LCOV - code coverage report
Current view: top level - ufs/ffs - ffs_alloc.c (source / functions) Hit Total Coverage
Test: 6.4 Lines: 0 691 0.0 %
Date: 2018-10-19 03:25:38 Functions: 0 17 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*      $OpenBSD: ffs_alloc.c,v 1.108 2016/05/23 20:47:49 tb Exp $      */
       2             : /*      $NetBSD: ffs_alloc.c,v 1.11 1996/05/11 18:27:09 mycroft Exp $   */
       3             : 
       4             : /*
       5             :  * Copyright (c) 2002 Networks Associates Technology, Inc.
       6             :  * All rights reserved.
       7             :  *
       8             :  * This software was developed for the FreeBSD Project by Marshall
       9             :  * Kirk McKusick and Network Associates Laboratories, the Security
      10             :  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
      11             :  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
      12             :  * research program.
      13             :  *
      14             :  * Copyright (c) 1982, 1986, 1989, 1993
      15             :  *      The Regents of the University of California.  All rights reserved.
      16             :  *
      17             :  * Redistribution and use in source and binary forms, with or without
      18             :  * modification, are permitted provided that the following conditions
      19             :  * are met:
      20             :  * 1. Redistributions of source code must retain the above copyright
      21             :  *    notice, this list of conditions and the following disclaimer.
      22             :  * 2. Redistributions in binary form must reproduce the above copyright
      23             :  *    notice, this list of conditions and the following disclaimer in the
      24             :  *    documentation and/or other materials provided with the distribution.
      25             :  * 3. Neither the name of the University nor the names of its contributors
      26             :  *    may be used to endorse or promote products derived from this software
      27             :  *    without specific prior written permission.
      28             :  *
      29             :  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
      30             :  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      31             :  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
      32             :  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
      33             :  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
      34             :  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
      35             :  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
      36             :  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
      37             :  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
      38             :  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
      39             :  * SUCH DAMAGE.
      40             :  *
      41             :  *      @(#)ffs_alloc.c 8.11 (Berkeley) 10/27/94
      42             :  */
      43             : 
      44             : #include <sys/param.h>
      45             : #include <sys/systm.h>
      46             : #include <sys/buf.h>
      47             : #include <sys/vnode.h>
      48             : #include <sys/mount.h>
      49             : #include <sys/syslog.h>
      50             : #include <sys/stdint.h>
      51             : #include <sys/time.h>
      52             : 
      53             : #include <ufs/ufs/quota.h>
      54             : #include <ufs/ufs/inode.h>
      55             : #include <ufs/ufs/ufsmount.h>
      56             : #include <ufs/ufs/ufs_extern.h>
      57             : 
      58             : #include <ufs/ffs/fs.h>
      59             : #include <ufs/ffs/ffs_extern.h>
      60             : 
      61             : #define ffs_fserr(fs, uid, cp) do {                             \
      62             :         log(LOG_ERR, "uid %u on %s: %s\n", (uid),             \
      63             :             (fs)->fs_fsmnt, (cp));                           \
      64             : } while (0)
      65             : 
      66             : daddr_t         ffs_alloccg(struct inode *, int, daddr_t, int);
      67             : struct buf *    ffs_cgread(struct fs *, struct inode *, int);
      68             : daddr_t         ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
      69             : ufsino_t        ffs_dirpref(struct inode *);
      70             : daddr_t         ffs_fragextend(struct inode *, int, daddr_t, int, int);
      71             : daddr_t         ffs_hashalloc(struct inode *, int, daddr_t, int,
      72             :                     daddr_t (*)(struct inode *, int, daddr_t, int));
      73             : daddr_t         ffs_nodealloccg(struct inode *, int, daddr_t, int);
      74             : daddr_t         ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
      75             : 
      76             : static const struct timeval     fserr_interval = { 2, 0 };
      77             : 
      78             : 
      79             : /*
      80             :  * Allocate a block in the file system.
      81             :  *
      82             :  * The size of the requested block is given, which must be some
      83             :  * multiple of fs_fsize and <= fs_bsize.
      84             :  * A preference may be optionally specified. If a preference is given
      85             :  * the following hierarchy is used to allocate a block:
      86             :  *   1) allocate the requested block.
      87             :  *   2) allocate a rotationally optimal block in the same cylinder.
      88             :  *   3) allocate a block in the same cylinder group.
      89             :  *   4) quadratically rehash into other cylinder groups, until an
      90             :  *      available block is located.
      91             :  * If no block preference is given the following hierarchy is used
      92             :  * to allocate a block:
      93             :  *   1) allocate a block in the cylinder group that contains the
      94             :  *      inode for the file.
      95             :  *   2) quadratically rehash into other cylinder groups, until an
      96             :  *      available block is located.
      97             :  */
      98             : int
      99           0 : ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
     100             :     struct ucred *cred, daddr_t *bnp)
     101             : {
     102             :         static struct timeval fsfull_last;
     103             :         struct fs *fs;
     104             :         daddr_t bno;
     105             :         int cg;
     106             :         int error;
     107             : 
     108           0 :         *bnp = 0;
     109           0 :         fs = ip->i_fs;
     110             : #ifdef DIAGNOSTIC
     111           0 :         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
     112           0 :                 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
     113           0 :                     ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
     114           0 :                 panic("ffs_alloc: bad size");
     115             :         }
     116           0 :         if (cred == NOCRED)
     117           0 :                 panic("ffs_alloc: missing credential");
     118             : #endif /* DIAGNOSTIC */
     119           0 :         if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
     120             :                 goto nospace;
     121           0 :         if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
     122             :                 goto nospace;
     123             : 
     124           0 :         if ((error = ufs_quota_alloc_blocks(ip, btodb(size), cred)) != 0)
     125           0 :                 return (error);
     126             : 
     127             :         /*
     128             :          * Start allocation in the preferred block's cylinder group or
     129             :          * the file's inode's cylinder group if no preferred block was
     130             :          * specified.
     131             :          */
     132           0 :         if (bpref >= fs->fs_size)
     133           0 :                 bpref = 0;
     134           0 :         if (bpref == 0)
     135           0 :                 cg = ino_to_cg(fs, ip->i_number);
     136             :         else
     137           0 :                 cg = dtog(fs, bpref);
     138             : 
     139             :         /* Try allocating a block. */
     140           0 :         bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
     141           0 :         if (bno > 0) {
     142             :                 /* allocation successful, update inode data */
     143           0 :                 DIP_ADD(ip, blocks, btodb(size));
     144           0 :                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
     145           0 :                 *bnp = bno;
     146           0 :                 return (0);
     147             :         }
     148             : 
     149             :         /* Restore user's disk quota because allocation failed. */
     150           0 :         (void) ufs_quota_free_blocks(ip, btodb(size), cred);
     151             : 
     152             : nospace:
     153           0 :         if (ratecheck(&fsfull_last, &fserr_interval)) {
     154           0 :                 ffs_fserr(fs, cred->cr_uid, "file system full");
     155           0 :                 uprintf("\n%s: write failed, file system is full\n",
     156             :                     fs->fs_fsmnt);
     157           0 :         }
     158           0 :         return (ENOSPC);
     159           0 : }
     160             : 
     161             : /*
     162             :  * Reallocate a fragment to a bigger size
     163             :  *
     164             :  * The number and size of the old block is given, and a preference
     165             :  * and new size is also specified. The allocator attempts to extend
     166             :  * the original block. Failing that, the regular block allocator is
     167             :  * invoked to get an appropriate block.
     168             :  */
     169             : int
     170           0 : ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
     171             :     int nsize, struct ucred *cred, struct buf **bpp, daddr_t *blknop)
     172             : {
     173             :         static struct timeval fsfull_last;
     174             :         struct fs *fs;
     175           0 :         struct buf *bp = NULL;
     176             :         daddr_t quota_updated = 0;
     177             :         int cg, request, error;
     178             :         daddr_t bprev, bno;
     179             : 
     180           0 :         if (bpp != NULL)
     181           0 :                 *bpp = NULL;
     182           0 :         fs = ip->i_fs;
     183             : #ifdef DIAGNOSTIC
     184           0 :         if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
     185           0 :             (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
     186           0 :                 printf(
     187             :                     "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
     188           0 :                     ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
     189           0 :                 panic("ffs_realloccg: bad size");
     190             :         }
     191           0 :         if (cred == NOCRED)
     192           0 :                 panic("ffs_realloccg: missing credential");
     193             : #endif /* DIAGNOSTIC */
     194           0 :         if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
     195             :                 goto nospace;
     196             : 
     197           0 :         bprev = DIP(ip, db[lbprev]);
     198             : 
     199           0 :         if (bprev == 0) {
     200           0 :                 printf("dev = 0x%x, bsize = %d, bprev = %lld, fs = %s\n",
     201           0 :                     ip->i_dev, fs->fs_bsize, (long long)bprev, fs->fs_fsmnt);
     202           0 :                 panic("ffs_realloccg: bad bprev");
     203             :         }
     204             : 
     205             :         /*
     206             :          * Allocate the extra space in the buffer.
