Line data Source code
1 : /*
2 : * Copyright © 2014 Intel Corporation
3 : *
4 : * Permission is hereby granted, free of charge, to any person obtaining a
5 : * copy of this software and associated documentation files (the "Software"),
6 : * to deal in the Software without restriction, including without limitation
7 : * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 : * and/or sell copies of the Software, and to permit persons to whom the
9 : * Software is furnished to do so, subject to the following conditions:
10 : *
11 : * The above copyright notice and this permission notice (including the next
12 : * paragraph) shall be included in all copies or substantial portions of the
13 : * Software.
14 : *
15 : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 : * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 : * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 : * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 : * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 : * IN THE SOFTWARE.
22 : *
23 : * Please try to maintain the following order within this file unless it makes
24 : * sense to do otherwise. From top to bottom:
25 : * 1. typedefs
26 : * 2. #defines, and macros
27 : * 3. structure definitions
28 : * 4. function prototypes
29 : *
30 : * Within each section, please try to order by generation in ascending order,
31 : * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 : */
33 :
34 : #ifndef __I915_GEM_GTT_H__
35 : #define __I915_GEM_GTT_H__
36 :
37 : struct drm_i915_file_private;
38 :
39 : typedef uint32_t gen6_pte_t;
40 : typedef uint64_t gen8_pte_t;
41 : typedef uint64_t gen8_pde_t;
42 : typedef uint64_t gen8_ppgtt_pdpe_t;
43 : typedef uint64_t gen8_ppgtt_pml4e_t;
44 :
45 : #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
46 :
47 :
48 : /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
49 : #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
50 : #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
51 : #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
52 : #define GEN6_PTE_CACHE_LLC (2 << 1)
53 : #define GEN6_PTE_UNCACHED (1 << 1)
54 : #define GEN6_PTE_VALID (1 << 0)
55 :
56 : #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
57 : #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
58 : #define I915_PDES 512
59 : #define I915_PDE_MASK (I915_PDES - 1)
60 : #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
61 :
62 : #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
63 : #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
64 : #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
65 : #define GEN6_PDE_SHIFT 22
66 : #define GEN6_PDE_VALID (1 << 0)
67 :
68 : #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
69 :
70 : #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
71 : #define BYT_PTE_WRITEABLE (1 << 1)
72 :
73 : /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
74 : * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
75 : */
76 : #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
77 : (((bits) & 0x8) << (11 - 3)))
78 : #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
79 : #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
80 : #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
81 : #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
82 : #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
83 : #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
84 : #define HSW_PTE_UNCACHED (0)
85 : #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
86 : #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
87 :
88 : /* GEN8 legacy style address is defined as a 3 level page table:
89 : * 31:30 | 29:21 | 20:12 | 11:0
90 : * PDPE | PDE | PTE | offset
91 : * The difference as compared to normal x86 3 level page table is the PDPEs are
92 : * programmed via register.
