Line data Source code
1 : /* $OpenBSD: uvm_vnode.c,v 1.103 2018/07/16 16:44:09 helg Exp $ */
2 : /* $NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $ */
3 :
4 : /*
5 : * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 : * Copyright (c) 1991, 1993
7 : * The Regents of the University of California.
8 : * Copyright (c) 1990 University of Utah.
9 : *
10 : * All rights reserved.
11 : *
12 : * This code is derived from software contributed to Berkeley by
13 : * the Systems Programming Group of the University of Utah Computer
14 : * Science Department.
15 : *
16 : * Redistribution and use in source and binary forms, with or without
17 : * modification, are permitted provided that the following conditions
18 : * are met:
19 : * 1. Redistributions of source code must retain the above copyright
20 : * notice, this list of conditions and the following disclaimer.
21 : * 2. Redistributions in binary form must reproduce the above copyright
22 : * notice, this list of conditions and the following disclaimer in the
23 : * documentation and/or other materials provided with the distribution.
24 : * 3. Neither the name of the University nor the names of its contributors
25 : * may be used to endorse or promote products derived from this software
26 : * without specific prior written permission.
27 : *
28 : * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 : * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 : * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 : * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 : * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 : * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 : * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 : * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 : * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 : * SUCH DAMAGE.
39 : *
40 : * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94
41 : * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
42 : */
43 :
44 : /*
45 : * uvm_vnode.c: the vnode pager.
46 : */
47 :
48 : #include <sys/param.h>
49 : #include <sys/systm.h>
50 : #include <sys/proc.h>
51 : #include <sys/malloc.h>
52 : #include <sys/vnode.h>
53 : #include <sys/lock.h>
54 : #include <sys/disklabel.h>
55 : #include <sys/fcntl.h>
56 : #include <sys/conf.h>
57 : #include <sys/rwlock.h>
58 : #include <sys/dkio.h>
59 : #include <sys/specdev.h>
60 :
61 : #include <uvm/uvm.h>
62 : #include <uvm/uvm_vnode.h>
63 :
64 : /*
65 : * private global data structure
66 : *
67 : * we keep a list of writeable active vnode-backed VM objects for sync op.
68 : * we keep a simpleq of vnodes that are currently being sync'd.
69 : */
70 :
71 : LIST_HEAD(uvn_list_struct, uvm_vnode);
72 : struct uvn_list_struct uvn_wlist; /* writeable uvns */
73 :
74 : SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode);
75 : struct uvn_sq_struct uvn_sync_q; /* sync'ing uvns */
76 : struct rwlock uvn_sync_lock; /* locks sync operation */
77 :
78 : extern int rebooting;
79 :
80 : /*
81 : * functions
82 : */
83 : void uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *);
84 : void uvn_detach(struct uvm_object *);
85 : boolean_t uvn_flush(struct uvm_object *, voff_t, voff_t, int);
86 : int uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int,
87 : vm_prot_t, int, int);
88 : void uvn_init(void);
89 : int uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int);
90 : int uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t);
91 : void uvn_reference(struct uvm_object *);
92 :
93 : /*
94 : * master pager structure
95 : */
96 : struct uvm_pagerops uvm_vnodeops = {
97 : uvn_init,
98 : uvn_reference,
99 : uvn_detach,
100 : NULL, /* no specialized fault routine required */
101 : uvn_flush,
102 : uvn_get,
103 : uvn_put,
104 : uvn_cluster,
105 : uvm_mk_pcluster, /* use generic version of this: see uvm_pager.c */
106 : };
107 :
108 : /*
109 : * the ops!
110 : */
111 : /*
112 : * uvn_init
113 : *
114 : * init pager private data structures.
115 : */
116 : void
117 0 : uvn_init(void)
118 : {
119 :
120 0 : LIST_INIT(&uvn_wlist);
121 : /* note: uvn_sync_q init'd in uvm_vnp_sync() */
122 0 : rw_init_flags(&uvn_sync_lock, "uvnsync", RWL_IS_VNODE);
123 0 : }
124 :
125 : /*
126 : * uvn_attach
127 : *
128 : * attach a vnode structure to a VM object. if the vnode is already
129 : * attached, then just bump the reference count by one and return the
130 : * VM object. if not already attached, attach and return the new VM obj.
131 : * the "accessprot" tells the max access the attaching thread wants to
132 : * our pages.
133 : *
134 : * => in fact, nothing should be locked so that we can sleep here.
135 : * => note that uvm_object is first thing in vnode structure, so their
136 : * pointers are equiv.
137 : */
138 : struct uvm_object *
139 0 : uvn_attach(struct vnode *vp, vm_prot_t accessprot)
140 : {
141 0 : struct uvm_vnode *uvn = vp->v_uvm;
142 0 : struct vattr vattr;
143 : int oldflags, result;
144 0 : struct partinfo pi;
145 : u_quad_t used_vnode_size = 0;
146 :
147 : /* first get a lock on the uvn. */
148 0 : while (uvn->u_flags & UVM_VNODE_BLOCKED) {
149 0 : uvn->u_flags |= UVM_VNODE_WANTED;
150 0 : UVM_WAIT(uvn, FALSE, "uvn_attach", 0);
151 : }
152 :
153 : /* if we're mapping a BLK device, make sure it is a disk. */
154 0 : if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
155 0 : return(NULL);
156 : }
157 :
158 : /*
159 : * now uvn must not be in a blocked state.
160 : * first check to see if it is already active, in which case
161 : * we can bump the reference count, check to see if we need to
162 : * add it to the writeable list, and then return.
163 : */
164 0 : if (uvn->u_flags & UVM_VNODE_VALID) { /* already active? */
165 :
166 : /* regain vref if we were persisting */
167 0 : if (uvn->u_obj.uo_refs == 0) {
168 0 : vref(vp);
169 0 : }
170 0 : uvn->u_obj.uo_refs++; /* bump uvn ref! */
171 :
172 : /* check for new writeable uvn */
173 0 : if ((accessprot & PROT_WRITE) != 0 &&
174 0 : (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
175 0 : LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
176 : /* we are now on wlist! */
177 0 : uvn->u_flags |= UVM_VNODE_WRITEABLE;
178 0 : }
179 :
180 0 : return (&uvn->u_obj);
181 : }
182 :
183 : /*
184 : * need to call VOP_GETATTR() to get the attributes, but that could
185 : * block (due to I/O), so we want to unlock the object before calling.
186 : * however, we want to keep anyone else from playing with the object
187 : * while it is unlocked. to do this we set UVM_VNODE_ALOCK which
188 : * prevents anyone from attaching to the vnode until we are done with
189 : * it.
190 : */
191 0 : uvn->u_flags = UVM_VNODE_ALOCK;
192 :
193 0 : if (vp->v_type == VBLK) {
194 : /*
195 : * We could implement this as a specfs getattr call, but:
196 : *
197 : * (1) VOP_GETATTR() would get the file system
198 : * vnode operation, not the specfs operation.