     207             :          */
     208           0 :         if (bpp != NULL) {
     209           0 :                 if ((error = bread(ITOV(ip), lbprev, fs->fs_bsize, &bp)) != 0)
     210             :                         goto error;
     211           0 :                 buf_adjcnt(bp, osize);
     212           0 :         }
     213             : 
     214           0 :         if ((error = ufs_quota_alloc_blocks(ip, btodb(nsize - osize), cred))
     215           0 :             != 0)
     216             :                 goto error;
     217             : 
     218             :         quota_updated = btodb(nsize - osize);
     219             : 
     220             :         /*
     221             :          * Check for extension in the existing location.
     222             :          */
     223           0 :         cg = dtog(fs, bprev);
     224           0 :         if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
     225           0 :                 DIP_ADD(ip, blocks, btodb(nsize - osize));
     226           0 :                 ip->i_flag |= IN_CHANGE | IN_UPDATE;
     227           0 :                 if (bpp != NULL) {
     228           0 :                         if (bp->b_blkno != fsbtodb(fs, bno))
     229           0 :                                 panic("ffs_realloccg: bad blockno");
     230             : #ifdef DIAGNOSTIC
     231           0 :                         if (nsize > bp->b_bufsize)
     232           0 :                                 panic("ffs_realloccg: small buf");
     233             : #endif
     234           0 :                         buf_adjcnt(bp, nsize);
     235           0 :                         bp->b_flags |= B_DONE;
     236           0 :                         memset(bp->b_data + osize, 0, nsize - osize);
     237           0 :                         *bpp = bp;
     238           0 :                 }
     239           0 :                 if (blknop != NULL) {
     240           0 :                         *blknop = bno;
     241           0 :                 }
     242           0 :                 return (0);
     243             :         }
     244             :         /*
     245             :          * Allocate a new disk location.
     246             :          */
     247           0 :         if (bpref >= fs->fs_size)
     248           0 :                 bpref = 0;
     249           0 :         switch (fs->fs_optim) {
     250             :         case FS_OPTSPACE:
     251             :                 /*
     252             :                  * Allocate an exact sized fragment. Although this makes
     253             :                  * best use of space, we will waste time relocating it if
     254             :                  * the file continues to grow. If the fragmentation is
     255             :                  * less than half of the minimum free reserve, we choose
     256             :                  * to begin optimizing for time.
     257             :                  */
     258             :                 request = nsize;
     259           0 :                 if (fs->fs_minfree < 5 ||
     260           0 :                     fs->fs_cstotal.cs_nffree >
     261           0 :                     fs->fs_dsize * fs->fs_minfree / (2 * 100))
     262             :                         break;
     263           0 :                 fs->fs_optim = FS_OPTTIME;
     264           0 :                 break;
     265             :         case FS_OPTTIME:
     266             :                 /*
     267             :                  * At this point we have discovered a file that is trying to
     268             :                  * grow a small fragment to a larger fragment. To save time,
     269             :                  * we allocate a full sized block, then free the unused portion.
     270             :                  * If the file continues to grow, the `ffs_fragextend' call
     271             :                  * above will be able to grow it in place without further
     272             :                  * copying. If aberrant programs cause disk fragmentation to
     273             :                  * grow within 2% of the free reserve, we choose to begin
     274             :                  * optimizing for space.
     275             :                  */
     276           0 :                 request = fs->fs_bsize;
     277           0 :                 if (fs->fs_cstotal.cs_nffree <
     278           0 :                     fs->fs_dsize * (fs->fs_minfree - 2) / 100)
     279             :                         break;
     280           0 :                 fs->fs_optim = FS_OPTSPACE;
     281           0 :                 break;
     282             :         default:
     283           0 :                 printf("dev = 0x%x, optim = %d, fs = %s\n",
     284           0 :                     ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
     285           0 :                 panic("ffs_realloccg: bad optim");
     286             :                 /* NOTREACHED */
     287             :         }
     288           0 :         bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
     289           0 :         if (bno <= 0)
     290             :                 goto nospace;
     291             : 
     292           0 :         (void) uvm_vnp_uncache(ITOV(ip));
     293           0 :         if (!DOINGSOFTDEP(ITOV(ip)))
     294           0 :                 ffs_blkfree(ip, bprev, (long)osize);
     295           0 :         if (nsize < request)
     296           0 :                 ffs_blkfree(ip, bno + numfrags(fs, nsize),
     297           0 :                     (long)(request - nsize));
     298           0 :         DIP_ADD(ip, blocks, btodb(nsize - osize));
     299           0 :         ip->i_flag |= IN_CHANGE | IN_UPDATE;
     300           0 :         if (bpp != NULL) {
     301           0 :                 bp->b_blkno = fsbtodb(fs, bno);
     302             : #ifdef DIAGNOSTIC
     303           0 :                 if (nsize > bp->b_bufsize)
     304           0 :                         panic("ffs_realloccg: small buf 2");
     305             : #endif
     306           0 :                 buf_adjcnt(bp, nsize);
     307           0 :                 bp->b_flags |= B_DONE;
     308           0 :                 memset(bp->b_data + osize, 0, nsize - osize);
     309           0 :                 *bpp = bp;
     310           0 :         }
     311           0 :         if (blknop != NULL) {
     312           0 :                 *blknop = bno;
     313           0 :         }
     314           0 :         return (0);
     315             : 
     316             : nospace:
     317           0 :         if (ratecheck(&fsfull_last, &fserr_interval)) {
     318           0 :                 ffs_fserr(fs, cred->cr_uid, "file system full");
     319           0 :                 uprintf("\n%s: write failed, file system is full\n",
     320             :                     fs->fs_fsmnt);
     321           0 :         }
     322           0 :         error = ENOSPC;
     323             : 
     324             : error:
     325           0 :         if (bp != NULL) {
     326           0 :                 brelse(bp);
     327           0 :                 bp = NULL;
     328           0 :         }
     329             : 
     330             :         /*
     331             :          * Restore user's disk quota because allocation failed.
     332             :          */
     333           0 :         if (quota_updated != 0)
     334           0 :                 (void)ufs_quota_free_blocks(ip, quota_updated, cred);
     335             : 
     336           0 :         return error;
     337           0 : }
     338             : 
     339             : /*
     340             :  * Allocate an inode in the file system.
     341             :  *
     342             :  * If allocating a directory, use ffs_dirpref to select the inode.
     343             :  * If allocating in a directory, the following hierarchy is followed:
     344             :  *   1) allocate the preferred inode.
     345             :  *   2) allocate an inode in the same cylinder group.
     346             :  *   3) quadratically rehash into other cylinder groups, until an
     347             :  *      available inode is located.
     348             :  * If no inode preference is given the following hierarchy is used
     349             :  * to allocate an inode:
     350             :  *   1) allocate an inode in cylinder group 0.
     351             :  *   2) quadratically rehash into other cylinder groups, until an
     352             :  *      available inode is located.
     353             :  */
     354             : int
     355           0 : ffs_inode_alloc(struct inode *pip, mode_t mode, struct ucred *cred,
     356             :     struct vnode **vpp)
     357             : {
     358             :         static struct timeval fsnoinodes_last;
     359           0 :         struct vnode *pvp = ITOV(pip);
     360             :         struct fs *fs;
     361             :         struct inode *ip;
     362             :         ufsino_t ino, ipref;
     363             :         int cg, error;
     364             : 
     365           0 :         *vpp = NULL;
     366           0 :         fs = pip->i_fs;
     367           0 :         if (fs->fs_cstotal.cs_nifree == 0)
     368             :                 goto noinodes;
     369             : 
     370           0 :         if ((mode & IFMT) == IFDIR)
     371           0 :                 ipref = ffs_dirpref(pip);
     372             :         else
     373           0 :                 ipref = pip->i_number;
     374           0 :         if (ipref >= fs->fs_ncg * fs->fs_ipg)
     375           0 :                 ipref = 0;
     376           0 :         cg = ino_to_cg(fs, ipref);
     377             : 
     378             :         /*
     379             :          * Track number of dirs created one after another
     380             :          * in a same cg without intervening by files.
