Line data Source code
1 : /* $OpenBSD: ip6_id.c,v 1.13 2017/09/08 05:36:53 deraadt Exp $ */
2 : /* $NetBSD: ip6_id.c,v 1.7 2003/09/13 21:32:59 itojun Exp $ */
3 : /* $KAME: ip6_id.c,v 1.8 2003/09/06 13:41:06 itojun Exp $ */
4 :
5 : /*
6 : * Copyright (C) 2003 WIDE Project.
7 : * All rights reserved.
8 : *
9 : * Redistribution and use in source and binary forms, with or without
10 : * modification, are permitted provided that the following conditions
11 : * are met:
12 : * 1. Redistributions of source code must retain the above copyright
13 : * notice, this list of conditions and the following disclaimer.
14 : * 2. Redistributions in binary form must reproduce the above copyright
15 : * notice, this list of conditions and the following disclaimer in the
16 : * documentation and/or other materials provided with the distribution.
17 : * 3. Neither the name of the project nor the names of its contributors
18 : * may be used to endorse or promote products derived from this software
19 : * without specific prior written permission.
20 : *
21 : * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 : * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 : * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 : * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 : * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 : * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 : * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 : * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 : * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 : * SUCH DAMAGE.
32 : */
33 :
34 : /*
35 : * Copyright 1998 Niels Provos <provos@citi.umich.edu>
36 : * All rights reserved.
37 : *
38 : * Theo de Raadt <deraadt@openbsd.org> came up with the idea of using
39 : * such a mathematical system to generate more random (yet non-repeating)
40 : * ids to solve the resolver/named problem. But Niels designed the
41 : * actual system based on the constraints.
42 : *
43 : * Redistribution and use in source and binary forms, with or without
44 : * modification, are permitted provided that the following conditions
45 : * are met:
46 : * 1. Redistributions of source code must retain the above copyright
47 : * notice, this list of conditions and the following disclaimer.
48 : * 2. Redistributions in binary form must reproduce the above copyright
49 : * notice, this list of conditions and the following disclaimer in the
50 : * documentation and/or other materials provided with the distribution.
51 : *
52 : * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53 : * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54 : * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55 : * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
56 : * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
57 : * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 : * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 : * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 : * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
61 : * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 : */
63 :
64 : /*
65 : * seed = random (bits - 1) bit
66 : * n = prime, g0 = generator to n,
67 : * j = random so that gcd(j,n-1) == 1
68 : * g = g0^j mod n will be a generator again.
69 : *
70 : * X[0] = random seed.
71 : * X[n] = a*X[n-1]+b mod m is a Linear Congruential Generator
72 : * with a = 7^(even random) mod m,
73 : * b = random with gcd(b,m) == 1
74 : * m = constant and a maximal period of m-1.
75 : *
76 : * The transaction id is determined by:
77 : * id[n] = seed xor (g^X[n] mod n)
78 : *
79 : * Effectivly the id is restricted to the lower (bits - 1) bits, thus
80 : * yielding two different cycles by toggling the msb on and off.
81 : * This avoids reuse issues caused by reseeding.
82 : */
83 :
84 : #include <sys/param.h>
85 : #include <sys/kernel.h>
86 : #include <sys/socket.h>
87 : #include <sys/systm.h>
88 :
89 : #include <netinet/in.h>
90 : #include <netinet/ip6.h>
91 : #include <netinet6/ip6_var.h>
92 :
93 : struct randomtab {
94 : const int ru_bits; /* resulting bits */
95 : const long ru_out; /* Time after wich will be reseeded */
96 : const u_int32_t ru_max; /* Uniq cycle, avoid blackjack prediction */
97 : const u_int32_t ru_gen; /* Starting generator */
98 : const u_int32_t ru_n; /* ru_n: prime, ru_n - 1: product of pfacts[] */
99 : const u_int32_t ru_agen; /* determine ru_a as ru_agen^(2*rand) */
100 : const u_int32_t ru_m; /* ru_m = 2^x*3^y */
101 : const u_int32_t pfacts[4]; /* factors of ru_n */
102 :
103 : u_int32_t ru_counter;
104 : u_int32_t ru_msb;
105 :
106 : u_int32_t ru_x;
107 : u_int32_t ru_seed, ru_seed2;
108 : u_int32_t ru_a, ru_b;
109 : u_int32_t ru_g;
110 : long ru_reseed;
111 : };
112 :
113 : static struct randomtab randomtab_20 = {
114 : 20, /* resulting bits */
115 : 180, /* Time after wich will be reseeded */
116 : 200000, /* Uniq cycle, avoid blackjack prediction */
117 : 2, /* Starting generator */
118 : 524269, /* RU_N-1 = 2^2*3^2*14563 */
119 : 7, /* determine ru_a as RU_AGEN^(2*rand) */
120 : 279936, /* RU_M = 2^7*3^7 - don't change */
121 : { 2, 3, 14563, 0 }, /* factors of ru_n */
122 : };
123 :
124 : u_int32_t ip6id_pmod(u_int32_t, u_int32_t, u_int32_t);
125 : void ip6id_initid(struct randomtab *);
126 : u_int32_t ip6id_randomid(struct randomtab *);
127 :
128 : /*
129 : * Do a fast modular exponation, returned value will be in the range
130 : * of 0 - (mod-1)
131 : */
132 :
133 : u_int32_t
134 0 : ip6id_pmod(u_int32_t gen, u_int32_t expo, u_int32_t mod)
135 : {
136 : u_int64_t s, t, u;
137 :
138 : s = 1;
139 0 : t = gen;
140 0 : u = expo;
141 :
142 0 : while (u) {
143 0 : if (u & 1)
144 0 : s = (s * t) % mod;
145 0 : u >>= 1;
146 0 : t = (t * t) % mod;
147 : }
148 0 : return (s);
149 : }
150 :
151 : /*
152 : * Initializes the seed and chooses a suitable generator. Also toggles
153 : * the msb flag. The msb flag is used to generate two distinct
154 : * cycles of random numbers and thus avoiding reuse of ids.
