & SCF_SACK_PERMIT)
3576 0 : tp->t_flags |= TF_SACK_PERMIT;
3577 : #ifdef TCP_SIGNATURE
3578 0 : if (sc->sc_flags & SCF_SIGNATURE)
3579 0 : tp->t_flags |= TF_SIGNATURE;
3580 : #endif
3581 0 : tcp_rcvseqinit(tp);
3582 0 : tp->t_state = TCPS_SYN_RECEIVED;
3583 0 : tp->t_rcvtime = tcp_now;
3584 0 : TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
3585 0 : tcpstat_inc(tcps_accepts);
3586 :
3587 0 : tcp_mss(tp, sc->sc_peermaxseg); /* sets t_maxseg */
3588 0 : if (sc->sc_peermaxseg)
3589 0 : tcp_mss_update(tp);
3590 : /* Reset initial window to 1 segment for retransmit */
3591 0 : if (sc->sc_rxtshift > 0)
3592 0 : tp->snd_cwnd = tp->t_maxseg;
3593 0 : tp->snd_wl1 = sc->sc_irs;
3594 0 : tp->rcv_up = sc->sc_irs + 1;
3595 :
3596 : /*
3597 : * This is what whould have happened in tcp_output() when
3598 : * the SYN,ACK was sent.
3599 : */
3600 0 : tp->snd_up = tp->snd_una;
3601 0 : tp->snd_max = tp->snd_nxt = tp->iss+1;
3602 0 : TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3603 0 : if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3604 0 : tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3605 0 : tp->last_ack_sent = tp->rcv_nxt;
3606 :
3607 0 : tcpstat_inc(tcps_sc_completed);
3608 0 : syn_cache_put(sc);
3609 0 : return (so);
3610 :
3611 : resetandabort:
3612 0 : tcp_respond(NULL, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack, TH_RST,
3613 0 : m->m_pkthdr.ph_rtableid);
3614 : abort:
3615 0 : m_freem(m);
3616 0 : if (so != NULL)
3617 0 : (void) soabort(so);
3618 0 : syn_cache_put(sc);
3619 0 : tcpstat_inc(tcps_sc_aborted);
3620 0 : return ((struct socket *)(-1));
3621 0 : }
3622 :
3623 : /*
3624 : * This function is called when we get a RST for a
3625 : * non-existent connection, so that we can see if the
3626 : * connection is in the syn cache. If it is, zap it.
3627 : */
3628 :
3629 : void
3630 0 : syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3631 : u_int rtableid)
3632 : {
3633 : struct syn_cache *sc;
3634 0 : struct syn_cache_head *scp;
3635 :
3636 0 : NET_ASSERT_LOCKED();
3637 :
3638 0 : if ((sc = syn_cache_lookup(src, dst, &scp, rtableid)) == NULL)
3639 0 : return;
3640 0 : if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3641 0 : SEQ_GT(th->th_seq, sc->sc_irs + 1))
3642 0 : return;
3643 0 : syn_cache_rm(sc);
3644 0 : tcpstat_inc(tcps_sc_reset);
3645 0 : syn_cache_put(sc);
3646 0 : }
3647 :
3648 : void
3649 0 : syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3650 : u_int rtableid)
3651 : {
3652 : struct syn_cache *sc;
3653 0 : struct syn_cache_head *scp;
3654 :
3655 0 : NET_ASSERT_LOCKED();
3656 :
3657 0 : if ((sc = syn_cache_lookup(src, dst, &scp, rtableid)) == NULL)
3658 0 : return;
3659 : /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3660 0 : if (ntohl (th->th_seq) != sc->sc_iss) {
3661 0 : return;
3662 : }
3663 :
3664 : /*
3665 : * If we've retransmitted 3 times and this is our second error,
3666 : * we remove the entry. Otherwise, we allow it to continue on.
3667 : * This prevents us from incorrectly nuking an entry during a
3668 : * spurious network outage.
3669 : *
3670 : * See tcp_notify().
3671 : */
3672 0 : if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3673 0 : sc->sc_flags |= SCF_UNREACH;
3674 0 : return;
3675 : }
3676 :
3677 0 : syn_cache_rm(sc);
3678 0 : tcpstat_inc(tcps_sc_unreach);
3679 0 : syn_cache_put(sc);
3680 0 : }
3681 :
3682 : /*
3683 : * Given a LISTEN socket and an inbound SYN request, add
3684 : * this to the syn cache, and send back a segment:
3685 : * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3686 : * to the source.