     381             :          */
     382           0 :         if ((mode & IFMT) == IFDIR) {
     383           0 :                 if (fs->fs_contigdirs[cg] < 255)
     384           0 :                         fs->fs_contigdirs[cg]++;
     385             :         } else {
     386           0 :                 if (fs->fs_contigdirs[cg] > 0)
     387           0 :                         fs->fs_contigdirs[cg]--;
     388             :         }
     389           0 :         ino = (ufsino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
     390           0 :         if (ino == 0)
     391             :                 goto noinodes;
     392           0 :         error = VFS_VGET(pvp->v_mount, ino, vpp);
     393           0 :         if (error) {
     394           0 :                 ffs_inode_free(pip, ino, mode);
     395           0 :                 return (error);
     396             :         }
     397             : 
     398           0 :         ip = VTOI(*vpp);
     399             : 
     400           0 :         if (DIP(ip, mode)) {
     401           0 :                 printf("mode = 0%o, inum = %u, fs = %s\n",
     402           0 :                     DIP(ip, mode), ip->i_number, fs->fs_fsmnt);
     403           0 :                 panic("ffs_valloc: dup alloc");
     404             :         }
     405             : 
     406           0 :         if (DIP(ip, blocks)) {
     407           0 :                 printf("free inode %s/%d had %lld blocks\n",
     408           0 :                     fs->fs_fsmnt, ino, (long long)DIP(ip, blocks));
     409           0 :                 DIP_ASSIGN(ip, blocks, 0);
     410             :         }
     411             : 
     412           0 :         DIP_ASSIGN(ip, flags, 0);
     413             : 
     414             :         /*
     415             :          * Set up a new generation number for this inode.
     416             :          * XXX - just increment for now, this is wrong! (millert)
     417             :          *       Need a way to preserve randomization.
     418             :          */
     419           0 :         if (DIP(ip, gen) != 0)
     420           0 :                 DIP_ADD(ip, gen, 1);
     421           0 :         if (DIP(ip, gen) == 0)
     422           0 :                 DIP_ASSIGN(ip, gen, arc4random() & INT_MAX);
     423             : 
     424           0 :         if (DIP(ip, gen) == 0 || DIP(ip, gen) == -1)
     425           0 :                 DIP_ASSIGN(ip, gen, 1); /* Shouldn't happen */
     426             : 
     427           0 :         return (0);
     428             : 
     429             : noinodes:
     430           0 :         if (ratecheck(&fsnoinodes_last, &fserr_interval)) {
     431           0 :                 ffs_fserr(fs, cred->cr_uid, "out of inodes");
     432           0 :                 uprintf("\n%s: create/symlink failed, no inodes free\n",
     433             :                     fs->fs_fsmnt);
     434           0 :         }
     435           0 :         return (ENOSPC);
     436           0 : }
     437             : 
     438             : /*
     439             :  * Find a cylinder group to place a directory.
     440             :  *
     441             :  * The policy implemented by this algorithm is to allocate a
     442             :  * directory inode in the same cylinder group as its parent
     443             :  * directory, but also to reserve space for its files inodes
     444             :  * and data. Restrict the number of directories which may be
     445             :  * allocated one after another in the same cylinder group
     446             :  * without intervening allocation of files.
     447             :  *
     448             :  * If we allocate a first level directory then force allocation
     449             :  * in another cylinder group.
     450             :  */
     451             : ufsino_t
     452           0 : ffs_dirpref(struct inode *pip)
     453             : {
     454             :         struct fs *fs;
     455             :         int     cg, prefcg, dirsize, cgsize;
     456             :         int     avgifree, avgbfree, avgndir, curdirsize;
     457             :         int     minifree, minbfree, maxndir;
     458             :         int     mincg, minndir;
     459             :         int     maxcontigdirs;
     460             : 
     461           0 :         fs = pip->i_fs;
     462             : 
     463           0 :         avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
     464           0 :         avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
     465           0 :         avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
     466             : 
     467             :         /*
     468             :          * Force allocation in another cg if creating a first level dir.
     469             :          */
     470           0 :         if (ITOV(pip)->v_flag & VROOT) {
     471           0 :                 prefcg = arc4random_uniform(fs->fs_ncg);
     472             :                 mincg = prefcg;
     473           0 :                 minndir = fs->fs_ipg;
     474           0 :                 for (cg = prefcg; cg < fs->fs_ncg; cg++)
     475           0 :                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
     476           0 :                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
     477           0 :                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
     478             :                                 mincg = cg;
     479             :                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
     480           0 :                         }
     481           0 :                 for (cg = 0; cg < prefcg; cg++)
     482           0 :                         if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
     483           0 :                             fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
     484           0 :                             fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
     485             :                                 mincg = cg;
     486             :                                 minndir = fs->fs_cs(fs, cg).cs_ndir;
     487           0 :                         }
     488             :                 cg = mincg;
     489           0 :                 goto end;
     490             :         } else
     491           0 :                 prefcg = ino_to_cg(fs, pip->i_number);
     492             : 
     493             :         /*
     494             :          * Count various limits which used for
     495             :          * optimal allocation of a directory inode.
     496             :          */
     497           0 :         maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
     498           0 :         minifree = avgifree - (avgifree / 4);
     499           0 :         if (minifree < 1)
     500             :                 minifree = 1;
     501           0 :         minbfree = avgbfree - (avgbfree / 4);
     502           0 :         if (minbfree < 1)
     503             :                 minbfree = 1;
     504             : 
     505           0 :         cgsize = fs->fs_fsize * fs->fs_fpg;
     506           0 :         dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
     507           0 :         curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
     508           0 :         if (dirsize < curdirsize)
     509           0 :                 dirsize = curdirsize;
     510           0 :         if (dirsize <= 0)
     511           0 :                 maxcontigdirs = 0;              /* dirsize overflowed */
     512             :         else
     513           0 :                 maxcontigdirs = min(avgbfree * fs->fs_bsize  / dirsize, 255);
     514           0 :         if (fs->fs_avgfpdir > 0)
     515           0 :                 maxcontigdirs = min(maxcontigdirs,
     516           0 :                                     fs->fs_ipg / fs->fs_avgfpdir);
     517           0 :         if (maxcontigdirs == 0)
     518           0 :                 maxcontigdirs = 1;
     519             : 
     520             :         /*
     521             :          * Limit number of dirs in one cg and reserve space for 
     522             :          * regular files, but only if we have no deficit in
     523             :          * inodes or space.
     524             :          *
     525             :          * We are trying to find a suitable cylinder group nearby
     526             :          * our preferred cylinder group to place a new directory.
     527             :          * We scan from our preferred cylinder group forward looking
     528             :          * for a cylinder group that meets our criterion. If we get
     529             :          * to the final cylinder group and do not find anything,
     530             :          * we start scanning backwards from our preferred cylinder
     531             :          * group. The ideal would be to alternate looking forward
     532             :          * and backward, but tha tis just too complex to code for
     533             :          * the gain it would get. The most likely place where the
     534             :          * backward scan would take effect is when we start near
     535             :          * the end of the filesystem and do not find anything from
     536             :          * where we are to the end. In that case, scanning backward
     537             :          * will likely find us a suitable cylinder group much closer
     538             :          * to our desired location than if we were to start scanning
     539             :          * forward from the beginning for the filesystem.
     540             :          */
     541           0 :         for (cg = prefcg; cg < fs->fs_ncg; cg++)
     542           0 :                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
     543           0 :                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
     544           0 :                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
     545           0 :                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
     546             :                                 goto end;
     547             :                 }
     548           0 :         for (cg = prefcg - 1; cg >= 0; cg--)
     549           0 :                 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
     550           0 :                     fs->fs_cs(fs, cg).cs_nifree >= minifree &&
     551           0 :                     fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
     552           0 :                         if (fs->fs_contigdirs[cg] < maxcontigdirs)
     553             :                                 goto end;
     554             :                 }
     555             :         /*
     556             :          * This is a backstop when we have deficit in space.
     557             :          */
     558           0 :         for (cg = prefcg; cg < fs->fs_ncg; cg++)
     559           0 :                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
     560             :                         goto end;
     561           0 :         for (cg = prefcg - 1; cg >= 0; cg--)
     562           0 :                 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
     563             :                         goto end;
     564             : end:
     565           0 :         return ((ufsino_t)(fs->fs_ipg * cg));
     566             : }
     567             : 
     568             : /*
     569             :  * Select the desired position for the next block in a file.  The file is
     570             :  * logically divided into sections. The first section is composed of the
     571             :  * direct blocks. Each additional section contains fs_maxbpg blocks.
     572             :  *
     573             :  * If no blocks have been allocated in the first section, the policy is to
     574             :  * request a block in the same cylinder group as the inode that describes
     575             :  * the file. The first indirect is allocated immediately following the last
     576             :  * direct block and the data blocks for the first indirect immediately
     577             :  * follow it.