199 : *
200 : * (2) All we want is the size, anyhow.
201 : */
202 0 : result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
203 0 : DIOCGPART, (caddr_t)&pi, FREAD, curproc);
204 0 : if (result == 0) {
205 : /* XXX should remember blocksize */
206 0 : used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
207 0 : (u_quad_t)DL_GETPSIZE(pi.part);
208 0 : }
209 : } else {
210 0 : result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
211 0 : if (result == 0)
212 0 : used_vnode_size = vattr.va_size;
213 : }
214 :
215 0 : if (result != 0) {
216 0 : if (uvn->u_flags & UVM_VNODE_WANTED)
217 0 : wakeup(uvn);
218 0 : uvn->u_flags = 0;
219 0 : return(NULL);
220 : }
221 :
222 : /*
223 : * make sure that the newsize fits within a vaddr_t
224 : * XXX: need to revise addressing data types
225 : */
226 : #ifdef DEBUG
227 : if (vp->v_type == VBLK)
228 : printf("used_vnode_size = %llu\n", (long long)used_vnode_size);
229 : #endif
230 :
231 : /* now set up the uvn. */
232 0 : uvm_objinit(&uvn->u_obj, &uvm_vnodeops, 1);
233 0 : oldflags = uvn->u_flags;
234 0 : uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST;
235 0 : uvn->u_nio = 0;
236 0 : uvn->u_size = used_vnode_size;
237 :
238 : /* if write access, we need to add it to the wlist */
239 0 : if (accessprot & PROT_WRITE) {
240 0 : LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
241 0 : uvn->u_flags |= UVM_VNODE_WRITEABLE; /* we are on wlist! */
242 0 : }
243 :
244 : /*
245 : * add a reference to the vnode. this reference will stay as long
246 : * as there is a valid mapping of the vnode. dropped when the
247 : * reference count goes to zero [and we either free or persist].
248 : */
249 0 : vref(vp);
250 0 : if (oldflags & UVM_VNODE_WANTED)
251 0 : wakeup(uvn);
252 :
253 0 : return(&uvn->u_obj);
254 0 : }
255 :
256 :
257 : /*
258 : * uvn_reference
259 : *
260 : * duplicate a reference to a VM object. Note that the reference
261 : * count must already be at least one (the passed in reference) so
262 : * there is no chance of the uvn being killed out here.
263 : *
264 : * => caller must be using the same accessprot as was used at attach time
265 : */
266 :
267 :
268 : void
269 0 : uvn_reference(struct uvm_object *uobj)
270 : {
271 : #ifdef DEBUG
272 : struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
273 : #endif
274 :
275 : #ifdef DEBUG
276 : if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
277 : printf("uvn_reference: ref=%d, flags=0x%x\n", uvn->u_flags,
278 : uobj->uo_refs);
279 : panic("uvn_reference: invalid state");
280 : }
281 : #endif
282 60 : uobj->uo_refs++;
283 0 : }
284 :
285 : /*
286 : * uvn_detach
287 : *
288 : * remove a reference to a VM object.
289 : *
290 : * => caller must call with map locked.
291 : * => this starts the detach process, but doesn't have to finish it
292 : * (async i/o could still be pending).
293 : */
294 : void
295 0 : uvn_detach(struct uvm_object *uobj)
296 : {
297 : struct uvm_vnode *uvn;
298 : struct vnode *vp;
299 : int oldflags;
300 :
301 :
302 54 : uobj->uo_refs--; /* drop ref! */
303 0 : if (uobj->uo_refs) { /* still more refs */
304 0 : return;
305 : }
306 :
307 : /* get other pointers ... */
308 0 : uvn = (struct uvm_vnode *) uobj;
309 0 : vp = uvn->u_vnode;
310 :
311 : /*
312 : * clear VTEXT flag now that there are no mappings left (VTEXT is used
313 : * to keep an active text file from being overwritten).
314 : */
315 0 : vp->v_flag &= ~VTEXT;
316 :
317 : /*
318 : * we just dropped the last reference to the uvn. see if we can
319 : * let it "stick around".
320 : */
321 0 : if (uvn->u_flags & UVM_VNODE_CANPERSIST) {
322 : /* won't block */
323 0 : uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES);
324 0 : vrele(vp); /* drop vnode reference */
325 0 : return;
326 : }
327 :
328 : /* its a goner! */
329 0 : uvn->u_flags |= UVM_VNODE_DYING;
330 :
331 : /*
332 : * even though we may unlock in flush, no one can gain a reference
333 : * to us until we clear the "dying" flag [because it blocks
334 : * attaches]. we will not do that until after we've disposed of all
335 : * the pages with uvn_flush(). note that before the flush the only
336 : * pages that could be marked PG_BUSY are ones that are in async
337 : * pageout by the daemon. (there can't be any pending "get"'s
338 : * because there are no references to the object).
339 : */
340 0 : (void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
341 :
342 : /*
343 : * given the structure of this pager, the above flush request will
344 : * create the following state: all the pages that were in the object
345 : * have either been free'd or they are marked PG_BUSY and in the
346 : * middle of an async io. If we still have pages we set the "relkill"
347 : * state, so that in the case the vnode gets terminated we know
348 : * to leave it alone. Otherwise we'll kill the vnode when it's empty.
349 : */
350 0 : uvn->u_flags |= UVM_VNODE_RELKILL;
351 : /* wait on any outstanding io */
352 0 : while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) {
353 0 : uvn->u_flags |= UVM_VNODE_IOSYNC;
354 0 : UVM_WAIT(&uvn->u_nio, FALSE, "uvn_term", 0);
355 : }
356 :
357 0 : if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0)
358 0 : return;
359 :
360 : /*
361 : * kill object now. note that we can't be on the sync q because
362 : * all references are gone.
363 : */
364 0 : if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
365 0 : LIST_REMOVE(uvn, u_wlist);
366 0 : }
367 0 : KASSERT(RBT_EMPTY(uvm_objtree, &uobj->memt));
368 0 : oldflags = uvn->u_flags;
369 0 : uvn->u_flags = 0;
370 :
371 : /* wake up any sleepers */
372 0 : if (oldflags & UVM_VNODE_WANTED)
373 0 : wakeup(uvn);
374 :
375 : /* drop our reference to the vnode. */
376 0 : vrele(vp);
377 :
378 0 : return;
379 54 : }
380 :
381 : /*
382 : * uvm_vnp_terminate: external hook to clear out a vnode's VM
383 : *
384 : * called in two cases:
385 : * [1] when a persisting vnode vm object (i.e. one with a zero reference
386 : * count) needs to be freed so that a vnode can be reused. this
387 : * happens under "getnewvnode" in vfs_subr.c. if the vnode from
388 : * the free list is still attached (i.e. not VBAD) then vgone is
389 : * called. as part of the vgone trace this should get called to
390 : * free the vm object. this is the common case.