155 : *
156 : * This function is called from id_randomid() when needed, an
157 : * application does not have to worry about it.
158 : */
159 : void
160 0 : ip6id_initid(struct randomtab *p)
161 : {
162 : u_int32_t j, i;
163 : int noprime = 1;
164 :
165 0 : p->ru_x = arc4random_uniform(p->ru_m);
166 :
167 : /* (bits - 1) bits of random seed */
168 0 : p->ru_seed = arc4random() & (~0U >> (32 - p->ru_bits + 1));
169 0 : p->ru_seed2 = arc4random() & (~0U >> (32 - p->ru_bits + 1));
170 :
171 : /* Determine the LCG we use */
172 0 : p->ru_b = (arc4random() & (~0U >> (32 - p->ru_bits))) | 1;
173 0 : p->ru_a = ip6id_pmod(p->ru_agen,
174 0 : (arc4random() & (~0U >> (32 - p->ru_bits))) & (~1U), p->ru_m);
175 0 : while (p->ru_b % 3 == 0)
176 0 : p->ru_b += 2;
177 :
178 0 : j = arc4random_uniform(p->ru_n);
179 :
180 : /*
181 : * Do a fast gcd(j, RU_N - 1), so we can find a j with
182 : * gcd(j, RU_N - 1) == 1, giving a new generator for
183 : * RU_GEN^j mod RU_N
184 : */
185 0 : while (noprime) {
186 0 : for (i = 0; p->pfacts[i] > 0; i++)
187 0 : if (j % p->pfacts[i] == 0)
188 : break;
189 :
190 0 : if (p->pfacts[i] == 0)
191 0 : noprime = 0;
192 : else
193 0 : j = (j + 1) % p->ru_n;
194 : }
195 :
196 0 : p->ru_g = ip6id_pmod(p->ru_gen, j, p->ru_n);
197 0 : p->ru_counter = 0;
198 :
199 0 : p->ru_reseed = time_uptime + p->ru_out;
200 0 : p->ru_msb = p->ru_msb ? 0 : (1U << (p->ru_bits - 1));
201 0 : }
202 :
203 : u_int32_t
204 0 : ip6id_randomid(struct randomtab *p)
205 : {
206 : int i, n;
207 :
208 0 : if (p->ru_counter >= p->ru_max || time_uptime > p->ru_reseed)
209 0 : ip6id_initid(p);
210 :
211 : /* Skip a random number of ids */
212 0 : n = arc4random() & 0x3;
213 0 : if (p->ru_counter + n >= p->ru_max)
214 0 : ip6id_initid(p);
215 :
216 0 : for (i = 0; i <= n; i++) {
217 : /* Linear Congruential Generator */
218 0 : p->ru_x = (u_int32_t)((u_int64_t)p->ru_a * p->ru_x + p->ru_b) % p->ru_m;
219 : }
220 :
221 0 : p->ru_counter += i;
222 :
223 0 : return (p->ru_seed ^ ip6id_pmod(p->ru_g, p->ru_seed2 + p->ru_x, p->ru_n)) |
224 0 : p->ru_msb;
225 : }
226 :
227 : u_int32_t
228 0 : ip6_randomflowlabel(void)
229 : {
230 0 : return ip6id_randomid(&randomtab_20) & 0xfffff;
231 : }
232 :
|