3687 : *
3688 : * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3689 : * Doing so would require that we hold onto the data and deliver it
3690 : * to the application. However, if we are the target of a SYN-flood
3691 : * DoS attack, an attacker could send data which would eventually
3692 : * consume all available buffer space if it were ACKed. By not ACKing
3693 : * the data, we avoid this DoS scenario.
3694 : */
3695 :
3696 : int
3697 0 : syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3698 : u_int iphlen, struct socket *so, struct mbuf *m, u_char *optp, int optlen,
3699 : struct tcp_opt_info *oi, tcp_seq *issp)
3700 : {
3701 0 : struct tcpcb tb, *tp;
3702 : long win;
3703 : struct syn_cache *sc;
3704 0 : struct syn_cache_head *scp;
3705 : struct mbuf *ipopts;
3706 :
3707 0 : tp = sototcpcb(so);
3708 :
3709 : /*
3710 : * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3711 : *
3712 : * Note this check is performed in tcp_input() very early on.
3713 : */
3714 :
3715 : /*
3716 : * Initialize some local state.
3717 : */
3718 0 : win = sbspace(so, &so->so_rcv);
3719 0 : if (win > TCP_MAXWIN)
3720 : win = TCP_MAXWIN;
3721 :
3722 0 : bzero(&tb, sizeof(tb));
3723 : #ifdef TCP_SIGNATURE
3724 0 : if (optp || (tp->t_flags & TF_SIGNATURE)) {
3725 : #else
3726 : if (optp) {
3727 : #endif
3728 0 : tb.pf = tp->pf;
3729 0 : tb.sack_enable = tp->sack_enable;
3730 0 : tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3731 : #ifdef TCP_SIGNATURE
3732 0 : if (tp->t_flags & TF_SIGNATURE)
3733 0 : tb.t_flags |= TF_SIGNATURE;
3734 : #endif
3735 0 : tb.t_state = TCPS_LISTEN;
3736 0 : if (tcp_dooptions(&tb, optp, optlen, th, m, iphlen, oi,
3737 0 : sotoinpcb(so)->inp_rtableid))
3738 0 : return (-1);
3739 : }
3740 :
3741 0 : switch (src->sa_family) {
3742 : case AF_INET:
3743 : /*
3744 : * Remember the IP options, if any.
3745 : */
3746 0 : ipopts = ip_srcroute(m);
3747 0 : break;
3748 : default:
3749 : ipopts = NULL;
3750 0 : }
3751 :
3752 : /*
3753 : * See if we already have an entry for this connection.
3754 : * If we do, resend the SYN,ACK. We do not count this
3755 : * as a retransmission (XXX though maybe we should).
3756 : */
3757 0 : sc = syn_cache_lookup(src, dst, &scp, sotoinpcb(so)->inp_rtableid);
3758 0 : if (sc != NULL) {
3759 0 : tcpstat_inc(tcps_sc_dupesyn);
3760 0 : if (ipopts) {
3761 : /*
3762 : * If we were remembering a previous source route,
3763 : * forget it and use the new one we've been given.
3764 : */
3765 0 : m_free(sc->sc_ipopts);
3766 0 : sc->sc_ipopts = ipopts;
3767 0 : }
3768 0 : sc->sc_timestamp = tb.ts_recent;
3769 0 : if (syn_cache_respond(sc, m) == 0) {
3770 0 : tcpstat_inc(tcps_sndacks);
3771 0 : tcpstat_inc(tcps_sndtotal);
3772 0 : }
3773 0 : return (0);
3774 : }
3775 :
3776 0 : sc = pool_get(&syn_cache_pool, PR_NOWAIT|PR_ZERO);
3777 0 : if (sc == NULL) {
3778 0 : m_free(ipopts);
3779 0 : return (-1);
3780 : }
3781 :
3782 : /*
3783 : * Fill in the cache, and put the necessary IP and TCP
3784 : * options into the reply.
3785 : */
3786 0 : memcpy(&sc->sc_src, src, src->sa_len);
3787 0 : memcpy(&sc->sc_dst, dst, dst->sa_len);
3788 0 : sc->sc_rtableid = sotoinpcb(so)->inp_rtableid;
3789 0 : sc->sc_flags = 0;
3790 0 : sc->sc_ipopts = ipopts;
3791 0 : sc->sc_irs = th->th_seq;
3792 :
3793 0 : sc->sc_iss = issp ? *issp : arc4random();
3794 0 : sc->sc_peermaxseg = oi->maxseg;
3795 0 : sc->sc_ourmaxseg = tcp_mss_adv(m, sc->sc_src.sa.sa_family);
3796 0 : sc->sc_win = win;
3797 0 : sc->sc_timestamp = tb.ts_recent;
3798 0 : if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3799 : (TF_REQ_TSTMP|TF_RCVD_TSTMP)) {
3800 0 : sc->sc_flags |= SCF_TIMESTAMP;
3801 0 : sc->sc_modulate = arc4random();
3802 0 : }
3803 0 : if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3804 : (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3805 0 : sc->sc_requested_s_scale = tb.requested_s_scale;
3806 0 : sc->sc_request_r_scale = 0;
3807 : /*
3808 : * Pick the smallest possible scaling factor that
3809 : * will still allow us to scale up to sb_max.