     578             :  *
     579             :  * If no blocks have been allocated in any other section, the indirect
     580             :  * block(s) are allocated in the same cylinder group as its inode in an
     581             :  * area reserved immediately following the inode blocks. The policy for
     582             :  * the data blocks is to place them in a cylinder group with a greater than
     583             :  * average number of free blocks. An appropriate cylinder group is found
     584             :  * by using a rotor that sweeps the cylinder groups. When a new group of
     585             :  * blocks is needed, the sweep begins in the cylinder group following the
     586             :  * cylinder group from which the previous allocation was made. The sweep
     587             :  * continues until a cylinder group with greater than the average number
     588             :  * of free blocks is found. If the allocation is for the first block in an
     589             :  * indirect block, the information on the previous allocation is unavailable;
     590             :  * here a best guess is made based upon the logical block number being
     591             :  * allocated.
     592             :  */
     593             : int32_t
     594           0 : ffs1_blkpref(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
     595             : {
     596             :         struct fs *fs;
     597             :         int cg, inocg, avgbfree, startcg;
     598             :         uint32_t pref;
     599             : 
     600           0 :         KASSERT(indx <= 0 || bap != NULL);
     601           0 :         fs = ip->i_fs;
     602             :         /*
     603             :          * Allocation of indirect blocks is indicated by passing negative
     604             :          * values in indx: -1 for single indirect, -2 for double indirect,
     605             :          * -3 for triple indirect. As noted below, we attempt to allocate
     606             :          * the first indirect inline with the file data. For all later
     607             :          * indirect blocks, the data is often allocated in other cylinder
     608             :          * groups. However to speed random file access and to speed up
     609             :          * fsck, the filesystem reserves the first fs_metaspace blocks
     610             :          * (typically half of fs_minfree) of the data area of each cylinder
     611             :          * group to hold these later indirect blocks.
     612             :          */
     613           0 :         inocg = ino_to_cg(fs, ip->i_number);
     614           0 :         if (indx < 0) {
     615             :                 /*
     616             :                  * Our preference for indirect blocks is the zone at the
     617             :                  * beginning of the inode's cylinder group data area that
     618             :                  * we try to reserve for indirect blocks.
     619             :                  */
     620           0 :                 pref = cgmeta(fs, inocg);
     621             :                 /*
     622             :                  * If we are allocating the first indirect block, try to
     623             :                  * place it immediately following the last direct block.
     624             :                  */
     625           0 :                 if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
     626           0 :                     ip->i_din1->di_db[NDADDR - 1] != 0)
     627           0 :                         pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
     628           0 :                 return (pref);
     629             :         }
     630             :         /*
     631             :          * If we are allocating the first data block in the first indirect
     632             :          * block and the indirect has been allocated in the data block area,
     633             :          * try to place it immediately following the indirect block.
     634             :          */
     635           0 :         if (lbn == NDADDR) {
     636           0 :                 pref = ip->i_din1->di_ib[0];
     637           0 :                 if (pref != 0 && pref >= cgdata(fs, inocg) &&
     638           0 :                     pref < cgbase(fs, inocg + 1))
     639           0 :                         return (pref + fs->fs_frag);
     640             :         }
     641             :         /*
     642             :          * If we are the beginning of a file, or we have already allocated
     643             :          * the maximum number of blocks per cylinder group, or we do not
     644             :          * have a block allocated immediately preceding us, then we need
     645             :          * to decide where to start allocating new blocks.
     646             :          */
     647           0 :         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
     648             :                 /*
     649             :                  * If we are allocating a directory data block, we want
     650             :                  * to place it in the metadata area.
     651             :                  */
     652           0 :                 if ((DIP(ip, mode) & IFMT) == IFDIR)
     653           0 :                         return (cgmeta(fs, inocg));
     654             :                 /*
     655             :                  * Until we fill all the direct and all the first indirect's
     656             :                  * blocks, we try to allocate in the data area of the inode's
     657             :                  * cylinder group.
     658             :                  */
     659           0 :                 if (lbn < NDADDR + NINDIR(fs))
     660           0 :                         return (cgdata(fs, inocg));
     661             :                 /*
     662             :                  * Find a cylinder with greater than average number of
     663             :                  * unused data blocks.
     664             :                  */
     665           0 :                 if (indx == 0 || bap[indx - 1] == 0)
     666           0 :                         startcg = inocg + lbn / fs->fs_maxbpg;
     667             :                 else
     668           0 :                         startcg = dtog(fs, bap[indx - 1]) + 1;
     669           0 :                 startcg %= fs->fs_ncg;
     670           0 :                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
     671           0 :                 for (cg = startcg; cg < fs->fs_ncg; cg++)
     672           0 :                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
     673           0 :                                 fs->fs_cgrotor = cg;
     674           0 :                                 return (cgdata(fs, cg));
     675             :                         }
     676           0 :                 for (cg = 0; cg <= startcg; cg++)
     677           0 :                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
     678           0 :                                 fs->fs_cgrotor = cg;
     679           0 :                                 return (cgdata(fs, cg));
     680             :                         }
     681           0 :                 return (0);
     682             :         }
     683             :         /*
     684             :          * Otherwise, we just always try to lay things out contiguously.
     685             :          */
     686           0 :         return (bap[indx - 1] + fs->fs_frag);
     687           0 : }
     688             : 
     689             : /*
     690             :  * Same as above, for UFS2.
     691             :  */
     692             : #ifdef FFS2
     693             : int64_t
     694           0 : ffs2_blkpref(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
     695             : {
     696             :         struct fs *fs;
     697             :         int cg, inocg, avgbfree, startcg;
     698             :         uint64_t pref;
     699             : 
     700           0 :         KASSERT(indx <= 0 || bap != NULL);
     701           0 :         fs = ip->i_fs;
     702             :         /*
     703             :          * Allocation of indirect blocks is indicated by passing negative
     704             :          * values in indx: -1 for single indirect, -2 for double indirect,
     705             :          * -3 for triple indirect. As noted below, we attempt to allocate
     706             :          * the first indirect inline with the file data. For all later
     707             :          * indirect blocks, the data is often allocated in other cylinder
     708             :          * groups. However to speed random file access and to speed up
     709             :          * fsck, the filesystem reserves the first fs_metaspace blocks
     710             :          * (typically half of fs_minfree) of the data area of each cylinder
     711             :          * group to hold these later indirect blocks.
     712             :          */
     713           0 :         inocg = ino_to_cg(fs, ip->i_number);
     714           0 :         if (indx < 0) {
     715             :                 /*
     716             :                  * Our preference for indirect blocks is the zone at the
     717             :                  * beginning of the inode's cylinder group data area that
     718             :                  * we try to reserve for indirect blocks.
     719             :                  */
     720           0 :                 pref = cgmeta(fs, inocg);
     721             :                 /*
     722             :                  * If we are allocating the first indirect block, try to
     723             :                  * place it immediately following the last direct block.
     724             :                  */
     725           0 :                 if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
     726           0 :                     ip->i_din2->di_db[NDADDR - 1] != 0)
     727           0 :                         pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
     728           0 :                 return (pref);
     729             :         }
     730             :         /*
     731             :          * If we are allocating the first data block in the first indirect
     732             :          * block and the indirect has been allocated in the data block area,
     733             :          * try to place it immediately following the indirect block.
     734             :          */
     735           0 :         if (lbn == NDADDR) {
     736           0 :                 pref = ip->i_din2->di_ib[0];
     737           0 :                 if (pref != 0 && pref >= cgdata(fs, inocg) &&
     738           0 :                     pref < cgbase(fs, inocg + 1))
     739           0 :                         return (pref + fs->fs_frag);
     740             :         }
     741             :         /*
     742             :          * If we are the beginning of a file, or we have already allocated
     743             :          * the maximum number of blocks per cylinder group, or we do not
     744             :          * have a block allocated immediately preceding us, then we need
     745             :          * to decide where to start allocating new blocks.
     746             :          */
     747             : 
     748           0 :         if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
     749             :                 /*
     750             :                  * If we are allocating a directory data block, we want
     751             :                  * to place it in the metadata area.
     752             :                  */
     753           0 :                 if ((DIP(ip, mode) & IFMT) == IFDIR)
     754           0 :                         return (cgmeta(fs, inocg));
     755             :                 /*
     756             :                  * Until we fill all the direct and all the first indirect's
     757             :                  * blocks, we try to allocate in the data area of the inode's
     758             :                  * cylinder group.
     759             :                  */
     760           0 :                 if (lbn < NDADDR + NINDIR(fs))
     761           0 :                         return (cgdata(fs, inocg));
     762             :                 /*
     763             :                  * Find a cylinder with greater than average number of
     764             :                  * unused data blocks.
