Line data Source code
1 : /* $OpenBSD: xform.c,v 1.59 2018/04/09 04:34:56 visa Exp $ */
2 : /*
3 : * The authors of this code are John Ioannidis (ji@tla.org),
4 : * Angelos D. Keromytis (kermit@csd.uch.gr),
5 : * Niels Provos (provos@physnet.uni-hamburg.de),
6 : * Damien Miller (djm@mindrot.org) and
7 : * Mike Belopuhov (mikeb@openbsd.org).
8 : *
9 : * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
10 : * in November 1995.
11 : *
12 : * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
13 : * by Angelos D. Keromytis.
14 : *
15 : * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
16 : * and Niels Provos.
17 : *
18 : * Additional features in 1999 by Angelos D. Keromytis.
19 : *
20 : * AES XTS implementation in 2008 by Damien Miller
21 : *
22 : * AES-GCM-16 and Chacha20-Poly1305 AEAD modes by Mike Belopuhov.
23 : *
24 : * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
25 : * Angelos D. Keromytis and Niels Provos.
26 : *
27 : * Copyright (C) 2001, Angelos D. Keromytis.
28 : *
29 : * Copyright (C) 2008, Damien Miller
30 : *
31 : * Copyright (C) 2010, 2015, Mike Belopuhov
32 : *
33 : * Permission to use, copy, and modify this software with or without fee
34 : * is hereby granted, provided that this entire notice is included in
35 : * all copies of any software which is or includes a copy or
36 : * modification of this software.
37 : * You may use this code under the GNU public license if you so wish. Please
38 : * contribute changes back to the authors under this freer than GPL license
39 : * so that we may further the use of strong encryption without limitations to
40 : * all.
41 : *
42 : * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
43 : * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
44 : * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
45 : * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
46 : * PURPOSE.
47 : */
48 :
49 : #include <sys/param.h>
50 : #include <sys/systm.h>
51 : #include <sys/errno.h>
52 : #include <sys/time.h>
53 : #include <sys/kernel.h>
54 : #include <machine/cpu.h>
55 :
56 : #include <crypto/md5.h>
57 : #include <crypto/sha1.h>
58 : #include <crypto/sha2.h>
59 : #include <crypto/rmd160.h>
60 : #include <crypto/blf.h>
61 : #include <crypto/cast.h>
62 : #include <crypto/rijndael.h>
63 : #include <crypto/aes.h>
64 : #include <crypto/cryptodev.h>
65 : #include <crypto/xform.h>
66 : #include <crypto/gmac.h>
67 : #include <crypto/chachapoly.h>
68 :
69 : extern void des_ecb3_encrypt(caddr_t, caddr_t, caddr_t, caddr_t, caddr_t, int);
70 :
71 : int des_set_key(void *, caddr_t);
72 : int des3_setkey(void *, u_int8_t *, int);
73 : int blf_setkey(void *, u_int8_t *, int);
74 : int cast5_setkey(void *, u_int8_t *, int);
75 : int aes_setkey(void *, u_int8_t *, int);
76 : int aes_ctr_setkey(void *, u_int8_t *, int);
77 : int aes_xts_setkey(void *, u_int8_t *, int);