3810 : *
3811 : * We do this because there are broken firewalls that
3812 : * will corrupt the window scale option, leading to
3813 : * the other endpoint believing that our advertised
3814 : * window is unscaled. At scale factors larger than
3815 : * 5 the unscaled window will drop below 1500 bytes,
3816 : * leading to serious problems when traversing these
3817 : * broken firewalls.
3818 : *
3819 : * With the default sbmax of 256K, a scale factor
3820 : * of 3 will be chosen by this algorithm. Those who
3821 : * choose a larger sbmax should watch out
3822 : * for the compatiblity problems mentioned above.
3823 : *
3824 : * RFC1323: The Window field in a SYN (i.e., a <SYN>
3825 : * or <SYN,ACK>) segment itself is never scaled.
3826 : */
3827 0 : while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3828 0 : (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
3829 0 : sc->sc_request_r_scale++;
3830 : } else {
3831 0 : sc->sc_requested_s_scale = 15;
3832 0 : sc->sc_request_r_scale = 15;
3833 : }
3834 : #ifdef TCP_ECN
3835 : /*
3836 : * if both ECE and CWR flag bits are set, peer is ECN capable.
3837 : */
3838 0 : if (tcp_do_ecn &&
3839 0 : (th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR))
3840 0 : sc->sc_flags |= SCF_ECN_PERMIT;
3841 : #endif
3842 : /*
3843 : * Set SCF_SACK_PERMIT if peer did send a SACK_PERMITTED option
3844 : * (i.e., if tcp_dooptions() did set TF_SACK_PERMIT).
3845 : */
3846 0 : if (tb.sack_enable && (tb.t_flags & TF_SACK_PERMIT))
3847 0 : sc->sc_flags |= SCF_SACK_PERMIT;
3848 : #ifdef TCP_SIGNATURE
3849 0 : if (tb.t_flags & TF_SIGNATURE)
3850 0 : sc->sc_flags |= SCF_SIGNATURE;
3851 : #endif
3852 0 : sc->sc_tp = tp;
3853 0 : if (syn_cache_respond(sc, m) == 0) {
3854 0 : syn_cache_insert(sc, tp);
3855 0 : tcpstat_inc(tcps_sndacks);
3856 0 : tcpstat_inc(tcps_sndtotal);
3857 0 : } else {
3858 0 : syn_cache_put(sc);
3859 0 : tcpstat_inc(tcps_sc_dropped);
3860 : }
3861 :
3862 0 : return (0);
3863 0 : }
3864 :
3865 : int
3866 0 : syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
3867 : {
3868 : u_int8_t *optp;
3869 : int optlen, error;
3870 : u_int16_t tlen;
3871 : struct ip *ip = NULL;
3872 : #ifdef INET6
3873 : struct ip6_hdr *ip6 = NULL;
3874 : #endif
3875 : struct tcphdr *th;
3876 : u_int hlen;
3877 : struct inpcb *inp;
3878 :
3879 0 : switch (sc->sc_src.sa.sa_family) {
3880 : case AF_INET:
3881 : hlen = sizeof(struct ip);
3882 0 : break;
3883 : #ifdef INET6
3884 : case AF_INET6:
3885 : hlen = sizeof(struct ip6_hdr);
3886 0 : break;
3887 : #endif
3888 : default:
3889 0 : m_freem(m);
3890 0 : return (EAFNOSUPPORT);
3891 : }
3892 :
3893 : /* Compute the size of the TCP options. */
3894 0 : optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3895 0 : ((sc->sc_flags & SCF_SACK_PERMIT) ? 4 : 0) +
3896 : #ifdef TCP_SIGNATURE
3897 0 : ((sc->sc_flags & SCF_SIGNATURE) ? TCPOLEN_SIGLEN : 0) +
3898 : #endif
3899 0 : ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3900 :
3901 0 : tlen = hlen + sizeof(struct tcphdr) + optlen;
3902 :
3903 : /*
3904 : * Create the IP+TCP header from scratch.