     765             :                  */
     766           0 :                 if (indx == 0 || bap[indx - 1] == 0)
     767           0 :                         startcg = inocg + lbn / fs->fs_maxbpg;
     768             :                 else
     769           0 :                         startcg = dtog(fs, bap[indx - 1] + 1);
     770             : 
     771           0 :                 startcg %= fs->fs_ncg;
     772           0 :                 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
     773             : 
     774           0 :                 for (cg = startcg; cg < fs->fs_ncg; cg++)
     775           0 :                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
     776           0 :                                 return (cgbase(fs, cg) + fs->fs_frag);
     777             : 
     778           0 :                 for (cg = 0; cg < startcg; cg++)
     779           0 :                         if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
     780           0 :                                 return (cgbase(fs, cg) + fs->fs_frag);
     781             : 
     782           0 :                 return (0);
     783             :         }
     784             : 
     785             :         /*
     786             :          * Otherwise, we just always try to lay things out contiguously.
     787             :          */
     788           0 :         return (bap[indx - 1] + fs->fs_frag);
     789           0 : }
     790             : #endif /* FFS2 */
     791             : 
     792             : /*
     793             :  * Implement the cylinder overflow algorithm.
     794             :  *
     795             :  * The policy implemented by this algorithm is:
     796             :  *   1) allocate the block in its requested cylinder group.
     797             :  *   2) quadratically rehash on the cylinder group number.
     798             :  *   3) brute force search for a free block.
     799             :  */
     800             : daddr_t
     801           0 : ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size,
     802             :     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
     803             : {
     804             :         struct fs *fs;
     805             :         daddr_t result;
     806             :         int i, icg = cg;
     807             : 
     808           0 :         fs = ip->i_fs;
     809             :         /*
     810             :          * 1: preferred cylinder group
     811             :          */
     812           0 :         result = (*allocator)(ip, cg, pref, size);
     813           0 :         if (result)
     814           0 :                 return (result);
     815             :         /*
     816             :          * 2: quadratic rehash
     817             :          */
     818           0 :         for (i = 1; i < fs->fs_ncg; i *= 2) {
     819           0 :                 cg += i;
     820           0 :                 if (cg >= fs->fs_ncg)
     821           0 :                         cg -= fs->fs_ncg;
     822           0 :                 result = (*allocator)(ip, cg, 0, size);
     823           0 :                 if (result)
     824           0 :                         return (result);
     825             :         }
     826             :         /*
     827             :          * 3: brute force search
     828             :          * Note that we start at i == 2, since 0 was checked initially,
     829             :          * and 1 is always checked in the quadratic rehash.
     830             :          */
     831           0 :         cg = (icg + 2) % fs->fs_ncg;
     832           0 :         for (i = 2; i < fs->fs_ncg; i++) {
     833           0 :                 result = (*allocator)(ip, cg, 0, size);
     834           0 :                 if (result)
     835           0 :                         return (result);
     836           0 :                 cg++;
     837           0 :                 if (cg == fs->fs_ncg)
     838             :                         cg = 0;
     839             :         }
     840           0 :         return (0);
     841           0 : }
     842             : 
     843             : struct buf *
     844           0 : ffs_cgread(struct fs *fs, struct inode *ip, int cg)
     845             : {
     846           0 :         struct buf *bp;
     847             : 
     848           0 :         if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
     849           0 :             (int)fs->fs_cgsize, &bp)) {
     850           0 :                 brelse(bp);
     851           0 :                 return (NULL);
     852             :         }
     853             : 
     854           0 :         if (!cg_chkmagic((struct cg *)bp->b_data)) {
     855           0 :                 brelse(bp);
     856           0 :                 return (NULL);
     857             :         }
     858             : 
     859           0 :         return bp;
     860           0 : }
     861             : 
     862             : /*
     863             :  * Determine whether a fragment can be extended.
     864             :  *
     865             :  * Check to see if the necessary fragments are available, and
     866             :  * if they are, allocate them.
     867             :  */
     868             : daddr_t
     869           0 : ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
     870             : {
     871             :         struct fs *fs;
     872             :         struct cg *cgp;
     873             :         struct buf *bp;
     874             :         daddr_t bno;
     875             :         int i, frags, bbase;
     876             : 
     877           0 :         fs = ip->i_fs;
     878           0 :         if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
     879           0 :                 return (0);
     880           0 :         frags = numfrags(fs, nsize);
     881           0 :         bbase = fragnum(fs, bprev);
     882           0 :         if (bbase > fragnum(fs, (bprev + frags - 1))) {
     883             :                 /* cannot extend across a block boundary */
     884           0 :                 return (0);
     885             :         }
     886             : 
     887           0 :         if (!(bp = ffs_cgread(fs, ip, cg)))
     888           0 :                 return (0);
     889             : 
     890           0 :         cgp = (struct cg *)bp->b_data;
     891           0 :         cgp->cg_ffs2_time = cgp->cg_time = time_second;
     892             : 
     893           0 :         bno = dtogd(fs, bprev);
     894           0 :         for (i = numfrags(fs, osize); i < frags; i++)
     895           0 :                 if (isclr(cg_blksfree(cgp), bno + i)) {
     896           0 :                         brelse(bp);
     897           0 :                         return (0);
     898             :                 }
     899             :         /*
     900             :          * the current fragment can be extended
     901             :          * deduct the count on fragment being extended into
     902             :          * increase the count on the remaining fragment (if any)
     903             :          * allocate the extended piece
     904             :          */
     905           0 :         for (i = frags; i < fs->fs_frag - bbase; i++)
     906           0 :                 if (isclr(cg_blksfree(cgp), bno + i))
     907             :                         break;
     908           0 :         cgp->cg_frsum[i - numfrags(fs, osize)]--;
     909           0 :         if (i != frags)
     910           0 :                 cgp->cg_frsum[i - frags]++;
     911           0 :         for (i = numfrags(fs, osize); i < frags; i++) {
     912           0 :                 clrbit(cg_blksfree(cgp), bno + i);
     913           0 :                 cgp->cg_cs.cs_nffree--;
     914           0 :                 fs->fs_cstotal.cs_nffree--;
     915           0 :                 fs->fs_cs(fs, cg).cs_nffree--;
     916             :         }
     917           0 :         fs->fs_fmod = 1;
     918           0 :         if (DOINGSOFTDEP(ITOV(ip)))
     919           0 :                 softdep_setup_blkmapdep(bp, fs, bprev);
     920             : 
     921           0 :         bdwrite(bp);
     922           0 :         return (bprev);
     923           0 : }
     924             : 
     925             : /*
     926             :  * Determine whether a block can be allocated.
     927             :  *
     928             :  * Check to see if a block of the appropriate size is available,
     929             :  * and if it is, allocate it.
     930             :  */
     931             : daddr_t
     932           0 : ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
     933             : {
     934             :         struct fs *fs;
     935             :         struct cg *cgp;
     936             :         struct buf *bp;
     937             :         daddr_t bno, blkno;
     938             :         int i, frags, allocsiz;
     939             : 
     940           0 :         fs = ip->i_fs;
     941           0 :         if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
     942           0 :                 return (0);
     943             : 
     944           0 :         if (!(bp = ffs_cgread(fs, ip, cg)))
     945           0 :                 return (0);
     946             : 
     947           0 :         cgp = (struct cg *)bp->b_data;
     948           0 :         if (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize) {
     949           0 :                 brelse(bp);
     950           0 :                 return (0);
     951             :         }
     952             : 
     953           0 :         cgp->cg_ffs2_time = cgp->cg_time = time_second;
     954             : 
     955           0 :         if (size == fs->fs_bsize) {
     956             :                 /* allocate and return a complete data block */
     957           0 :                 bno = ffs_alloccgblk(ip, bp, bpref);
     958           0 :                 bdwrite(bp);
     959           0 :                 return (bno);
     960             :         }
     961             :         /*
     962             :          * check to see if any fragments are already available
     963             :          * allocsiz is the size which will be allocated, hacking
     964             :          * it down to a smaller size if necessary
     965             :          */
     966           0 :         frags = numfrags(fs, size);
     967           0 :         for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
     968           0 :                 if (cgp->cg_frsum[allocsiz] != 0)
     969             :                         break;
     970           0 :         if (allocsiz == fs->fs_frag) {
     971             :                 /*
     972             :                  * no fragments were available, so a block will be
     973             :                  * allocated, and hacked up
     974             :                  */
     975           0 :                 if (cgp->cg_cs.cs_nbfree == 0) {
     976           0 :                         brelse(bp);
     977           0 :                         return (0);
     978             :                 }
     979           0 :                 bno = ffs_alloccgblk(ip, bp, bpref);
     980           0 :                 bpref = dtogd(fs, bno);
     981           0 :                 for (i = frags; i < fs->fs_frag; i++)
     982           0 :                         setbit(cg_blksfree(cgp), bpref + i);
     983           0 :                 i = fs->fs_frag - frags;
     984           0 :                 cgp->cg_cs.cs_nffree += i;
     985           0 :                 fs->fs_cstotal.cs_nffree += i;
     986           0 :                 fs->fs_cs(fs, cg).cs_nffree += i;
     987           0 :                 fs->fs_fmod = 1;
     988           0 :                 cgp->cg_frsum[i]++;
     989           0 :                 bdwrite(bp);
     990           0 :                 return (bno);
     991             :         }
     992           0 :         bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
     993           0 :         if (bno < 0) {
     994           0 :                 brelse(bp);
     995           0 :                 return (0);
     996             :         }
     997             : 
     998           0 :         for (i = 0; i < frags; i++)
     999           0 :                 clrbit(cg_blksfree(cgp), bno + i);
    1000           0 :         cgp->cg_cs.cs_nffree -= frags;
    1001           0 :         fs->fs_cstotal.cs_nffree -= frags;
    1002           0 :         fs->fs_cs(fs, cg).cs_nffree -= frags;
    1003           0 :         fs->fs_fmod = 1;
    1004           0 :         cgp->cg_frsum[allocsiz]--;
    1005           0 :         if (frags != allocsiz)
    1006           0 :                 cgp->cg_frsum[allocsiz - frags]++;
    1007             : 
    1008           0 :         blkno = cgbase(fs, cg) + bno;
    1009           0 :         if (DOINGSOFTDEP(ITOV(ip)))
    1010           0 :                 softdep_setup_blkmapdep(bp, fs, blkno);
    1011           0 :         bdwrite(bp);
    1012           0 :         return (blkno);
    1013           0 : }
    1014             : 
    1015             : /*
    1016             :  * Allocate a block in a cylinder group.