78 : int null_setkey(void *, u_int8_t *, int);
79 :
80 : void des3_encrypt(caddr_t, u_int8_t *);
81 : void blf_encrypt(caddr_t, u_int8_t *);
82 : void cast5_encrypt(caddr_t, u_int8_t *);
83 : void aes_encrypt(caddr_t, u_int8_t *);
84 : void null_encrypt(caddr_t, u_int8_t *);
85 : void aes_xts_encrypt(caddr_t, u_int8_t *);
86 :
87 : void des3_decrypt(caddr_t, u_int8_t *);
88 : void blf_decrypt(caddr_t, u_int8_t *);
89 : void cast5_decrypt(caddr_t, u_int8_t *);
90 : void aes_decrypt(caddr_t, u_int8_t *);
91 : void null_decrypt(caddr_t, u_int8_t *);
92 : void aes_xts_decrypt(caddr_t, u_int8_t *);
93 :
94 : void aes_ctr_crypt(caddr_t, u_int8_t *);
95 :
96 : void aes_ctr_reinit(caddr_t, u_int8_t *);
97 : void aes_xts_reinit(caddr_t, u_int8_t *);
98 : void aes_gcm_reinit(caddr_t, u_int8_t *);
99 :
100 : int MD5Update_int(void *, const u_int8_t *, u_int16_t);
101 : int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
102 : int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
103 : int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
104 : int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
105 : int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
106 :
107 : u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
108 : u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
109 : u_int32_t lzs_dummy(u_int8_t *, u_int32_t, u_int8_t **);
110 :
111 : struct aes_ctr_ctx {
112 : AES_CTX ac_key;
113 : u_int8_t ac_block[AESCTR_BLOCKSIZE];
114 : };
115 :
116 : struct aes_xts_ctx {
117 : rijndael_ctx key1;
118 : rijndael_ctx key2;
119 : u_int8_t tweak[AES_XTS_BLOCKSIZE];
120 : };
121 :
122 : /* Helper */
123 : void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int);
124 :
125 : /* Encryption instances */
126 : struct enc_xform enc_xform_3des = {
127 : CRYPTO_3DES_CBC, "3DES",
128 : 8, 8, 24, 24, 384,
129 : des3_encrypt,
130 : des3_decrypt,
131 : des3_setkey,
132 : NULL
133 : };
134 :
135 : struct enc_xform enc_xform_blf = {
136 : CRYPTO_BLF_CBC, "Blowfish",
137 : 8, 8, 5, 56 /* 448 bits, max key */,
138 : sizeof(blf_ctx),
139 : blf_encrypt,
140 : blf_decrypt,
141 : blf_setkey,
142 : NULL
143 : };
144 :
145 : struct enc_xform enc_xform_cast5 = {
146 : CRYPTO_CAST_CBC, "CAST-128",
147 : 8, 8, 5, 16,
148 : sizeof(cast_key),
149 : cast5_encrypt,
150 : cast5_decrypt,
151 : cast5_setkey,
152 : NULL
153 : };
154 :
155 : struct enc_xform enc_xform_aes = {
156 : CRYPTO_AES_CBC, "AES",
157 : 16, 16, 16, 32,
158 : sizeof(AES_CTX),
159 : aes_encrypt,
160 : aes_decrypt,
161 : aes_setkey,
162 : NULL
163 : };
164 :
165 : struct enc_xform enc_xform_aes_ctr = {
166 : CRYPTO_AES_CTR, "AES-CTR",
167 : 16, 8, 16+4, 32+4,
168 : sizeof(struct aes_ctr_ctx),
169 : aes_ctr_crypt,
170 : aes_ctr_crypt,
171 : aes_ctr_setkey,
172 : aes_ctr_reinit
173 : };
174 :
175 : struct enc_xform enc_xform_aes_gcm = {
176 : CRYPTO_AES_GCM_16, "AES-GCM",
177 : 1, 8, 16+4, 32+4,