3905 : */
3906 0 : m_freem(m);
3907 : #ifdef DIAGNOSTIC
3908 0 : if (max_linkhdr + tlen > MCLBYTES)
3909 0 : return (ENOBUFS);
3910 : #endif
3911 0 : MGETHDR(m, M_DONTWAIT, MT_DATA);
3912 0 : if (m && max_linkhdr + tlen > MHLEN) {
3913 0 : MCLGET(m, M_DONTWAIT);
3914 0 : if ((m->m_flags & M_EXT) == 0) {
3915 0 : m_freem(m);
3916 : m = NULL;
3917 0 : }
3918 : }
3919 0 : if (m == NULL)
3920 0 : return (ENOBUFS);
3921 :
3922 : /* Fixup the mbuf. */
3923 0 : m->m_data += max_linkhdr;
3924 0 : m->m_len = m->m_pkthdr.len = tlen;
3925 0 : m->m_pkthdr.ph_ifidx = 0;
3926 0 : m->m_pkthdr.ph_rtableid = sc->sc_rtableid;
3927 0 : memset(mtod(m, u_char *), 0, tlen);
3928 :
3929 0 : switch (sc->sc_src.sa.sa_family) {
3930 : case AF_INET:
3931 0 : ip = mtod(m, struct ip *);
3932 0 : ip->ip_dst = sc->sc_src.sin.sin_addr;
3933 0 : ip->ip_src = sc->sc_dst.sin.sin_addr;
3934 0 : ip->ip_p = IPPROTO_TCP;
3935 0 : th = (struct tcphdr *)(ip + 1);
3936 0 : th->th_dport = sc->sc_src.sin.sin_port;
3937 0 : th->th_sport = sc->sc_dst.sin.sin_port;
3938 0 : break;
3939 : #ifdef INET6
3940 : case AF_INET6:
3941 0 : ip6 = mtod(m, struct ip6_hdr *);
3942 0 : ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3943 0 : ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3944 0 : ip6->ip6_nxt = IPPROTO_TCP;
3945 : /* ip6_plen will be updated in ip6_output() */
3946 0 : th = (struct tcphdr *)(ip6 + 1);
3947 0 : th->th_dport = sc->sc_src.sin6.sin6_port;
3948 0 : th->th_sport = sc->sc_dst.sin6.sin6_port;
3949 0 : break;
3950 : #endif
3951 : default:
3952 0 : unhandled_af(sc->sc_src.sa.sa_family);
3953 : }
3954 :
3955 0 : th->th_seq = htonl(sc->sc_iss);
3956 0 : th->th_ack = htonl(sc->sc_irs + 1);
3957 0 : th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3958 0 : th->th_flags = TH_SYN|TH_ACK;
3959 : #ifdef TCP_ECN
3960 : /* Set ECE for SYN-ACK if peer supports ECN. */
3961 0 : if (tcp_do_ecn && (sc->sc_flags & SCF_ECN_PERMIT))
3962 0 : th->th_flags |= TH_ECE;
3963 : #endif
3964 0 : th->th_win = htons(sc->sc_win);
3965 : /* th_sum already 0 */
3966 : /* th_urp already 0 */
3967 :
3968 : /* Tack on the TCP options. */
3969 0 : optp = (u_int8_t *)(th + 1);
3970 0 : *optp++ = TCPOPT_MAXSEG;
3971 0 : *optp++ = 4;
3972 0 : *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3973 0 : *optp++ = sc->sc_ourmaxseg & 0xff;
3974 :
3975 : /* Include SACK_PERMIT_HDR option if peer has already done so. */
3976 0 : if (sc->sc_flags & SCF_SACK_PERMIT) {
3977 0 : *((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMIT_HDR);
3978 0 : optp += 4;
3979 0 : }
3980 :
3981 0 : if (sc->sc_request_r_scale != 15) {
3982 0 : *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3983 : TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3984 : sc->sc_request_r_scale);
3985 0 : optp += 4;
3986 0 : }
3987 :
3988 0 : if (sc->sc_flags & SCF_TIMESTAMP) {
3989 0 : u_int32_t *lp = (u_int32_t *)(optp);
3990 : /* Form timestamp option as shown in appendix A of RFC 1323. */
3991 0 : *lp++ = htonl(TCPOPT_TSTAMP_HDR);
3992 0 : *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3993 0 : *lp = htonl(sc->sc_timestamp);
3994 0 : optp += TCPOLEN_TSTAMP_APPA;
3995 0 : }
3996 :
3997 : #ifdef TCP_SIGNATURE
3998 0 : if (sc->sc_flags & SCF_SIGNATURE) {
3999 0 : union sockaddr_union src, dst;
4000 : struct tdb *tdb;
4001 :