93 : *
94 : * GEN8 48b legacy style address is defined as a 4 level page table:
95 : * 47:39 | 38:30 | 29:21 | 20:12 | 11:0
96 : * PML4E | PDPE | PDE | PTE | offset
97 : */
98 : #define GEN8_PML4ES_PER_PML4 512
99 : #define GEN8_PML4E_SHIFT 39
100 : #define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
101 : #define GEN8_PDPE_SHIFT 30
102 : /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
103 : * tables */
104 : #define GEN8_PDPE_MASK 0x1ff
105 : #define GEN8_PDE_SHIFT 21
106 : #define GEN8_PDE_MASK 0x1ff
107 : #define GEN8_PTE_SHIFT 12
108 : #define GEN8_PTE_MASK 0x1ff
109 : #define GEN8_LEGACY_PDPES 4
110 : #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
111 :
112 : #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
113 : GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
114 :
115 : #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
116 : #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
117 : #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
118 : #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
119 :
120 : #define CHV_PPAT_SNOOP (1<<6)
121 : #define GEN8_PPAT_AGE(x) (x<<4)
122 : #define GEN8_PPAT_LLCeLLC (3<<2)
123 : #define GEN8_PPAT_LLCELLC (2<<2)
124 : #define GEN8_PPAT_LLC (1<<2)
125 : #define GEN8_PPAT_WB (3<<0)
126 : #define GEN8_PPAT_WT (2<<0)
127 : #define GEN8_PPAT_WC (1<<0)
128 : #define GEN8_PPAT_UC (0<<0)
129 : #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
130 : #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
131 :
132 : enum i915_ggtt_view_type {
133 : I915_GGTT_VIEW_NORMAL = 0,
134 : I915_GGTT_VIEW_ROTATED,
135 : I915_GGTT_VIEW_PARTIAL,
136 : };
137 :
138 : struct intel_rotation_info {
139 : unsigned int height;
140 : unsigned int pitch;
141 : unsigned int uv_offset;
142 : uint32_t pixel_format;
143 : uint64_t fb_modifier;
144 : unsigned int width_pages, height_pages;
145 : uint64_t size;
146 : unsigned int width_pages_uv, height_pages_uv;
147 : uint64_t size_uv;
148 : unsigned int uv_start_page;
149 : };
150 :
151 : struct i915_ggtt_view {
152 : enum i915_ggtt_view_type type;
153 :
154 : union {
155 : struct {
156 : u64 offset;
157 : unsigned int size;
158 : } partial;
159 : } params;
160 :
161 : struct sg_table *pages;
162 :
163 : union {
164 : struct intel_rotation_info rotation_info;
165 : };
166 : };
167 :
168 : extern const struct i915_ggtt_view i915_ggtt_view_normal;
169 : extern const struct i915_ggtt_view i915_ggtt_view_rotated;
170 :
171 : enum i915_cache_level;
172 :
173 : /**
174 : * A VMA represents a GEM BO that is bound into an address space. Therefore, a
175 : * VMA's presence cannot be guaranteed before binding, or after unbinding the
176 : * object into/from the address space.
177 : *
178 : * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
179 : * will always be <= an objects lifetime. So object refcounting should cover us.
180 : */
181 : struct i915_vma {
182 : struct drm_mm_node node;
183 : struct drm_i915_gem_object *obj;
184 : struct i915_address_space *vm;
185 :
186 : /** Flags and address space this VMA is bound to */
187 : #define GLOBAL_BIND (1<<0)
188 : #define LOCAL_BIND (1<<1)
189 : unsigned int bound : 4;
190 :
191 : /**
192 : * Support different GGTT views into the same object.
193 : * This means there can be multiple VMA mappings per object and per VM.
194 : * i915_ggtt_view_type is used to distinguish between those entries.
195 : * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
196 : * assumed in GEM functions which take no ggtt view parameter.
197 : */
198 : struct i915_ggtt_view ggtt_view;
199 :
200 : /** This object's place on the active/inactive lists */
201 : struct list_head mm_list;
202 :
203 : struct list_head vma_link; /* Link in the object's VMA list */
204 :
205 : /** This vma's place in the batchbuffer or on the eviction list */
206 : struct list_head exec_list;
207 :
208 : /**
209 : * Used for performing relocations during execbuffer insertion.
210 : */
211 : struct hlist_node exec_node;
212 : unsigned long exec_handle;
213 : struct drm_i915_gem_exec_object2 *exec_entry;
214 :
215 : /**
216 : * How many users have pinned this object in GTT space. The following
217 : * users can each hold at most one reference: pwrite/pread, execbuffer
218 : * (objects are not allowed multiple times for the same batchbuffer),
219 : * and the framebuffer code. When switching/pageflipping, the
220 : * framebuffer code has at most two buffers pinned per crtc.