178 : sizeof(struct aes_ctr_ctx),
179 : aes_ctr_crypt,
180 : aes_ctr_crypt,
181 : aes_ctr_setkey,
182 : aes_gcm_reinit
183 : };
184 :
185 : struct enc_xform enc_xform_aes_gmac = {
186 : CRYPTO_AES_GMAC, "AES-GMAC",
187 : 1, 8, 16+4, 32+4, 0,
188 : NULL,
189 : NULL,
190 : NULL,
191 : NULL
192 : };
193 :
194 : struct enc_xform enc_xform_aes_xts = {
195 : CRYPTO_AES_XTS, "AES-XTS",
196 : 16, 8, 32, 64,
197 : sizeof(struct aes_xts_ctx),
198 : aes_xts_encrypt,
199 : aes_xts_decrypt,
200 : aes_xts_setkey,
201 : aes_xts_reinit
202 : };
203 :
204 : struct enc_xform enc_xform_chacha20_poly1305 = {
205 : CRYPTO_CHACHA20_POLY1305, "CHACHA20-POLY1305",
206 : 1, 8, 32+4, 32+4,
207 : sizeof(struct chacha20_ctx),
208 : chacha20_crypt,
209 : chacha20_crypt,
210 : chacha20_setkey,
211 : chacha20_reinit
212 : };
213 :
214 : struct enc_xform enc_xform_null = {
215 : CRYPTO_NULL, "NULL",
216 : 4, 0, 0, 256, 0,
217 : null_encrypt,
218 : null_decrypt,
219 : null_setkey,
220 : NULL
221 : };
222 :
223 : /* Authentication instances */
224 : struct auth_hash auth_hash_hmac_md5_96 = {
225 : CRYPTO_MD5_HMAC, "HMAC-MD5",
226 : 16, 16, 12, sizeof(MD5_CTX), HMAC_MD5_BLOCK_LEN,
227 : (void (*) (void *)) MD5Init, NULL, NULL,
228 : MD5Update_int,
229 : (void (*) (u_int8_t *, void *)) MD5Final
230 : };
231 :
232 : struct auth_hash auth_hash_hmac_sha1_96 = {
233 : CRYPTO_SHA1_HMAC, "HMAC-SHA1",
234 : 20, 20, 12, sizeof(SHA1_CTX), HMAC_SHA1_BLOCK_LEN,
235 : (void (*) (void *)) SHA1Init, NULL, NULL,
236 : SHA1Update_int,
237 : (void (*) (u_int8_t *, void *)) SHA1Final
238 : };
239 :
240 : struct auth_hash auth_hash_hmac_ripemd_160_96 = {
241 : CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
242 : 20, 20, 12, sizeof(RMD160_CTX), HMAC_RIPEMD160_BLOCK_LEN,
243 : (void (*)(void *)) RMD160Init, NULL, NULL,
244 : RMD160Update_int,
245 : (void (*)(u_int8_t *, void *)) RMD160Final
246 : };
247 :
248 : struct auth_hash auth_hash_hmac_sha2_256_128 = {
249 : CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
250 : 32, 32, 16, sizeof(SHA2_CTX), HMAC_SHA2_256_BLOCK_LEN,
251 : (void (*)(void *)) SHA256Init, NULL, NULL,
252 : SHA256Update_int,
253 : (void (*)(u_int8_t *, void *)) SHA256Final
254 : };
255 :
256 : struct auth_hash auth_hash_hmac_sha2_384_192 = {
257 : CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
258 : 48, 48, 24, sizeof(SHA2_CTX), HMAC_SHA2_384_BLOCK_LEN,
259 : (void (*)(void *)) SHA384Init, NULL, NULL,
260 : SHA384Update_int,
261 : (void (*)(u_int8_t *, void *)) SHA384Final
262 : };
263 :
264 : struct auth_hash auth_hash_hmac_sha2_512_256 = {
265 : CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
266 : 64, 64, 32, sizeof(SHA2_CTX), HMAC_SHA2_512_BLOCK_LEN,
267 : (void (*)(void *)) SHA512Init, NULL, NULL,
268 : SHA512Update_int,
269 : (void (*)(u_int8_t *, void *)) SHA512Final
270 : };
271 :
272 : struct auth_hash auth_hash_gmac_aes_128 = {