4002 0 : bzero(&src, sizeof(union sockaddr_union));
4003 0 : bzero(&dst, sizeof(union sockaddr_union));
4004 0 : src.sa.sa_len = sc->sc_src.sa.sa_len;
4005 0 : src.sa.sa_family = sc->sc_src.sa.sa_family;
4006 0 : dst.sa.sa_len = sc->sc_dst.sa.sa_len;
4007 0 : dst.sa.sa_family = sc->sc_dst.sa.sa_family;
4008 :
4009 0 : switch (sc->sc_src.sa.sa_family) {
4010 : case 0: /*default to PF_INET*/
4011 : case AF_INET:
4012 0 : src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
4013 0 : dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
4014 0 : break;
4015 : #ifdef INET6
4016 : case AF_INET6:
4017 0 : src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
4018 0 : dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
4019 0 : break;
4020 : #endif /* INET6 */
4021 : }
4022 :
4023 0 : tdb = gettdbbysrcdst(rtable_l2(sc->sc_rtableid),
4024 : 0, &src, &dst, IPPROTO_TCP);
4025 0 : if (tdb == NULL) {
4026 0 : m_freem(m);
4027 0 : return (EPERM);
4028 : }
4029 :
4030 : /* Send signature option */
4031 0 : *(optp++) = TCPOPT_SIGNATURE;
4032 0 : *(optp++) = TCPOLEN_SIGNATURE;
4033 :
4034 0 : if (tcp_signature(tdb, sc->sc_src.sa.sa_family, m, th,
4035 0 : hlen, 0, optp) < 0) {
4036 0 : m_freem(m);
4037 0 : return (EINVAL);
4038 : }
4039 0 : optp += 16;
4040 :
4041 : /* Pad options list to the next 32 bit boundary and
4042 : * terminate it.
4043 : */
4044 0 : *optp++ = TCPOPT_NOP;
4045 0 : *optp++ = TCPOPT_EOL;
4046 0 : }
4047 : #endif /* TCP_SIGNATURE */
4048 :
4049 : /* Compute the packet's checksum. */
4050 0 : switch (sc->sc_src.sa.sa_family) {
4051 : case AF_INET:
4052 0 : ip->ip_len = htons(tlen - hlen);
4053 0 : th->th_sum = 0;
4054 0 : th->th_sum = in_cksum(m, tlen);
4055 0 : break;
4056 : #ifdef INET6
4057 : case AF_INET6:
4058 0 : ip6->ip6_plen = htons(tlen - hlen);
4059 0 : th->th_sum = 0;
4060 0 : th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4061 0 : break;
4062 : #endif
4063 : }
4064 :
4065 : /* use IPsec policy and ttl from listening socket, on SYN ACK */
4066 0 : inp = sc->sc_tp ? sc->sc_tp->t_inpcb : NULL;
4067 :
4068 : /*
4069 : * Fill in some straggling IP bits. Note the stack expects
4070 : * ip_len to be in host order, for convenience.
4071 : */
4072 0 : switch (sc->sc_src.sa.sa_family) {
4073 : case AF_INET:
4074 0 : ip->ip_len = htons(tlen);
4075 0 : ip->ip_ttl = inp ? inp->inp_ip.ip_ttl : ip_defttl;
4076 0 : if (inp != NULL)
4077 0 : ip->ip_tos = inp->inp_ip.ip_tos;
4078 : break;
4079 : #ifdef INET6
4080 : case AF_INET6:
4081 0 : ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4082 0 : ip6->ip6_vfc |= IPV6_VERSION;
4083 0 : ip6->ip6_plen = htons(tlen - hlen);
4084 : /* ip6_hlim will be initialized afterwards */
4085 : /* leave flowlabel = 0, it is legal and require no state mgmt */
4086 0 : break;
4087 : #endif
4088 : }
4089 :
4090 0 : switch (sc->sc_src.sa.sa_family) {
4091 : case AF_INET:
4092 0 : error = ip_output(m, sc->sc_ipopts, &sc->sc_route4,
4093 0 : (ip_mtudisc ? IP_MTUDISC : 0), NULL, inp, 0);
4094 0 : break;
4095 : #ifdef INET6
4096 : case AF_INET6:
4097 0 : ip6->ip6_hlim = in6_selecthlim(inp);
4098 :
4099 0 : error = ip6_output(m, NULL /*XXX*/, &sc->sc_route6, 0,
4100 : NULL, NULL);
4101 0 : break;
4102 : #endif
4103 : default:
4104 : error = EAFNOSUPPORT;
4105 0 : break;
4106 : }
4107 0 : return (error);
4108 0 : }
|