391 : * [2] when a filesystem is being unmounted by force (MNT_FORCE,
392 : * "umount -f") the vgone() function is called on active vnodes
393 : * on the mounted file systems to kill their data (the vnodes become
394 : * "dead" ones [see src/sys/miscfs/deadfs/...]). that results in a
395 : * call here (even if the uvn is still in use -- i.e. has a non-zero
396 : * reference count). this case happens at "umount -f" and during a
397 : * "reboot/halt" operation.
398 : *
399 : * => the caller must XLOCK and VOP_LOCK the vnode before calling us
400 : * [protects us from getting a vnode that is already in the DYING
401 : * state...]
402 : * => in case [2] the uvn is still alive after this call, but all I/O
403 : * ops will fail (due to the backing vnode now being "dead"). this
404 : * will prob. kill any process using the uvn due to pgo_get failing.
405 : */
406 : void
407 0 : uvm_vnp_terminate(struct vnode *vp)
408 : {
409 0 : struct uvm_vnode *uvn = vp->v_uvm;
410 : int oldflags;
411 :
412 : /* check if it is valid */
413 0 : if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
414 0 : return;
415 : }
416 :
417 : /*
418 : * must be a valid uvn that is not already dying (because XLOCK
419 : * protects us from that). the uvn can't in the ALOCK state
420 : * because it is valid, and uvn's that are in the ALOCK state haven't
421 : * been marked valid yet.
422 : */
423 : #ifdef DEBUG
424 : /*
425 : * debug check: are we yanking the vnode out from under our uvn?
426 : */
427 : if (uvn->u_obj.uo_refs) {
428 : printf("uvm_vnp_terminate(%p): terminating active vnode "
429 : "(refs=%d)\n", uvn, uvn->u_obj.uo_refs);
430 : }
431 : #endif
432 :
433 : /*
434 : * it is possible that the uvn was detached and is in the relkill
435 : * state [i.e. waiting for async i/o to finish].
436 : * we take over the vnode now and cancel the relkill.
437 : * we want to know when the i/o is done so we can recycle right
438 : * away. note that a uvn can only be in the RELKILL state if it
439 : * has a zero reference count.
440 : */
441 0 : if (uvn->u_flags & UVM_VNODE_RELKILL)
442 0 : uvn->u_flags &= ~UVM_VNODE_RELKILL; /* cancel RELKILL */
443 :
444 : /*
445 : * block the uvn by setting the dying flag, and then flush the
446 : * pages.
447 : *
448 : * also, note that we tell I/O that we are already VOP_LOCK'd so
449 : * that uvn_io doesn't attempt to VOP_LOCK again.
450 : *
451 : * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated
452 : * due to a forceful unmount might not be a good idea. maybe we
453 : * need a way to pass in this info to uvn_flush through a
454 : * pager-defined PGO_ constant [currently there are none].
455 : */
456 0 : uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED;
457 :
458 0 : (void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
459 :
460 : /*
461 : * as we just did a flush we expect all the pages to be gone or in
462 : * the process of going. sleep to wait for the rest to go [via iosync].
463 : */
464 0 : while (uvn->u_obj.uo_npages) {
465 : #ifdef DEBUG
466 : struct vm_page *pp;
467 : RBT_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) {
468 : if ((pp->pg_flags & PG_BUSY) == 0)
469 : panic("uvm_vnp_terminate: detected unbusy pg");
470 : }
471 : if (uvn->u_nio == 0)
472 : panic("uvm_vnp_terminate: no I/O to wait for?");
473 : printf("uvm_vnp_terminate: waiting for I/O to fin.\n");
474 : /*
475 : * XXXCDC: this is unlikely to happen without async i/o so we
476 : * put a printf in just to keep an eye on it.
477 : */
478 : #endif
479 0 : uvn->u_flags |= UVM_VNODE_IOSYNC;
480 0 : UVM_WAIT(&uvn->u_nio, FALSE, "uvn_term", 0);
481 : }
482 :
483 : /*
484 : * done. now we free the uvn if its reference count is zero
485 : * (true if we are zapping a persisting uvn). however, if we are
486 : * terminating a uvn with active mappings we let it live ... future
487 : * calls down to the vnode layer will fail.
488 : */
489 : oldflags = uvn->u_flags;
490 0 : if (uvn->u_obj.uo_refs) {
491 : /*
492 : * uvn must live on it is dead-vnode state until all references
493 : * are gone. restore flags. clear CANPERSIST state.
494 : */
495 0 : uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED|
496 : UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST);
497 0 : } else {
498 : /*
499 : * free the uvn now. note that the vref reference is already
500 : * gone [it is dropped when we enter the persist state].
501 : */
502 0 : if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
503 0 : panic("uvm_vnp_terminate: io sync wanted bit set");
504 :
505 0 : if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
506 0 : LIST_REMOVE(uvn, u_wlist);
507 0 : }
508 0 : uvn->u_flags = 0; /* uvn is history, clear all bits */
509 : }
510 :
511 0 : if (oldflags & UVM_VNODE_WANTED)
512 0 : wakeup(uvn);
513 0 : }
514 :
515 : /*
516 : * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
517 : * through the buffer cache and allow I/O in any size. These VOPs use
518 : * synchronous i/o. [vs. VOP_STRATEGY which can be async, but doesn't
519 : * go through the buffer cache or allow I/O sizes larger than a
520 : * block]. we will eventually want to change this.
521 : *
522 : * issues to consider:
523 : * uvm provides the uvm_aiodesc structure for async i/o management.
524 : * there are two tailq's in the uvm. structure... one for pending async
525 : * i/o and one for "done" async i/o. to do an async i/o one puts
526 : * an aiodesc on the "pending" list (protected by splbio()), starts the
527 : * i/o and returns VM_PAGER_PEND. when the i/o is done, we expect
528 : * some sort of "i/o done" function to be called (at splbio(), interrupt
529 : * time). this function should remove the aiodesc from the pending list
530 : * and place it on the "done" list and wakeup the daemon. the daemon
531 : * will run at normal spl() and will remove all items from the "done"
532 : * list and call the "aiodone" hook for each done request (see uvm_pager.c).
533 : * [in the old vm code, this was done by calling the "put" routine with
534 : * null arguments which made the code harder to read and understand because
535 : * you had one function ("put") doing two things.]
536 : *
537 : * so the current pager needs:
538 : * int uvn_aiodone(struct uvm_aiodesc *)
539 : *
540 : * => return 0 (aio finished, free it). otherwise requeue for later collection.
541 : * => called with pageq's locked by the daemon.
542 : *
543 : * general outline:
544 : * - drop "u_nio" (this req is done!)
545 : * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
546 : * - get "page" structures (atop?).
547 : * - handle "wanted" pages
548 : * dont forget to look at "object" wanted flag in all cases.
549 : */
550 :
551 : /*
552 : * uvn_flush: flush pages out of a uvm object.
553 : *
554 : * => if PGO_CLEANIT is set, we may block (due to I/O). thus, a caller
555 : * might want to unlock higher level resources (e.g. vm_map)
556 : * before calling flush.