273 : CRYPTO_AES_128_GMAC, "GMAC-AES-128",
274 : 16+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
275 : AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
276 : AES_GMAC_Update, AES_GMAC_Final
277 : };
278 :
279 : struct auth_hash auth_hash_gmac_aes_192 = {
280 : CRYPTO_AES_192_GMAC, "GMAC-AES-192",
281 : 24+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
282 : AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
283 : AES_GMAC_Update, AES_GMAC_Final
284 : };
285 :
286 : struct auth_hash auth_hash_gmac_aes_256 = {
287 : CRYPTO_AES_256_GMAC, "GMAC-AES-256",
288 : 32+4, GMAC_BLOCK_LEN, GMAC_DIGEST_LEN, sizeof(AES_GMAC_CTX),
289 : AESCTR_BLOCKSIZE, AES_GMAC_Init, AES_GMAC_Setkey, AES_GMAC_Reinit,
290 : AES_GMAC_Update, AES_GMAC_Final
291 : };
292 :
293 : struct auth_hash auth_hash_chacha20_poly1305 = {
294 : CRYPTO_CHACHA20_POLY1305_MAC, "CHACHA20-POLY1305",
295 : CHACHA20_KEYSIZE+CHACHA20_SALT, POLY1305_BLOCK_LEN, POLY1305_TAGLEN,
296 : sizeof(CHACHA20_POLY1305_CTX), CHACHA20_BLOCK_LEN,
297 : Chacha20_Poly1305_Init, Chacha20_Poly1305_Setkey,
298 : Chacha20_Poly1305_Reinit, Chacha20_Poly1305_Update,
299 : Chacha20_Poly1305_Final
300 : };
301 :
302 : /* Compression instance */
303 : struct comp_algo comp_algo_deflate = {
304 : CRYPTO_DEFLATE_COMP, "Deflate",
305 : 90, deflate_compress,
306 : deflate_decompress
307 : };
308 :
309 : struct comp_algo comp_algo_lzs = {
310 : CRYPTO_LZS_COMP, "LZS",
311 : 90, lzs_dummy,
312 : lzs_dummy
313 : };
314 :
315 : /*
316 : * Encryption wrapper routines.
317 : */
318 : void
319 0 : des3_encrypt(caddr_t key, u_int8_t *blk)
320 : {
321 0 : des_ecb3_encrypt(blk, blk, key, key + 128, key + 256, 1);
322 0 : }
323 :
324 : void
325 0 : des3_decrypt(caddr_t key, u_int8_t *blk)
326 : {
327 0 : des_ecb3_encrypt(blk, blk, key + 256, key + 128, key, 0);
328 0 : }
329 :
330 : int
331 0 : des3_setkey(void *sched, u_int8_t *key, int len)
332 : {
333 0 : if (des_set_key(key, sched) < 0 || des_set_key(key + 8, sched + 128)
334 0 : < 0 || des_set_key(key + 16, sched + 256) < 0)
335 0 : return -1;
336 :
337 0 : return 0;
338 0 : }
339 :
340 : void
341 0 : blf_encrypt(caddr_t key, u_int8_t *blk)
342 : {
343 0 : blf_ecb_encrypt((blf_ctx *) key, blk, 8);
344 0 : }
345 :
346 : void
347 0 : blf_decrypt(caddr_t key, u_int8_t *blk)
348 : {
349 0 : blf_ecb_decrypt((blf_ctx *) key, blk, 8);
350 0 : }
351 :
352 : int
353 0 : blf_setkey(void *sched, u_int8_t *key, int len)
354 : {
355 0 : blf_key((blf_ctx *)sched, key, len);
356 :
357 0 : return 0;
358 : }
359 :
360 : int
361 0 : null_setkey(void *sched, u_int8_t *key, int len)
362 : {
363 0 : return 0;
364 : }
365 :
366 : void
367 0 : null_encrypt(caddr_t key, u_int8_t *blk)
368 : {
369 0 : }
370 :
371 : void
372 0 : null_decrypt(caddr_t key, u_int8_t *blk)
373 : {
374 0 : }
375 :
376 : void
377 0 : cast5_encrypt(caddr_t key, u_int8_t *blk)