    1017             :  * Note that this routine only allocates fs_bsize blocks; these
    1018             :  * blocks may be fragmented by the routine that allocates them.
    1019             :  */
    1020             : daddr_t
    1021           0 : ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
    1022             : {
    1023             :         struct fs *fs;
    1024             :         struct cg *cgp;
    1025             :         daddr_t bno, blkno;
    1026             :         u_int8_t *blksfree;
    1027             :         int cylno, cgbpref;
    1028             : 
    1029           0 :         fs = ip->i_fs;
    1030           0 :         cgp = (struct cg *) bp->b_data;
    1031           0 :         blksfree = cg_blksfree(cgp);
    1032             : 
    1033           0 :         if (bpref == 0) {
    1034           0 :                 bpref = cgp->cg_rotor;
    1035           0 :         } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
    1036             :                 /* map bpref to correct zone in this cg */
    1037           0 :                 if (bpref < cgdata(fs, cgbpref))
    1038           0 :                         bpref = cgmeta(fs, cgp->cg_cgx);
    1039             :                 else
    1040           0 :                         bpref = cgdata(fs, cgp->cg_cgx);
    1041             :         }
    1042             :         /*
    1043             :          * If the requested block is available, use it.
    1044             :          */
    1045           0 :         bno = dtogd(fs, blknum(fs, bpref));
    1046           0 :         if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
    1047             :                 goto gotit;
    1048             :         /*
    1049             :          * Take the next available block in this cylinder group.
    1050             :          */
    1051           0 :         bno = ffs_mapsearch(fs, cgp, bpref, (int) fs->fs_frag);
    1052           0 :         if (bno < 0)
    1053           0 :                 return (0);
    1054             : 
    1055             :         /* Update cg_rotor only if allocated from the data zone */
    1056           0 :         if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
    1057           0 :                 cgp->cg_rotor = bno;
    1058             : 
    1059             : gotit:
    1060           0 :         blkno = fragstoblks(fs, bno);
    1061           0 :         ffs_clrblock(fs, blksfree, blkno);
    1062           0 :         ffs_clusteracct(fs, cgp, blkno, -1);
    1063           0 :         cgp->cg_cs.cs_nbfree--;
    1064           0 :         fs->fs_cstotal.cs_nbfree--;
    1065           0 :         fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
    1066             : 
    1067           0 :         if (fs->fs_magic != FS_UFS2_MAGIC) {
    1068           0 :                 cylno = cbtocylno(fs, bno);
    1069           0 :                 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
    1070           0 :                 cg_blktot(cgp)[cylno]--;
    1071           0 :         }
    1072             : 
    1073           0 :         fs->fs_fmod = 1;
    1074           0 :         blkno = cgbase(fs, cgp->cg_cgx) + bno;
    1075             : 
    1076           0 :         if (DOINGSOFTDEP(ITOV(ip)))
    1077           0 :                 softdep_setup_blkmapdep(bp, fs, blkno);
    1078             : 
    1079           0 :         return (blkno);
    1080           0 : }
    1081             : 
    1082             : /* inode allocation routine */
    1083             : daddr_t
    1084           0 : ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
    1085             : {
    1086             :         struct fs *fs;
    1087             :         struct cg *cgp;
    1088             :         struct buf *bp;
    1089             :         int start, len, loc, map, i;
    1090             : #ifdef FFS2
    1091             :         struct buf *ibp = NULL;
    1092             :         struct ufs2_dinode *dp2;
    1093             : #endif
    1094             : 
    1095             :         /*
    1096             :          * For efficiency, before looking at the bitmaps for free inodes,
    1097             :          * check the counters kept in the superblock cylinder group summaries,
    1098             :          * and in the cylinder group itself.
    1099             :          */
    1100           0 :         fs = ip->i_fs;
    1101           0 :         if (fs->fs_cs(fs, cg).cs_nifree == 0)
    1102           0 :                 return (0);
    1103             : 
    1104           0 :         if (!(bp = ffs_cgread(fs, ip, cg)))
    1105           0 :                 return (0);
    1106             : 
    1107           0 :         cgp = (struct cg *)bp->b_data;
    1108           0 :         if (cgp->cg_cs.cs_nifree == 0) {
    1109           0 :                 brelse(bp);
    1110           0 :                 return (0);
    1111             :         }
    1112             : 
    1113             :         /*
    1114             :          * We are committed to the allocation from now on, so update the time
    1115             :          * on the cylinder group.
    1116             :          */
    1117           0 :         cgp->cg_ffs2_time = cgp->cg_time = time_second;
    1118             : 
    1119             :         /*
    1120             :          * If there was a preferred location for the new inode, try to find it.
    1121             :          */
    1122           0 :         if (ipref) {
    1123           0 :                 ipref %= fs->fs_ipg;
    1124           0 :                 if (isclr(cg_inosused(cgp), ipref))
    1125             :                         goto gotit; /* inode is free, grab it. */
    1126             :         }
    1127             : 
    1128             :         /*
    1129             :          * Otherwise, look for the next available inode, starting at cg_irotor
    1130             :          * (the position in the bitmap of the last used inode).
    1131             :          */
    1132           0 :         start = cgp->cg_irotor / NBBY;
    1133           0 :         len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
    1134           0 :         loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
    1135           0 :         if (loc == 0) {
    1136             :                 /*
    1137             :                  * If we didn't find a free inode in the upper part of the
    1138             :                  * bitmap (from cg_irotor to the end), then look at the bottom
    1139             :                  * part (from 0 to cg_irotor).
    1140             :                  */
    1141           0 :                 len = start + 1;
    1142             :                 start = 0;
    1143           0 :                 loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
    1144           0 :                 if (loc == 0) {
    1145             :                         /*
    1146             :                          * If we failed again, then either the bitmap or the
    1147             :                          * counters kept for the cylinder group are wrong.
    1148             :                          */
    1149           0 :                         printf("cg = %d, irotor = %d, fs = %s\n",
    1150           0 :                             cg, cgp->cg_irotor, fs->fs_fsmnt);
    1151           0 :                         panic("ffs_nodealloccg: map corrupted");
    1152             :                         /* NOTREACHED */
    1153             :                 }
    1154             :         }
    1155             : 
    1156             :         /* skpc() returns the position relative to the end */
    1157           0 :         i = start + len - loc;
    1158             : 
    1159             :         /*
    1160             :          * Okay, so now in 'i' we have the location in the bitmap of a byte
    1161             :          * holding a free inode. Find the corresponding bit and set it,
    1162             :          * updating cg_irotor as well, accordingly.
    1163             :          */
    1164           0 :         map = cg_inosused(cgp)[i];
    1165           0 :         ipref = i * NBBY;
    1166           0 :         for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
    1167           0 :                 if ((map & i) == 0) {
    1168           0 :                         cgp->cg_irotor = ipref;
    1169           0 :                         goto gotit;
    1170             :                 }
    1171             :         }
    1172             : 
    1173           0 :         printf("fs = %s\n", fs->fs_fsmnt);
    1174           0 :         panic("ffs_nodealloccg: block not in map");
    1175             :         /* NOTREACHED */
    1176             : 
    1177             : gotit:
    1178             : 
    1179             : #ifdef FFS2
    1180             :         /*
    1181             :          * For FFS2, check if all inodes in this cylinder group have been used
    1182             :          * at least once. If they haven't, and we are allocating an inode past
    1183             :          * the last allocated block of inodes, read in a block and initialize
    1184             :          * all inodes in it.