557 : * => if PGO_CLEANIT is not set, then we will not block
558 : * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
559 : * for flushing.
560 : * => NOTE: we are allowed to lock the page queues, so the caller
561 : * must not be holding the lock on them [e.g. pagedaemon had
562 : * better not call us with the queues locked]
563 : * => we return TRUE unless we encountered some sort of I/O error
564 : *
565 : * comment on "cleaning" object and PG_BUSY pages:
566 : * this routine is holding the lock on the object. the only time
567 : * that it can run into a PG_BUSY page that it does not own is if
568 : * some other process has started I/O on the page (e.g. either
569 : * a pagein, or a pageout). if the PG_BUSY page is being paged
570 : * in, then it can not be dirty (!PG_CLEAN) because no one has
571 : * had a chance to modify it yet. if the PG_BUSY page is being
572 : * paged out then it means that someone else has already started
573 : * cleaning the page for us (how nice!). in this case, if we
574 : * have syncio specified, then after we make our pass through the
575 : * object we need to wait for the other PG_BUSY pages to clear
576 : * off (i.e. we need to do an iosync). also note that once a
577 : * page is PG_BUSY it must stay in its object until it is un-busyed.
578 : */
579 : boolean_t
580 0 : uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
581 : {
582 0 : struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
583 : struct vm_page *pp, *ptmp;
584 0 : struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
585 0 : int npages, result, lcv;
586 : boolean_t retval, need_iosync, needs_clean;
587 : voff_t curoff;
588 :
589 : /* get init vals and determine how we are going to traverse object */
590 : need_iosync = FALSE;
591 : retval = TRUE; /* return value */
592 0 : if (flags & PGO_ALLPAGES) {
593 : start = 0;
594 0 : stop = round_page(uvn->u_size);
595 0 : } else {
596 0 : start = trunc_page(start);
597 0 : stop = MIN(round_page(stop), round_page(uvn->u_size));
598 : }
599 :
600 : /*
601 : * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
602 : * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint
603 : * is wrong it will only prevent us from clustering... it won't break
604 : * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
605 : * will set them as it syncs PG_CLEAN. This is only an issue if we
606 : * are looking at non-inactive pages (because inactive page's PG_CLEAN
607 : * bit is always up to date since there are no mappings).
608 : * [borrowed PG_CLEANCHK idea from FreeBSD VM]
609 : */
610 0 : if ((flags & PGO_CLEANIT) != 0) {
611 0 : KASSERT(uobj->pgops->pgo_mk_pcluster != 0);
612 0 : for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) {
613 0 : if ((pp = uvm_pagelookup(uobj, curoff)) != NULL)
614 0 : atomic_clearbits_int(&pp->pg_flags,
615 : PG_CLEANCHK);
616 : }
617 : }
618 :
619 0 : ppsp = NULL; /* XXX: shut up gcc */
620 0 : uvm_lock_pageq();
621 : /* locked: both page queues */
622 0 : for (curoff = start; curoff < stop; curoff += PAGE_SIZE) {
623 0 : if ((pp = uvm_pagelookup(uobj, curoff)) == NULL)
624 : continue;
625 : /*
626 : * handle case where we do not need to clean page (either
627 : * because we are not clean or because page is not dirty or
628 : * is busy):
629 : *
630 : * NOTE: we are allowed to deactivate a non-wired active
631 : * PG_BUSY page, but once a PG_BUSY page is on the inactive
632 : * queue it must stay put until it is !PG_BUSY (so as not to
633 : * confuse pagedaemon).
634 : */
635 0 : if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) {
636 : needs_clean = FALSE;
637 0 : if ((pp->pg_flags & PG_BUSY) != 0 &&
638 0 : (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
639 : (PGO_CLEANIT|PGO_SYNCIO))
640 0 : need_iosync = TRUE;
641 : } else {
642 : /*
643 : * freeing: nuke all mappings so we can sync
644 : * PG_CLEAN bit with no race
645 : */
646 0 : if ((pp->pg_flags & PG_CLEAN) != 0 &&
647 0 : (flags & PGO_FREE) != 0 &&
648 0 : (pp->pg_flags & PQ_ACTIVE) != 0)
649 0 : pmap_page_protect(pp, PROT_NONE);
650 0 : if ((pp->pg_flags & PG_CLEAN) != 0 &&
651 0 : pmap_is_modified(pp))
652 0 : atomic_clearbits_int(&pp->pg_flags, PG_CLEAN);
653 0 : atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK);
654 :
655 0 : needs_clean = ((pp->pg_flags & PG_CLEAN) == 0);
656 : }
657 :
658 : /* if we don't need a clean, deactivate/free pages then cont. */
659 0 : if (!needs_clean) {
660 0 : if (flags & PGO_DEACTIVATE) {
661 0 : if (pp->wire_count == 0) {
662 0 : pmap_page_protect(pp, PROT_NONE);
663 0 : uvm_pagedeactivate(pp);
664 0 : }
665 0 : } else if (flags & PGO_FREE) {
666 0 : if (pp->pg_flags & PG_BUSY) {
667 0 : atomic_setbits_int(&pp->pg_flags,
668 : PG_WANTED);
669 0 : uvm_unlock_pageq();
670 0 : UVM_WAIT(pp, 0, "uvn_flsh", 0);
671 0 : uvm_lock_pageq();
672 0 : curoff -= PAGE_SIZE;
673 0 : continue;
674 : } else {
675 0 : pmap_page_protect(pp, PROT_NONE);
676 : /* removed page from object */
677 0 : uvm_pagefree(pp);
678 : }
679 0 : }
680 : continue;
681 : }
682 :
683 : /*
684 : * pp points to a page in the object that we are
685 : * working on. if it is !PG_CLEAN,!PG_BUSY and we asked
686 : * for cleaning (PGO_CLEANIT). we clean it now.
687 : *
688 : * let uvm_pager_put attempted a clustered page out.
689 : * note: locked: page queues.
690 : */
691 0 : atomic_setbits_int(&pp->pg_flags, PG_BUSY);
692 : UVM_PAGE_OWN(pp, "uvn_flush");
693 0 : pmap_page_protect(pp, PROT_READ);
694 : /* if we're async, free the page in aiodoned */
695 0 : if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE)
696 0 : atomic_setbits_int(&pp->pg_flags, PG_RELEASED);
697 : ReTry:
698 0 : ppsp = pps;
699 0 : npages = sizeof(pps) / sizeof(struct vm_page *);
700 :
701 0 : result = uvm_pager_put(uobj, pp, &ppsp, &npages,
702 0 : flags | PGO_DOACTCLUST, start, stop);
703 :
704 : /*
705 : * if we did an async I/O it is remotely possible for the
706 : * async i/o to complete and the page "pp" be freed or what
707 : * not before we get a chance to relock the object. Therefore,
708 : * we only touch it when it won't be freed, RELEASED took care
709 : * of the rest.