378 : {
379 0 : cast_encrypt((cast_key *) key, blk, blk);
380 0 : }
381 :
382 : void
383 0 : cast5_decrypt(caddr_t key, u_int8_t *blk)
384 : {
385 0 : cast_decrypt((cast_key *) key, blk, blk);
386 0 : }
387 :
388 : int
389 0 : cast5_setkey(void *sched, u_int8_t *key, int len)
390 : {
391 0 : cast_setkey((cast_key *)sched, key, len);
392 :
393 0 : return 0;
394 : }
395 :
396 : void
397 0 : aes_encrypt(caddr_t key, u_int8_t *blk)
398 : {
399 0 : AES_Encrypt((AES_CTX *)key, blk, blk);
400 0 : }
401 :
402 : void
403 0 : aes_decrypt(caddr_t key, u_int8_t *blk)
404 : {
405 0 : AES_Decrypt((AES_CTX *)key, blk, blk);
406 0 : }
407 :
408 : int
409 0 : aes_setkey(void *sched, u_int8_t *key, int len)
410 : {
411 0 : return AES_Setkey((AES_CTX *)sched, key, len);
412 : }
413 :
414 : void
415 0 : aes_ctr_reinit(caddr_t key, u_int8_t *iv)
416 : {
417 : struct aes_ctr_ctx *ctx;
418 :
419 0 : ctx = (struct aes_ctr_ctx *)key;
420 0 : bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
421 :
422 : /* reset counter */
423 0 : bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
424 0 : }
425 :
426 : void
427 0 : aes_gcm_reinit(caddr_t key, u_int8_t *iv)
428 : {
429 : struct aes_ctr_ctx *ctx;
430 :
431 0 : ctx = (struct aes_ctr_ctx *)key;
432 0 : bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE);
433 :
434 : /* reset counter */
435 0 : bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4);
436 0 : ctx->ac_block[AESCTR_BLOCKSIZE - 1] = 1; /* GCM starts with 1 */
437 0 : }
438 :
439 : void
440 0 : aes_ctr_crypt(caddr_t key, u_int8_t *data)
441 : {
442 : struct aes_ctr_ctx *ctx;
443 0 : u_int8_t keystream[AESCTR_BLOCKSIZE];
444 : int i;
445 :
446 0 : ctx = (struct aes_ctr_ctx *)key;
447 : /* increment counter */
448 0 : for (i = AESCTR_BLOCKSIZE - 1;
449 0 : i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--)
450 0 : if (++ctx->ac_block[i]) /* continue on overflow */
451 : break;
452 0 : AES_Encrypt(&ctx->ac_key, ctx->ac_block, keystream);
453 0 : for (i = 0; i < AESCTR_BLOCKSIZE; i++)
454 0 : data[i] ^= keystream[i];
455 0 : explicit_bzero(keystream, sizeof(keystream));
456 0 : }
457 :
458 : int
459 0 : aes_ctr_setkey(void *sched, u_int8_t *key, int len)
460 : {
461 : struct aes_ctr_ctx *ctx;
462 :
463 0 : if (len < AESCTR_NONCESIZE)
464 0 : return -1;
465 :
466 0 : ctx = (struct aes_ctr_ctx *)sched;
467 0 : if (AES_Setkey(&ctx->ac_key, key, len - AESCTR_NONCESIZE) != 0)
468 0 : return -1;
469 0 : bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE);
470 0 : return 0;
471 0 : }
472 :
473 : void
474 0 : aes_xts_reinit(caddr_t key, u_int8_t *iv)
475 : {
476 0 : struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
477 : u_int64_t blocknum;
478 : u_int i;
479 :
480 : /*
481 : * Prepare tweak as E_k2(IV). IV is specified as LE representation
482 : * of a 64-bit block number which we allow to be passed in directly.