221 : *
222 : * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
223 : * bits with absolutely no headroom. So use 4 bits. */
224 : unsigned int pin_count:4;
225 : #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
226 : };
227 :
228 : struct i915_page_dma {
229 : struct vm_page *page;
230 : union {
231 : dma_addr_t daddr;
232 :
233 : /* For gen6/gen7 only. This is the offset in the GGTT
234 : * where the page directory entries for PPGTT begin
235 : */
236 : uint32_t ggtt_offset;
237 : };
238 : };
239 :
240 : #define px_base(px) (&(px)->base)
241 : #define px_page(px) (px_base(px)->page)
242 : #define px_dma(px) (px_base(px)->daddr)
243 :
244 : struct i915_page_scratch {
245 : struct i915_page_dma base;
246 : };
247 :
248 : struct i915_page_table {
249 : struct i915_page_dma base;
250 :
251 : unsigned long *used_ptes;
252 : };
253 :
254 : struct i915_page_directory {
255 : struct i915_page_dma base;
256 :
257 : unsigned long *used_pdes;
258 : struct i915_page_table *page_table[I915_PDES]; /* PDEs */
259 : };
260 :
261 : struct i915_page_directory_pointer {
262 : struct i915_page_dma base;
263 :
264 : unsigned long *used_pdpes;
265 : struct i915_page_directory **page_directory;
266 : };
267 :
268 : struct i915_pml4 {
269 : struct i915_page_dma base;
270 :
271 : DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
272 : struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
273 : };
274 :
275 : struct i915_address_space {
276 : struct drm_mm mm;
277 : struct drm_device *dev;
278 : struct list_head global_link;
279 : u64 start; /* Start offset always 0 for dri2 */
280 : u64 total; /* size addr space maps (ex. 2GB for ggtt) */
281 :
282 : struct i915_page_scratch *scratch_page;
283 : struct i915_page_table *scratch_pt;
284 : struct i915_page_directory *scratch_pd;
285 : struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
286 :
287 : /**
288 : * List of objects currently involved in rendering.
289 : *
290 : * Includes buffers having the contents of their GPU caches
291 : * flushed, not necessarily primitives. last_read_req
292 : * represents when the rendering involved will be completed.
293 : *
294 : * A reference is held on the buffer while on this list.
295 : */
296 : struct list_head active_list;
297 :
298 : /**
299 : * LRU list of objects which are not in the ringbuffer and
300 : * are ready to unbind, but are still in the GTT.
301 : *
302 : * last_read_req is NULL while an object is in this list.
303 : *
304 : * A reference is not held on the buffer while on this list,
305 : * as merely being GTT-bound shouldn't prevent its being
306 : * freed, and we'll pull it off the list in the free path.
307 : */
308 : struct list_head inactive_list;
309 :
310 : /* FIXME: Need a more generic return type */
311 : gen6_pte_t (*pte_encode)(dma_addr_t addr,
312 : enum i915_cache_level level,
313 : bool valid, u32 flags); /* Create a valid PTE */
314 : /* flags for pte_encode */
315 : #define PTE_READ_ONLY (1<<0)
316 : int (*allocate_va_range)(struct i915_address_space *vm,
317 : uint64_t start,
318 : uint64_t length);
319 : void (*clear_range)(struct i915_address_space *vm,
320 : uint64_t start,
321 : uint64_t length,
322 : bool use_scratch);
323 : void (*insert_entries)(struct i915_address_space *vm,
324 : struct sg_table *st,
325 : uint64_t start,
326 : enum i915_cache_level cache_level, u32 flags);
327 : void (*cleanup)(struct i915_address_space *vm);
328 : /** Unmap an object from an address space. This usually consists of
329 : * setting the valid PTE entries to a reserved scratch page. */
330 : void (*unbind_vma)(struct i915_vma *vma);
331 : /* Map an object into an address space with the given cache flags. */
332 : int (*bind_vma)(struct i915_vma *vma,
333 : enum i915_cache_level cache_level,
334 : u32 flags);
335 : };
336 :
337 : /* The Graphics Translation Table is the way in which GEN hardware translates a
338 : * Graphics Virtual Address into a Physical Address. In addition to the normal
339 : * collateral associated with any va->pa translations GEN hardware also has a
340 : * portion of the GTT which can be mapped by the CPU and remain both coherent
341 : * and correct (in cases like swizzling). That region is referred to as GMADR in
342 : * the spec.