710 : */
711 0 : uvm_lock_pageq();
712 :
713 : /*
714 : * VM_PAGER_AGAIN: given the structure of this pager, this
715 : * can only happen when we are doing async I/O and can't
716 : * map the pages into kernel memory (pager_map) due to lack
717 : * of vm space. if this happens we drop back to sync I/O.
718 : */
719 0 : if (result == VM_PAGER_AGAIN) {
720 : /*
721 : * it is unlikely, but page could have been released
722 : * we ignore this now and retry the I/O.
723 : * we will detect and
724 : * handle the released page after the syncio I/O
725 : * completes.
726 : */
727 : #ifdef DIAGNOSTIC
728 0 : if (flags & PGO_SYNCIO)
729 0 : panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)");
730 : #endif
731 0 : flags |= PGO_SYNCIO;
732 0 : if (flags & PGO_FREE)
733 0 : atomic_clearbits_int(&pp->pg_flags,
734 : PG_RELEASED);
735 :
736 0 : goto ReTry;
737 : }
738 :
739 : /*
740 : * the cleaning operation is now done. finish up. note that
741 : * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
742 : * if success (OK, PEND) then uvm_pager_put returns the cluster
743 : * to us in ppsp/npages.
744 : */
745 : /*
746 : * for pending async i/o if we are not deactivating
747 : * we can move on to the next page. aiodoned deals with
748 : * the freeing case for us.
749 : */
750 0 : if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0)
751 : continue;
752 :
753 : /*
754 : * need to look at each page of the I/O operation, and do what
755 : * we gotta do.
756 : */
757 0 : for (lcv = 0 ; lcv < npages; lcv++) {
758 0 : ptmp = ppsp[lcv];
759 : /*
760 : * verify the page didn't get moved
761 : */
762 0 : if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
763 : continue;
764 :
765 : /*
766 : * unbusy the page if I/O is done. note that for
767 : * pending I/O it is possible that the I/O op
768 : * finished
769 : * (in which case the page is no longer busy).
770 : */
771 0 : if (result != VM_PAGER_PEND) {
772 0 : if (ptmp->pg_flags & PG_WANTED)
773 0 : wakeup(ptmp);
774 :
775 0 : atomic_clearbits_int(&ptmp->pg_flags,
776 : PG_WANTED|PG_BUSY);
777 : UVM_PAGE_OWN(ptmp, NULL);
778 0 : atomic_setbits_int(&ptmp->pg_flags,
779 : PG_CLEAN|PG_CLEANCHK);
780 0 : if ((flags & PGO_FREE) == 0)
781 0 : pmap_clear_modify(ptmp);
782 : }
783 :
784 : /* dispose of page */
785 0 : if (flags & PGO_DEACTIVATE) {
786 0 : if (ptmp->wire_count == 0) {
787 0 : pmap_page_protect(ptmp, PROT_NONE);
788 0 : uvm_pagedeactivate(ptmp);
789 0 : }
790 0 : } else if (flags & PGO_FREE &&
791 : result != VM_PAGER_PEND) {
792 0 : if (result != VM_PAGER_OK) {
793 0 : printf("uvn_flush: obj=%p, "
794 : "offset=0x%llx. error "
795 : "during pageout.\n",
796 0 : pp->uobject,
797 0 : (long long)pp->offset);
798 0 : printf("uvn_flush: WARNING: "
799 : "changes to page may be "
800 : "lost!\n");
801 : retval = FALSE;
802 0 : }
803 0 : pmap_page_protect(ptmp, PROT_NONE);
804 0 : uvm_pagefree(ptmp);
805 0 : }
806 :
807 : } /* end of "lcv" for loop */
808 :
809 : } /* end of "pp" for loop */
810 :
811 : /* done with pagequeues: unlock */
812 0 : uvm_unlock_pageq();
813 :
814 : /* now wait for all I/O if required. */
815 0 : if (need_iosync) {
816 0 : while (uvn->u_nio != 0) {
817 0 : uvn->u_flags |= UVM_VNODE_IOSYNC;
818 0 : UVM_WAIT(&uvn->u_nio, FALSE, "uvn_flush", 0);
819 : }
820 0 : if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
821 0 : wakeup(&uvn->u_flags);
822 0 : uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
823 0 : }
824 :
825 0 : return(retval);
826 0 : }
827 :
828 : /*
829 : * uvn_cluster
830 : *
831 : * we are about to do I/O in an object at offset. this function is called
832 : * to establish a range of offsets around "offset" in which we can cluster
833 : * I/O.
834 : */
835 :
836 : void
837 0 : uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset,
838 : voff_t *hoffset)
839 : {
840 0 : struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
841 0 : *loffset = offset;
842 :
843 0 : if (*loffset >= uvn->u_size)
844 0 : panic("uvn_cluster: offset out of range");
845 :
846 : /*
847 : * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
848 : */
849 0 : *hoffset = *loffset + MAXBSIZE;
850 0 : if (*hoffset > round_page(uvn->u_size)) /* past end? */
851 0 : *hoffset = round_page(uvn->u_size);
852 :
853 : return;
854 0 : }
855 :
856 : /*
857 : * uvn_put: flush page data to backing store.
858 : *
859 : * => prefer map unlocked (not required)
860 : * => flags: PGO_SYNCIO -- use sync. I/O
861 : * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
862 : * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
863 : * [thus we never do async i/o! see iodone comment]
864 : */
865 : int
866 0 : uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags)
867 : {
868 : int retval;
869 :
870 0 : retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE);
871 :
872 0 : return(retval);
873 : }
874 :
875 : /*
876 : * uvn_get: get pages (synchronously) from backing store
877 : *
878 : * => prefer map unlocked (not required)
879 : * => flags: PGO_ALLPAGES: get all of the pages
880 : * PGO_LOCKED: fault data structures are locked
881 : * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
882 : * => NOTE: caller must check for released pages!!
883 : */
884 : int
885 0 : uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
886 : int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
887 : {
888 : voff_t current_offset;
889 0 : struct vm_page *ptmp;
890 : int lcv, result, gotpages;
891 : boolean_t done;
892 :
893 : /* step 1: handled the case where fault data structures are locked. */
894 0 : if (flags & PGO_LOCKED) {
895 : /*
896 : * gotpages is the current number of pages we've gotten (which
897 : * we pass back up to caller via *npagesp.
898 : */
899 : gotpages = 0;
900 :
901 : /*
902 : * step 1a: get pages that are already resident. only do this
903 : * if the data structures are locked (i.e. the first time
904 : * through).