483 : */
484 0 : memcpy(&blocknum, iv, AES_XTS_IVSIZE);
485 0 : for (i = 0; i < AES_XTS_IVSIZE; i++) {
486 0 : ctx->tweak[i] = blocknum & 0xff;
487 0 : blocknum >>= 8;
488 : }
489 : /* Last 64 bits of IV are always zero */
490 0 : bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
491 :
492 0 : rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
493 0 : }
494 :
495 : void
496 0 : aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
497 : {
498 0 : u_int8_t block[AES_XTS_BLOCKSIZE];
499 : u_int i, carry_in, carry_out;
500 :
501 0 : for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
502 0 : block[i] = data[i] ^ ctx->tweak[i];
503 :
504 0 : if (do_encrypt)
505 0 : rijndael_encrypt(&ctx->key1, block, data);
506 : else
507 0 : rijndael_decrypt(&ctx->key1, block, data);
508 :
509 0 : for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
510 0 : data[i] ^= ctx->tweak[i];
511 :
512 : /* Exponentiate tweak */
513 : carry_in = 0;
514 0 : for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
515 0 : carry_out = ctx->tweak[i] & 0x80;
516 0 : ctx->tweak[i] = (ctx->tweak[i] << 1) | carry_in;
517 0 : carry_in = carry_out >> 7;
518 : }
519 0 : ctx->tweak[0] ^= (AES_XTS_ALPHA & -carry_in);
520 0 : explicit_bzero(block, sizeof(block));
521 0 : }
522 :
523 : void
524 0 : aes_xts_encrypt(caddr_t key, u_int8_t *data)
525 : {
526 0 : aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
527 0 : }
528 :
529 : void
530 0 : aes_xts_decrypt(caddr_t key, u_int8_t *data)
531 : {
532 0 : aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
533 0 : }
534 :
535 : int
536 0 : aes_xts_setkey(void *sched, u_int8_t *key, int len)
537 : {
538 : struct aes_xts_ctx *ctx;
539 :
540 0 : if (len != 32 && len != 64)
541 0 : return -1;
542 :
543 0 : ctx = (struct aes_xts_ctx *)sched;
544 :
545 0 : rijndael_set_key(&ctx->key1, key, len * 4);
546 0 : rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
547 :
548 0 : return 0;
549 0 : }
550 :
551 : /*
552 : * And now for auth.
553 : */
554 :
555 : int
556 0 : RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
557 : {
558 0 : RMD160Update(ctx, buf, len);
559 0 : return 0;
560 : }
561 :
562 : int
563 0 : MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
564 : {
565 0 : MD5Update(ctx, buf, len);
566 0 : return 0;
567 : }
568 :
569 : int
570 0 : SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
571 : {
572 0 : SHA1Update(ctx, buf, len);
573 0 : return 0;
574 : }
575 :
576 : int
577 0 : SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
578 : {
579 0 : SHA256Update(ctx, buf, len);
580 0 : return 0;
581 : }
582 :
583 : int
584 0 : SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
585 : {
586 0 : SHA384Update(ctx, buf, len);
587 0 : return 0;
588 : }
589 :
590 : int
591 0 : SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
592 : {
593 0 : SHA512Update(ctx, buf, len);
594 0 : return 0;
595 : }
596 :
597 :
598 : u_int32_t deflate_global(u_int8_t *, u_int32_t, int, u_int8_t **);
599 :
600 : struct deflate_buf {
601 : u_int8_t *out;
602 : u_int32_t size;
603 : int flag;
604 : };
605 :
606 : /*
607 : * And compression
608 : */
609 :
610 : u_int32_t
611 0 : deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
612 : {
613 0 : return deflate_global(data, size, 0, out);
614 : }
615 :
616 : u_int32_t
617 0 : deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
618 : {
619 0 : return deflate_global(data, size, 1, out);
620 : }
621 :
622 : u_int32_t
623 0 : lzs_dummy(u_int8_t *data, u_int32_t size, u_int8_t **out)
624 : {
625 0 : *out = NULL;
626 0 : return (0);
627 : }
|