343 : */
344 : struct i915_gtt {
345 : struct i915_address_space base;
346 :
347 : size_t stolen_size; /* Total size of stolen memory */
348 : size_t stolen_usable_size; /* Total size minus BIOS reserved */
349 : u64 mappable_end; /* End offset that we can CPU map */
350 : struct io_mapping *mappable; /* Mapping to our CPU mappable region */
351 : phys_addr_t mappable_base; /* PA of our GMADR */
352 :
353 : /** "Graphics Stolen Memory" holds the global PTEs */
354 : void __iomem *gsm;
355 :
356 : bool do_idle_maps;
357 :
358 : int mtrr;
359 :
360 : /* global gtt ops */
361 : int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
362 : size_t *stolen, phys_addr_t *mappable_base,
363 : u64 *mappable_end);
364 : };
365 :
366 : struct i915_hw_ppgtt {
367 : struct i915_address_space base;
368 : struct kref ref;
369 : struct drm_mm_node node;
370 : unsigned long pd_dirty_rings;
371 : union {
372 : struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
373 : struct i915_page_directory_pointer pdp; /* GEN8+ */
374 : struct i915_page_directory pd; /* GEN6-7 */
375 : };
376 :
377 : struct drm_i915_file_private *file_priv;
378 :
379 : gen6_pte_t __iomem *pd_addr;
380 :
381 : int (*enable)(struct i915_hw_ppgtt *ppgtt);
382 : int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
383 : struct drm_i915_gem_request *req);
384 : #ifdef __linux__
385 : void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
386 : #endif
387 : };
388 :
389 : /* For each pde iterates over every pde between from start until start + length.
390 : * If start, and start+length are not perfectly divisible, the macro will round
391 : * down, and up as needed. The macro modifies pde, start, and length. Dev is
392 : * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
393 : * and length = 2G effectively iterates over every PDE in the system.
394 : *
395 : * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
396 : */
397 : #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
398 : for (iter = gen6_pde_index(start); \
399 : length > 0 && iter < I915_PDES ? \
400 : (pt = (pd)->page_table[iter]), 1 : 0; \
401 : iter++, \
402 : temp = roundup2(start+1, 1 << GEN6_PDE_SHIFT) - start, \
403 : temp = min_t(unsigned, temp, length), \
404 : start += temp, length -= temp)
405 :
406 : #define gen6_for_all_pdes(pt, ppgtt, iter) \
407 : for (iter = 0; \
408 : pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
409 : iter++)
410 :
411 0 : static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
412 : {
413 0 : const uint32_t mask = NUM_PTE(pde_shift) - 1;
414 :
415 0 : return (address >> PAGE_SHIFT) & mask;
416 : }
417 :
418 : /* Helper to counts the number of PTEs within the given length. This count
419 : * does not cross a page table boundary, so the max value would be
420 : * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
421 : */
422 0 : static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
423 : uint32_t pde_shift)
424 : {
425 0 : const uint64_t mask = ~((1 << pde_shift) - 1);
426 : uint64_t end;
427 :
428 0 : WARN_ON(length == 0);
429 0 : WARN_ON(offset_in_page(addr|length));
430 :
431 0 : end = addr + length;
432 :
433 0 : if ((addr & mask) != (end & mask))
434 0 : return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
435 :
436 0 : return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
437 0 : }
438 :
439 0 : static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
440 : {
441 0 : return (addr >> shift) & I915_PDE_MASK;
442 : }
443 :
444 0 : static inline uint32_t gen6_pte_index(uint32_t addr)
445 : {
446 0 : return i915_pte_index(addr, GEN6_PDE_SHIFT);
447 : }
448 :
449 0 : static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
450 : {
451 0 : return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
452 : }
453 :
454 0 : static inline uint32_t gen6_pde_index(uint32_t addr)
455 : {
456 0 : return i915_pde_index(addr, GEN6_PDE_SHIFT);
457 : }
458 :
459 : /* Equivalent to the gen6 version, For each pde iterates over every pde
460 : * between from start until start + length. On gen8+ it simply iterates
461 : * over every page directory entry in a page directory.