905 : */
906 : done = TRUE; /* be optimistic */
907 :
908 0 : for (lcv = 0, current_offset = offset ; lcv < *npagesp ;
909 0 : lcv++, current_offset += PAGE_SIZE) {
910 :
911 : /* do we care about this page? if not, skip it */
912 0 : if (pps[lcv] == PGO_DONTCARE)
913 : continue;
914 :
915 : /* lookup page */
916 0 : ptmp = uvm_pagelookup(uobj, current_offset);
917 :
918 : /* to be useful must get a non-busy, non-released pg */
919 0 : if (ptmp == NULL ||
920 0 : (ptmp->pg_flags & PG_BUSY) != 0) {
921 0 : if (lcv == centeridx || (flags & PGO_ALLPAGES)
922 0 : != 0)
923 0 : done = FALSE; /* need to do a wait or I/O! */
924 : continue;
925 : }
926 :
927 : /*
928 : * useful page: busy it and plug it in our
929 : * result array
930 : */
931 0 : atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
932 : UVM_PAGE_OWN(ptmp, "uvn_get1");
933 0 : pps[lcv] = ptmp;
934 0 : gotpages++;
935 :
936 0 : }
937 :
938 : /*
939 : * XXX: given the "advice", should we consider async read-ahead?
940 : * XXX: fault current does deactive of pages behind us. is
941 : * this good (other callers might now).
942 : */
943 : /*
944 : * XXX: read-ahead currently handled by buffer cache (bread)
945 : * level.
946 : * XXX: no async i/o available.
947 : * XXX: so we don't do anything now.
948 : */
949 :
950 : /*
951 : * step 1c: now we've either done everything needed or we to
952 : * unlock and do some waiting or I/O.
953 : */
954 :
955 0 : *npagesp = gotpages; /* let caller know */
956 0 : if (done)
957 0 : return(VM_PAGER_OK); /* bingo! */
958 : else
959 0 : return(VM_PAGER_UNLOCK);
960 : }
961 :
962 : /*
963 : * step 2: get non-resident or busy pages.
964 : * data structures are unlocked.
965 : *
966 : * XXX: because we can't do async I/O at this level we get things
967 : * page at a time (otherwise we'd chunk). the VOP_READ() will do
968 : * async-read-ahead for us at a lower level.
969 : */
970 0 : for (lcv = 0, current_offset = offset;
971 0 : lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) {
972 :
973 : /* skip over pages we've already gotten or don't want */
974 : /* skip over pages we don't _have_ to get */
975 0 : if (pps[lcv] != NULL || (lcv != centeridx &&
976 0 : (flags & PGO_ALLPAGES) == 0))
977 : continue;
978 :
979 : /*
980 : * we have yet to locate the current page (pps[lcv]). we first
981 : * look for a page that is already at the current offset. if
982 : * we fine a page, we check to see if it is busy or released.
983 : * if that is the case, then we sleep on the page until it is
984 : * no longer busy or released and repeat the lookup. if the
985 : * page we found is neither busy nor released, then we busy it
986 : * (so we own it) and plug it into pps[lcv]. this breaks the
987 : * following while loop and indicates we are ready to move on
988 : * to the next page in the "lcv" loop above.
989 : *
990 : * if we exit the while loop with pps[lcv] still set to NULL,
991 : * then it means that we allocated a new busy/fake/clean page
992 : * ptmp in the object and we need to do I/O to fill in the data.
993 : */
994 0 : while (pps[lcv] == NULL) { /* top of "pps" while loop */
995 : /* look for a current page */
996 0 : ptmp = uvm_pagelookup(uobj, current_offset);
997 :
998 : /* nope? allocate one now (if we can) */
999 0 : if (ptmp == NULL) {
1000 0 : ptmp = uvm_pagealloc(uobj, current_offset,
1001 : NULL, 0);
1002 :
1003 : /* out of RAM? */
1004 0 : if (ptmp == NULL) {
1005 0 : uvm_wait("uvn_getpage");
1006 :
1007 : /* goto top of pps while loop */
1008 0 : continue;
1009 : }
1010 :
1011 : /*
1012 : * got new page ready for I/O. break pps
1013 : * while loop. pps[lcv] is still NULL.
1014 : */
1015 : break;
1016 : }
1017 :
1018 : /* page is there, see if we need to wait on it */
1019 0 : if ((ptmp->pg_flags & PG_BUSY) != 0) {
1020 0 : atomic_setbits_int(&ptmp->pg_flags, PG_WANTED);
1021 0 : UVM_WAIT(ptmp, FALSE, "uvn_get", 0);
1022 0 : continue; /* goto top of pps while loop */
1023 : }
1024 :
1025 : /*
1026 : * if we get here then the page has become resident
1027 : * and unbusy between steps 1 and 2. we busy it
1028 : * now (so we own it) and set pps[lcv] (so that we
1029 : * exit the while loop).
1030 : */
1031 0 : atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1032 : UVM_PAGE_OWN(ptmp, "uvn_get2");
1033 0 : pps[lcv] = ptmp;
1034 : }
1035 :
1036 : /*
1037 : * if we own the a valid page at the correct offset, pps[lcv]
1038 : * will point to it. nothing more to do except go to the
1039 : * next page.
1040 : */
1041 0 : if (pps[lcv])
1042 : continue; /* next lcv */
1043 :
1044 : /*
1045 : * we have a "fake/busy/clean" page that we just allocated. do
1046 : * I/O to fill it with valid data.
1047 : */
1048 0 : result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1,
1049 : PGO_SYNCIO, UIO_READ);
1050 :
1051 : /*
1052 : * I/O done. because we used syncio the result can not be
1053 : * PEND or AGAIN.
1054 : */
1055 0 : if (result != VM_PAGER_OK) {
1056 0 : if (ptmp->pg_flags & PG_WANTED)
1057 0 : wakeup(ptmp);
1058 :
1059 0 : atomic_clearbits_int(&ptmp->pg_flags,
1060 : PG_WANTED|PG_BUSY);
1061 : UVM_PAGE_OWN(ptmp, NULL);
1062 0 : uvm_lock_pageq();
1063 0 : uvm_pagefree(ptmp);
1064 0 : uvm_unlock_pageq();
1065 0 : return(result);
1066 : }
1067 :
1068 : /*
1069 : * we got the page! clear the fake flag (indicates valid
1070 : * data now in page) and plug into our result array. note
1071 : * that page is still busy.