    1185             :          */
    1186           0 :         if (fs->fs_magic == FS_UFS2_MAGIC &&
    1187             :             /* Inode is beyond last initialized block of inodes? */
    1188           0 :             ipref + INOPB(fs) > cgp->cg_initediblk &&
    1189             :             /* Has any inode not been used at least once? */
    1190           0 :             cgp->cg_initediblk < cgp->cg_ffs2_niblk) {
    1191             : 
    1192           0 :                 ibp = getblk(ip->i_devvp, fsbtodb(fs,
    1193             :                     ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
    1194           0 :                     (int)fs->fs_bsize, 0, 0);
    1195             : 
    1196           0 :                 memset(ibp->b_data, 0, fs->fs_bsize);
    1197           0 :                 dp2 = (struct ufs2_dinode *)(ibp->b_data);
    1198             : 
    1199             :                 /* Give each inode a positive generation number */
    1200           0 :                 for (i = 0; i < INOPB(fs); i++) {
    1201           0 :                         dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
    1202           0 :                         dp2++;
    1203             :                 }
    1204             : 
    1205             :                 /* Update the counter of initialized inodes */
    1206           0 :                 cgp->cg_initediblk += INOPB(fs);
    1207           0 :         }
    1208             : #endif /* FFS2 */
    1209             : 
    1210           0 :         if (DOINGSOFTDEP(ITOV(ip)))
    1211           0 :                 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
    1212             : 
    1213           0 :         setbit(cg_inosused(cgp), ipref);
    1214             : 
    1215             :         /* Update the counters we keep on free inodes */
    1216           0 :         cgp->cg_cs.cs_nifree--;
    1217           0 :         fs->fs_cstotal.cs_nifree--;
    1218           0 :         fs->fs_cs(fs, cg).cs_nifree--;
    1219           0 :         fs->fs_fmod = 1; /* file system was modified */
    1220             : 
    1221             :         /* Update the counters we keep on allocated directories */
    1222           0 :         if ((mode & IFMT) == IFDIR) {
    1223           0 :                 cgp->cg_cs.cs_ndir++;
    1224           0 :                 fs->fs_cstotal.cs_ndir++;
    1225           0 :                 fs->fs_cs(fs, cg).cs_ndir++;
    1226           0 :         }
    1227             : 
    1228           0 :         bdwrite(bp);
    1229             : 
    1230             : #ifdef FFS2
    1231           0 :         if (ibp != NULL)
    1232           0 :                 bawrite(ibp);
    1233             : #endif
    1234             : 
    1235             :         /* Return the allocated inode number */
    1236           0 :         return (cg * fs->fs_ipg + ipref);
    1237           0 : }
    1238             : 
    1239             : /*
    1240             :  * Free a block or fragment.
    1241             :  *
    1242             :  * The specified block or fragment is placed back in the
    1243             :  * free map. If a fragment is deallocated, a possible
    1244             :  * block reassembly is checked.
    1245             :  */
    1246             : void
    1247           0 : ffs_blkfree(struct inode *ip, daddr_t bno, long size)
    1248             : {
    1249             :         struct fs *fs;
    1250             :         struct cg *cgp;
    1251             :         struct buf *bp;
    1252             :         daddr_t blkno;
    1253             :         int i, cg, blk, frags, bbase;
    1254             : 
    1255           0 :         fs = ip->i_fs;
    1256           0 :         if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    1257           0 :             fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    1258           0 :                 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
    1259           0 :                     ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    1260           0 :                 panic("ffs_blkfree: bad size");
    1261             :         }
    1262           0 :         cg = dtog(fs, bno);
    1263           0 :         if ((u_int)bno >= fs->fs_size) {
    1264           0 :                 printf("bad block %lld, ino %u\n", (long long)bno,
    1265           0 :                     ip->i_number);
    1266           0 :                 ffs_fserr(fs, DIP(ip, uid), "bad block");
    1267           0 :                 return;
    1268             :         }
    1269           0 :         if (!(bp = ffs_cgread(fs, ip, cg)))
    1270           0 :                 return;
    1271             : 
    1272           0 :         cgp = (struct cg *)bp->b_data;
    1273           0 :         cgp->cg_ffs2_time = cgp->cg_time = time_second;
    1274             : 
    1275           0 :         bno = dtogd(fs, bno);
    1276           0 :         if (size == fs->fs_bsize) {
    1277           0 :                 blkno = fragstoblks(fs, bno);
    1278           0 :                 if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) {
    1279           0 :                         printf("dev = 0x%x, block = %lld, fs = %s\n",
    1280           0 :                             ip->i_dev, (long long)bno, fs->fs_fsmnt);
    1281           0 :                         panic("ffs_blkfree: freeing free block");
    1282             :                 }
    1283           0 :                 ffs_setblock(fs, cg_blksfree(cgp), blkno);
    1284           0 :                 ffs_clusteracct(fs, cgp, blkno, 1);
    1285           0 :                 cgp->cg_cs.cs_nbfree++;
    1286           0 :                 fs->fs_cstotal.cs_nbfree++;
    1287           0 :                 fs->fs_cs(fs, cg).cs_nbfree++;
    1288             : 
    1289           0 :                 if (fs->fs_magic != FS_UFS2_MAGIC) {
    1290           0 :                         i = cbtocylno(fs, bno);
    1291           0 :                         cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
    1292           0 :                         cg_blktot(cgp)[i]++;
    1293           0 :                 }
    1294             : 
    1295             :         } else {
    1296           0 :                 bbase = bno - fragnum(fs, bno);
    1297             :                 /*
    1298             :                  * decrement the counts associated with the old frags
    1299             :                  */
    1300           0 :                 blk = blkmap(fs, cg_blksfree(cgp), bbase);
    1301           0 :                 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
    1302             :                 /*
    1303             :                  * deallocate the fragment
    1304             :                  */
    1305           0 :                 frags = numfrags(fs, size);
    1306           0 :                 for (i = 0; i < frags; i++) {
    1307           0 :                         if (isset(cg_blksfree(cgp), bno + i)) {
    1308           0 :                                 printf("dev = 0x%x, block = %lld, fs = %s\n",
    1309           0 :                                     ip->i_dev, (long long)(bno + i),
    1310           0 :                                     fs->fs_fsmnt);
    1311           0 :                                 panic("ffs_blkfree: freeing free frag");
    1312             :                         }
    1313           0 :                         setbit(cg_blksfree(cgp), bno + i);
    1314             :                 }
    1315           0 :                 cgp->cg_cs.cs_nffree += i;
    1316           0 :                 fs->fs_cstotal.cs_nffree += i;
    1317           0 :                 fs->fs_cs(fs, cg).cs_nffree += i;
    1318             :                 /*
    1319             :                  * add back in counts associated with the new frags
    1320             :                  */
    1321           0 :                 blk = blkmap(fs, cg_blksfree(cgp), bbase);
    1322           0 :                 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
    1323             :                 /*
    1324             :                  * if a complete block has been reassembled, account for it
    1325             :                  */
    1326           0 :                 blkno = fragstoblks(fs, bbase);
    1327           0 :                 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
    1328           0 :                         cgp->cg_cs.cs_nffree -= fs->fs_frag;
    1329           0 :                         fs->fs_cstotal.cs_nffree -= fs->fs_frag;
    1330           0 :                         fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
    1331           0 :                         ffs_clusteracct(fs, cgp, blkno, 1);
    1332           0 :                         cgp->cg_cs.cs_nbfree++;
    1333           0 :                         fs->fs_cstotal.cs_nbfree++;
    1334           0 :                         fs->fs_cs(fs, cg).cs_nbfree++;
    1335             : 
    1336           0 :                         if (fs->fs_magic != FS_UFS2_MAGIC) {
    1337           0 :                                 i = cbtocylno(fs, bbase);
    1338           0 :                                 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
    1339           0 :                                 cg_blktot(cgp)[i]++;
    1340           0 :                         }
    1341             :                 }
    1342             :         }
    1343           0 :         fs->fs_fmod = 1;
    1344           0 :         bdwrite(bp);
    1345           0 : }
    1346             : 
    1347             : int
    1348           0 : ffs_inode_free(struct inode *pip, ufsino_t ino, mode_t mode)
    1349             : {
    1350           0 :         struct vnode *pvp = ITOV(pip);
    1351             : 
    1352           0 :         if (DOINGSOFTDEP(pvp)) {
    1353           0 :                 softdep_freefile(pvp, ino, mode);
    1354           0 :                 return (0);
    1355             :         }
    1356             : 
    1357           0 :         return (ffs_freefile(pip, ino, mode));
    1358           0 : }
    1359             : 
    1360             : /*
    1361             :  * Do the actual free operation.
    1362             :  * The specified inode is placed back in the free map.