462 : */
463 : #define gen8_for_each_pde(pt, pd, start, length, temp, iter) \
464 : for (iter = gen8_pde_index(start); \
465 : length > 0 && iter < I915_PDES ? \
466 : (pt = (pd)->page_table[iter]), 1 : 0; \
467 : iter++, \
468 : temp = roundup2(start+1, 1 << GEN8_PDE_SHIFT) - start, \
469 : temp = min(temp, length), \
470 : start += temp, length -= temp)
471 :
472 : #define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter) \
473 : for (iter = gen8_pdpe_index(start); \
474 : length > 0 && (iter < I915_PDPES_PER_PDP(dev)) ? \
475 : (pd = (pdp)->page_directory[iter]), 1 : 0; \
476 : iter++, \
477 : temp = roundup2(start+1, 1 << GEN8_PDPE_SHIFT) - start, \
478 : temp = min(temp, length), \
479 : start += temp, length -= temp)
480 :
481 : #define gen8_for_each_pml4e(pdp, pml4, start, length, temp, iter) \
482 : for (iter = gen8_pml4e_index(start); \
483 : length > 0 && iter < GEN8_PML4ES_PER_PML4 ? \
484 : (pdp = (pml4)->pdps[iter]), 1 : 0; \
485 : iter++, \
486 : temp = roundup2(start+1, 1ULL << GEN8_PML4E_SHIFT) - start,\
487 : temp = min(temp, length), \
488 : start += temp, length -= temp)
489 :
490 0 : static inline uint32_t gen8_pte_index(uint64_t address)
491 : {
492 0 : return i915_pte_index(address, GEN8_PDE_SHIFT);
493 : }
494 :
495 0 : static inline uint32_t gen8_pde_index(uint64_t address)
496 : {
497 0 : return i915_pde_index(address, GEN8_PDE_SHIFT);
498 : }
499 :
500 0 : static inline uint32_t gen8_pdpe_index(uint64_t address)
501 : {
502 0 : return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
503 : }
504 :
505 0 : static inline uint32_t gen8_pml4e_index(uint64_t address)
506 : {
507 0 : return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
508 : }
509 :
510 0 : static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
511 : {
512 0 : return i915_pte_count(address, length, GEN8_PDE_SHIFT);
513 : }
514 :
515 : static inline dma_addr_t
516 0 : i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
517 : {
518 0 : return test_bit(n, ppgtt->pdp.used_pdpes) ?
519 0 : px_dma(ppgtt->pdp.page_directory[n]) :
520 0 : px_dma(ppgtt->base.scratch_pd);
521 : }
522 :
523 : int i915_gem_gtt_init(struct drm_device *dev);
524 : void i915_gem_init_global_gtt(struct drm_device *dev);
525 : void i915_global_gtt_cleanup(struct drm_device *dev);
526 :
527 :
528 : int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
529 : int i915_ppgtt_init_hw(struct drm_device *dev);
530 : int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
531 : void i915_ppgtt_release(struct kref *kref);
532 : struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
533 : struct drm_i915_file_private *fpriv);
534 0 : static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
535 : {
536 0 : if (ppgtt)
537 0 : kref_get(&ppgtt->ref);
538 0 : }
539 0 : static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
540 : {
541 0 : if (ppgtt)
542 0 : kref_put(&ppgtt->ref, i915_ppgtt_release);
543 0 : }
544 :
545 : void i915_check_and_clear_faults(struct drm_device *dev);
546 : void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
547 : void i915_gem_restore_gtt_mappings(struct drm_device *dev);
548 :
549 : int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
550 : void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
551 :
552 : static inline bool
553 0 : i915_ggtt_view_equal(const struct i915_ggtt_view *a,
554 : const struct i915_ggtt_view *b)
555 : {
556 0 : if (WARN_ON(!a || !b))
557 0 : return false;
558 :
559 0 : if (a->type != b->type)
560 0 : return false;
561 0 : if (a->type == I915_GGTT_VIEW_PARTIAL)
562 0 : return !memcmp(&a->params, &b->params, sizeof(a->params));
563 0 : return true;
564 0 : }
565 :
566 : size_t
567 : i915_ggtt_view_size(struct drm_i915_gem_object *obj,
568 : const struct i915_ggtt_view *view);
569 :
570 : #endif
|