1072 : *
1073 : * it is the callers job to:
1074 : * => check if the page is released
1075 : * => unbusy the page
1076 : * => activate the page
1077 : */
1078 :
1079 : /* data is valid ... */
1080 0 : atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE);
1081 0 : pmap_clear_modify(ptmp); /* ... and clean */
1082 0 : pps[lcv] = ptmp;
1083 :
1084 0 : }
1085 :
1086 0 : return (VM_PAGER_OK);
1087 0 : }
1088 :
1089 : /*
1090 : * uvn_io: do I/O to a vnode
1091 : *
1092 : * => prefer map unlocked (not required)
1093 : * => flags: PGO_SYNCIO -- use sync. I/O
1094 : * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1095 : * [thus we never do async i/o! see iodone comment]
1096 : */
1097 :
1098 : int
1099 0 : uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw)
1100 : {
1101 : struct vnode *vn;
1102 0 : struct uio uio;
1103 0 : struct iovec iov;
1104 : vaddr_t kva;
1105 : off_t file_offset;
1106 : int waitf, result, mapinflags;
1107 : size_t got, wanted;
1108 : int netunlocked = 0;
1109 :
1110 : /* init values */
1111 0 : waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT;
1112 0 : vn = uvn->u_vnode;
1113 0 : file_offset = pps[0]->offset;
1114 :
1115 : /* check for sync'ing I/O. */
1116 0 : while (uvn->u_flags & UVM_VNODE_IOSYNC) {
1117 0 : if (waitf == M_NOWAIT) {
1118 0 : return(VM_PAGER_AGAIN);
1119 : }
1120 0 : uvn->u_flags |= UVM_VNODE_IOSYNCWANTED;
1121 0 : UVM_WAIT(&uvn->u_flags, FALSE, "uvn_iosync", 0);
1122 : }
1123 :
1124 : /* check size */
1125 0 : if (file_offset >= uvn->u_size) {
1126 0 : return(VM_PAGER_BAD);
1127 : }
1128 :
1129 : /* first try and map the pages in (without waiting) */
1130 0 : mapinflags = (rw == UIO_READ) ?
1131 : UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1132 :
1133 0 : kva = uvm_pagermapin(pps, npages, mapinflags);
1134 0 : if (kva == 0 && waitf == M_NOWAIT) {
1135 0 : return(VM_PAGER_AGAIN);
1136 : }
1137 :
1138 : /*
1139 : * ok, now bump u_nio up. at this point we are done with uvn
1140 : * and can unlock it. if we still don't have a kva, try again
1141 : * (this time with sleep ok).
1142 : */
1143 0 : uvn->u_nio++; /* we have an I/O in progress! */
1144 0 : if (kva == 0)
1145 0 : kva = uvm_pagermapin(pps, npages,
1146 0 : mapinflags | UVMPAGER_MAPIN_WAITOK);
1147 :
1148 : /*
1149 : * ok, mapped in. our pages are PG_BUSY so they are not going to
1150 : * get touched (so we can look at "offset" without having to lock
1151 : * the object). set up for I/O.
1152 : */
1153 : /* fill out uio/iov */
1154 0 : iov.iov_base = (caddr_t) kva;
1155 0 : wanted = (size_t)npages << PAGE_SHIFT;
1156 0 : if (file_offset + wanted > uvn->u_size)
1157 0 : wanted = uvn->u_size - file_offset; /* XXX: needed? */
1158 0 : iov.iov_len = wanted;
1159 0 : uio.uio_iov = &iov;
1160 0 : uio.uio_iovcnt = 1;
1161 0 : uio.uio_offset = file_offset;
1162 0 : uio.uio_segflg = UIO_SYSSPACE;
1163 0 : uio.uio_rw = rw;
1164 0 : uio.uio_resid = wanted;
1165 0 : uio.uio_procp = curproc;
1166 :
1167 : /*
1168 : * This process may already have the NET_LOCK(), if we
1169 : * faulted in copyin() or copyout() in the network stack.
1170 : */
1171 0 : if (rw_status(&netlock) == RW_WRITE) {
1172 0 : NET_UNLOCK();
1173 : netunlocked = 1;
1174 0 : }
1175 :
1176 : /* do the I/O! (XXX: curproc?) */
1177 : /*
1178 : * This process may already have this vnode locked, if we faulted in
1179 : * copyin() or copyout() on a region backed by this vnode
1180 : * while doing I/O to the vnode. If this is the case, don't
1181 : * panic.. instead, return the error to the user.
1182 : *
1183 : * XXX this is a stopgap to prevent a panic.
1184 : * Ideally, this kind of operation *should* work.
1185 : */
1186 : result = 0;
1187 0 : if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1188 0 : result = vn_lock(vn, LK_EXCLUSIVE | LK_RECURSEFAIL);
1189 :
1190 0 : if (result == 0) {
1191 : /* NOTE: vnode now locked! */
1192 0 : if (rw == UIO_READ)
1193 0 : result = VOP_READ(vn, &uio, 0, curproc->p_ucred);
1194 : else
1195 0 : result = VOP_WRITE(vn, &uio,
1196 0 : (flags & PGO_PDFREECLUST) ? IO_NOCACHE : 0,
1197 0 : curproc->p_ucred);
1198 :
1199 0 : if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1200 0 : VOP_UNLOCK(vn);
1201 :
1202 : }
1203 :
1204 0 : if (netunlocked)
1205 0 : NET_LOCK();
1206 :
1207 :
1208 : /* NOTE: vnode now unlocked (unless vnislocked) */
1209 : /*
1210 : * result == unix style errno (0 == OK!)
1211 : *
1212 : * zero out rest of buffer (if needed)
1213 : */
1214 0 : if (result == 0) {
1215 0 : got = wanted - uio.uio_resid;
1216 :
1217 0 : if (wanted && got == 0) {
1218 : result = EIO; /* XXX: error? */
1219 0 : } else if (got < PAGE_SIZE * npages && rw == UIO_READ) {
1220 0 : memset((void *) (kva + got), 0,
1221 : ((size_t)npages << PAGE_SHIFT) - got);
1222 0 : }
1223 : }
1224 :
1225 : /* now remove pager mapping */
1226 0 : uvm_pagermapout(kva, npages);
1227 :
1228 : /* now clean up the object (i.e. drop I/O count) */
1229 0 : uvn->u_nio--; /* I/O DONE! */
1230 0 : if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) {
1231 0 : wakeup(&uvn->u_nio);
1232 0 : }
1233 :
1234 0 : if (result == 0) {
1235 0 : return(VM_PAGER_OK);
1236 : } else {
1237 0 : while (rebooting)
1238 0 : tsleep(&rebooting, PVM, "uvndead", 0);
1239 0 : return(VM_PAGER_ERROR);
1240 : }
1241 0 : }
1242 :
1243 : /*
1244 : * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1245 : * is gone we will kill the object (flushing dirty pages back to the vnode
1246 : * if needed).
1247 : *
1248 : * => returns TRUE if there was no uvm_object attached or if there was
1249 : * one and we killed it [i.e. if there is no active uvn]
1250 : * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1251 : * needed]
1252 : *
1253 : * => XXX: given that we now kill uvn's when a vnode is recycled (without
1254 : * having to hold a reference on the vnode) and given a working
1255 : * uvm_vnp_sync(), how does that effect the need for this function?
1256 : * [XXXCDC: seems like it can die?]
1257 : *
1258 : * => XXX: this function should DIE once we merge the VM and buffer
1259 : * cache.
1260 : *
1261 : * research shows that this is called in the following places:
1262 : * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1263 : * changes sizes
1264 : * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1265 : * are written to
1266 : * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1267 : * is off
1268 : * ffs_realloccg: when we can't extend the current block and have
1269 : * to allocate a new one we call this [XXX: why?]