    1363             :  */
    1364             : int
    1365           0 : ffs_freefile(struct inode *pip, ufsino_t ino, mode_t mode)
    1366             : {
    1367             :         struct fs *fs;
    1368             :         struct cg *cgp;
    1369             :         struct buf *bp;
    1370             :         int cg;
    1371             : 
    1372           0 :         fs = pip->i_fs;
    1373           0 :         if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
    1374           0 :                 panic("ffs_freefile: range: dev = 0x%x, ino = %d, fs = %s",
    1375           0 :                     pip->i_dev, ino, fs->fs_fsmnt);
    1376             : 
    1377           0 :         cg = ino_to_cg(fs, ino);
    1378           0 :         if (!(bp = ffs_cgread(fs, pip, cg)))
    1379           0 :                 return (0);
    1380             : 
    1381           0 :         cgp = (struct cg *)bp->b_data;
    1382           0 :         cgp->cg_ffs2_time = cgp->cg_time = time_second;
    1383             : 
    1384           0 :         ino %= fs->fs_ipg;
    1385           0 :         if (isclr(cg_inosused(cgp), ino)) {
    1386           0 :                 printf("dev = 0x%x, ino = %u, fs = %s\n",
    1387           0 :                     pip->i_dev, ino, fs->fs_fsmnt);
    1388           0 :                 if (fs->fs_ronly == 0)
    1389           0 :                         panic("ffs_freefile: freeing free inode");
    1390             :         }
    1391           0 :         clrbit(cg_inosused(cgp), ino);
    1392           0 :         if (ino < cgp->cg_irotor)
    1393           0 :                 cgp->cg_irotor = ino;
    1394           0 :         cgp->cg_cs.cs_nifree++;
    1395           0 :         fs->fs_cstotal.cs_nifree++;
    1396           0 :         fs->fs_cs(fs, cg).cs_nifree++;
    1397           0 :         if ((mode & IFMT) == IFDIR) {
    1398           0 :                 cgp->cg_cs.cs_ndir--;
    1399           0 :                 fs->fs_cstotal.cs_ndir--;
    1400           0 :                 fs->fs_cs(fs, cg).cs_ndir--;
    1401           0 :         }
    1402           0 :         fs->fs_fmod = 1;
    1403           0 :         bdwrite(bp);
    1404           0 :         return (0);
    1405           0 : }
    1406             : 
    1407             : 
    1408             : /*
    1409             :  * Find a block of the specified size in the specified cylinder group.
    1410             :  *
    1411             :  * It is a panic if a request is made to find a block if none are
    1412             :  * available.
    1413             :  */
    1414             : daddr_t
    1415           0 : ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
    1416             : {
    1417             :         daddr_t bno;
    1418             :         int start, len, loc, i;
    1419             :         int blk, field, subfield, pos;
    1420             : 
    1421             :         /*
    1422             :          * find the fragment by searching through the free block
    1423             :          * map for an appropriate bit pattern
    1424             :          */
    1425           0 :         if (bpref)
    1426           0 :                 start = dtogd(fs, bpref) / NBBY;
    1427             :         else
    1428           0 :                 start = cgp->cg_frotor / NBBY;
    1429           0 :         len = howmany(fs->fs_fpg, NBBY) - start;
    1430           0 :         loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
    1431           0 :                 (u_char *)fragtbl[fs->fs_frag],
    1432           0 :                 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
    1433           0 :         if (loc == 0) {
    1434           0 :                 len = start + 1;
    1435             :                 start = 0;
    1436           0 :                 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
    1437           0 :                         (u_char *)fragtbl[fs->fs_frag],
    1438           0 :                         (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
    1439           0 :                 if (loc == 0) {
    1440           0 :                         printf("start = %d, len = %d, fs = %s\n",
    1441           0 :                             start, len, fs->fs_fsmnt);
    1442           0 :                         panic("ffs_alloccg: map corrupted");
    1443             :                         /* NOTREACHED */
    1444             :                 }
    1445             :         }
    1446           0 :         bno = (start + len - loc) * NBBY;
    1447           0 :         cgp->cg_frotor = bno;
    1448             :         /*
    1449             :          * found the byte in the map
    1450             :          * sift through the bits to find the selected frag
    1451             :          */
    1452           0 :         for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
    1453           0 :                 blk = blkmap(fs, cg_blksfree(cgp), bno);
    1454           0 :                 blk <<= 1;
    1455           0 :                 field = around[allocsiz];
    1456           0 :                 subfield = inside[allocsiz];
    1457           0 :                 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
    1458           0 :                         if ((blk & field) == subfield)
    1459           0 :                                 return (bno + pos);
    1460           0 :                         field <<= 1;
    1461           0 :                         subfield <<= 1;
    1462             :                 }
    1463             :         }
    1464           0 :         printf("bno = %lld, fs = %s\n", (long long)bno, fs->fs_fsmnt);
    1465           0 :         panic("ffs_alloccg: block not in map");
    1466             :         return (-1);
    1467             : }
    1468             : 
    1469             : /*
    1470             :  * Update the cluster map because of an allocation or free.
    1471             :  *
    1472             :  * Cnt == 1 means free; cnt == -1 means allocating.
    1473             :  */
    1474             : void
    1475           0 : ffs_clusteracct(struct fs *fs, struct cg *cgp, daddr_t blkno, int cnt)
    1476             : {
    1477             :         int32_t *sump;
    1478             :         int32_t *lp;
    1479             :         u_char *freemapp, *mapp;
    1480             :         int i, start, end, forw, back, map, bit;
    1481             : 
    1482           0 :         if (fs->fs_contigsumsize <= 0)
    1483           0 :                 return;
    1484           0 :         freemapp = cg_clustersfree(cgp);
    1485           0 :         sump = cg_clustersum(cgp);
    1486             :         /*
    1487             :          * Allocate or clear the actual block.
    1488             :          */
    1489           0 :         if (cnt > 0)
    1490           0 :                 setbit(freemapp, blkno);
    1491             :         else
    1492           0 :                 clrbit(freemapp, blkno);
    1493             :         /*
    1494             :          * Find the size of the cluster going forward.
    1495             :          */
    1496           0 :         start = blkno + 1;
    1497           0 :         end = start + fs->fs_contigsumsize;
    1498           0 :         if (end >= cgp->cg_nclusterblks)
    1499           0 :                 end = cgp->cg_nclusterblks;
    1500           0 :         mapp = &freemapp[start / NBBY];
    1501           0 :         map = *mapp++;
    1502           0 :         bit = 1 << (start % NBBY);
    1503           0 :         for (i = start; i < end; i++) {
    1504           0 :                 if ((map & bit) == 0)
    1505             :                         break;
    1506           0 :                 if ((i & (NBBY - 1)) != (NBBY - 1)) {
    1507           0 :                         bit <<= 1;
    1508           0 :                 } else {
    1509           0 :                         map = *mapp++;
    1510             :                         bit = 1;
    1511             :                 }
    1512             :         }
    1513           0 :         forw = i - start;
    1514             :         /*
    1515             :          * Find the size of the cluster going backward.
    1516             :          */
    1517           0 :         start = blkno - 1;
    1518           0 :         end = start - fs->fs_contigsumsize;
    1519           0 :         if (end < 0)
    1520             :                 end = -1;
    1521           0 :         mapp = &freemapp[start / NBBY];
    1522           0 :         map = *mapp--;
    1523           0 :         bit = 1 << (start % NBBY);
    1524           0 :         for (i = start; i > end; i--) {
    1525           0 :                 if ((map & bit) == 0)
    1526             :                         break;
    1527           0 :                 if ((i & (NBBY - 1)) != 0) {
    1528           0 :                         bit >>= 1;
    1529           0 :                 } else {
    1530           0 :                         map = *mapp--;
    1531             :                         bit = 1 << (NBBY - 1);
    1532             :                 }
    1533             :         }
    1534           0 :         back = start - i;
    1535             :         /*
    1536             :          * Account for old cluster and the possibly new forward and
    1537             :          * back clusters.
    1538             :          */
    1539           0 :         i = back + forw + 1;
    1540           0 :         if (i > fs->fs_contigsumsize)
    1541           0 :                 i = fs->fs_contigsumsize;
    1542           0 :         sump[i] += cnt;
    1543           0 :         if (back > 0)
    1544           0 :                 sump[back] -= cnt;
    1545           0 :         if (forw > 0)
    1546           0 :                 sump[forw] -= cnt;
    1547             :         /*
    1548             :          * Update cluster summary information.
    1549             :          */
    1550           0 :         lp = &sump[fs->fs_contigsumsize];
    1551           0 :         for (i = fs->fs_contigsumsize; i > 0; i--)
    1552           0 :                 if (*lp-- > 0)
    1553             :                         break;
    1554           0 :         fs->fs_maxcluster[cgp->cg_cgx] = i;
    1555           0 : }

Generated by: LCOV version 1.13