1270 : * nfsrv_rename, rename_files: called when the target filename is there
1271 : * and we want to remove it
1272 : * nfsrv_remove, sys_unlink: called on file we are removing
1273 : * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1274 : * then return "text busy"
1275 : * nfs_open: seems to uncache any file opened with nfs
1276 : * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1277 : * fusefs_open: uncaches any file that is opened
1278 : * fusefs_write: uncaches on every write
1279 : */
1280 :
1281 : int
1282 0 : uvm_vnp_uncache(struct vnode *vp)
1283 : {
1284 0 : struct uvm_vnode *uvn = vp->v_uvm;
1285 :
1286 : /* lock uvn part of the vnode and check if we need to do anything */
1287 :
1288 0 : if ((uvn->u_flags & UVM_VNODE_VALID) == 0 ||
1289 0 : (uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1290 0 : return(TRUE);
1291 : }
1292 :
1293 : /*
1294 : * we have a valid, non-blocked uvn. clear persist flag.
1295 : * if uvn is currently active we can return now.
1296 : */
1297 0 : uvn->u_flags &= ~UVM_VNODE_CANPERSIST;
1298 0 : if (uvn->u_obj.uo_refs) {
1299 0 : return(FALSE);
1300 : }
1301 :
1302 : /*
1303 : * uvn is currently persisting! we have to gain a reference to
1304 : * it so that we can call uvn_detach to kill the uvn.
1305 : */
1306 0 : vref(vp); /* seems ok, even with VOP_LOCK */
1307 0 : uvn->u_obj.uo_refs++; /* value is now 1 */
1308 :
1309 : #ifdef VFSLCKDEBUG
1310 : /*
1311 : * carry over sanity check from old vnode pager: the vnode should
1312 : * be VOP_LOCK'd, and we confirm it here.
1313 : */
1314 : if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp))
1315 : panic("uvm_vnp_uncache: vnode not locked!");
1316 : #endif
1317 :
1318 : /*
1319 : * now drop our reference to the vnode. if we have the sole
1320 : * reference to the vnode then this will cause it to die [as we
1321 : * just cleared the persist flag]. we have to unlock the vnode
1322 : * while we are doing this as it may trigger I/O.
1323 : *
1324 : * XXX: it might be possible for uvn to get reclaimed while we are
1325 : * unlocked causing us to return TRUE when we should not. we ignore
1326 : * this as a false-positive return value doesn't hurt us.
1327 : */
1328 0 : VOP_UNLOCK(vp);
1329 0 : uvn_detach(&uvn->u_obj);
1330 0 : vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1331 :
1332 0 : return(TRUE);
1333 0 : }
1334 :
1335 : /*
1336 : * uvm_vnp_setsize: grow or shrink a vnode uvn
1337 : *
1338 : * grow => just update size value
1339 : * shrink => toss un-needed pages
1340 : *
1341 : * => we assume that the caller has a reference of some sort to the
1342 : * vnode in question so that it will not be yanked out from under
1343 : * us.
1344 : *
1345 : * called from:
1346 : * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos],
1347 : * fusefs_setattr)
1348 : * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write
1349 : * fusefs_write)
1350 : * => ffs_balloc [XXX: why? doesn't WRITE handle?]
1351 : * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1352 : * => union fs: union_newsize
1353 : */
1354 :
1355 : void
1356 0 : uvm_vnp_setsize(struct vnode *vp, off_t newsize)
1357 : {
1358 0 : struct uvm_vnode *uvn = vp->v_uvm;
1359 :
1360 : /* lock uvn and check for valid object, and if valid: do it! */
1361 0 : if (uvn->u_flags & UVM_VNODE_VALID) {
1362 :
1363 : /*
1364 : * now check if the size has changed: if we shrink we had better
1365 : * toss some pages...
1366 : */
1367 :
1368 0 : if (uvn->u_size > newsize) {
1369 0 : (void)uvn_flush(&uvn->u_obj, newsize,
1370 : uvn->u_size, PGO_FREE);
1371 0 : }
1372 0 : uvn->u_size = newsize;
1373 0 : }
1374 0 : }
1375 :
1376 : /*
1377 : * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1378 : *
1379 : * => called from sys_sync with no VM structures locked
1380 : * => only one process can do a sync at a time (because the uvn
1381 : * structure only has one queue for sync'ing). we ensure this
1382 : * by holding the uvn_sync_lock while the sync is in progress.
1383 : * other processes attempting a sync will sleep on this lock
1384 : * until we are done.
1385 : */
1386 : void
1387 0 : uvm_vnp_sync(struct mount *mp)
1388 : {
1389 : struct uvm_vnode *uvn;
1390 : struct vnode *vp;
1391 :
1392 : /*
1393 : * step 1: ensure we are only ones using the uvn_sync_q by locking
1394 : * our lock...
1395 : */
1396 0 : rw_enter_write(&uvn_sync_lock);
1397 :
1398 : /*
1399 : * step 2: build up a simpleq of uvns of interest based on the
1400 : * write list. we gain a reference to uvns of interest.
1401 : */
1402 0 : SIMPLEQ_INIT(&uvn_sync_q);
1403 0 : LIST_FOREACH(uvn, &uvn_wlist, u_wlist) {
1404 0 : vp = uvn->u_vnode;
1405 0 : if (mp && vp->v_mount != mp)
1406 : continue;
1407 :
1408 : /*
1409 : * If the vnode is "blocked" it means it must be dying, which
1410 : * in turn means its in the process of being flushed out so
1411 : * we can safely skip it.
1412 : *
1413 : * note that uvn must already be valid because we found it on
1414 : * the wlist (this also means it can't be ALOCK'd).
1415 : */
1416 0 : if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0)
1417 : continue;
1418 :
1419 : /*
1420 : * gain reference. watch out for persisting uvns (need to
1421 : * regain vnode REF).
1422 : */
1423 0 : if (uvn->u_obj.uo_refs == 0)
1424 0 : vref(vp);
1425 0 : uvn->u_obj.uo_refs++;
1426 :
1427 0 : SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
1428 0 : }
1429 :
1430 : /* step 3: we now have a list of uvn's that may need cleaning. */
1431 0 : SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) {
1432 : #ifdef DEBUG
1433 : if (uvn->u_flags & UVM_VNODE_DYING) {
1434 : printf("uvm_vnp_sync: dying vnode on sync list\n");
1435 : }
1436 : #endif
1437 0 : uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST);
1438 :
1439 : /*
1440 : * if we have the only reference and we just cleaned the uvn,
1441 : * then we can pull it out of the UVM_VNODE_WRITEABLE state
1442 : * thus allowing us to avoid thinking about flushing it again
1443 : * on later sync ops.
1444 : */
1445 0 : if (uvn->u_obj.uo_refs == 1 &&
1446 0 : (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
1447 0 : LIST_REMOVE(uvn, u_wlist);
1448 0 : uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
1449 0 : }
1450 :
1451 : /* now drop our reference to the uvn */
1452 0 : uvn_detach(&uvn->u_obj);
1453 : }
1454 :
1455 0 : rw_exit_write(&uvn_sync_lock);
1456 0 : }
|