Line data Source code
1 : /* $OpenBSD: kern_synch.c,v 1.146 2018/05/31 02:16:22 guenther Exp $ */
2 : /* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */
3 :
4 : /*
5 : * Copyright (c) 1982, 1986, 1990, 1991, 1993
6 : * The Regents of the University of California. All rights reserved.
7 : * (c) UNIX System Laboratories, Inc.
8 : * All or some portions of this file are derived from material licensed
9 : * to the University of California by American Telephone and Telegraph
10 : * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 : * the permission of UNIX System Laboratories, Inc.
12 : *
13 : * Redistribution and use in source and binary forms, with or without
14 : * modification, are permitted provided that the following conditions
15 : * are met:
16 : * 1. Redistributions of source code must retain the above copyright
17 : * notice, this list of conditions and the following disclaimer.
18 : * 2. Redistributions in binary form must reproduce the above copyright
19 : * notice, this list of conditions and the following disclaimer in the
20 : * documentation and/or other materials provided with the distribution.
21 : * 3. Neither the name of the University nor the names of its contributors
22 : * may be used to endorse or promote products derived from this software
23 : * without specific prior written permission.
24 : *
25 : * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 : * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 : * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 : * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 : * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 : * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 : * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 : * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 : * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 : * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 : * SUCH DAMAGE.
36 : *
37 : * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94
38 : */
39 :
40 : #include <sys/param.h>
41 : #include <sys/systm.h>
42 : #include <sys/proc.h>
43 : #include <sys/kernel.h>
44 : #include <sys/signalvar.h>
45 : #include <sys/resourcevar.h>
46 : #include <sys/sched.h>
47 : #include <sys/timeout.h>
48 : #include <sys/mount.h>
49 : #include <sys/syscallargs.h>
50 : #include <sys/pool.h>
51 : #include <sys/refcnt.h>
52 : #include <sys/atomic.h>
53 : #include <sys/witness.h>
54 : #include <ddb/db_output.h>
55 :
56 : #include <machine/spinlock.h>
57 :
58 : #ifdef KTRACE
59 : #include <sys/ktrace.h>
60 : #endif
61 :
62 : int thrsleep(struct proc *, struct sys___thrsleep_args *);
63 : int thrsleep_unlock(void *);
64 :
65 : /*
66 : * We're only looking at 7 bits of the address; everything is
67 : * aligned to 4, lots of things are aligned to greater powers
68 : * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
69 : */
70 : #define TABLESIZE 128
71 : #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
72 : TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
73 :
74 : void
75 0 : sleep_queue_init(void)
76 : {
77 : int i;
78 :
79 0 : for (i = 0; i < TABLESIZE; i++)
80 0 : TAILQ_INIT(&slpque[i]);
81 0 : }
82 :
83 :
84 : /*
85 : * During autoconfiguration or after a panic, a sleep will simply
86 : * lower the priority briefly to allow interrupts, then return.
87 : * The priority to be used (safepri) is machine-dependent, thus this
88 : * value is initialized and maintained in the machine-dependent layers.
89 : * This priority will typically be 0, or the lowest priority
90 : * that is safe for use on the interrupt stack; it can be made
91 : * higher to block network software interrupts after panics.
92 : */
93 : extern int safepri;
94 :
95 : /*
96 : * General sleep call. Suspends the current process until a wakeup is
97 : * performed on the specified identifier. The process will then be made
98 : * runnable with the specified priority. Sleeps at most timo/hz seconds
99 : * (0 means no timeout). If pri includes PCATCH flag, signals are checked
100 : * before and after sleeping, else signals are not checked. Returns 0 if
101 : * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
102 : * signal needs to be delivered, ERESTART is returned if the current system
103 : * call should be restarted if possible, and EINTR is returned if the system
104 : * call should be interrupted by the signal (return EINTR).
105 : */
106 : int
107 0 : tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
108 : {
109 0 : struct sleep_state sls;
110 : #ifdef MULTIPROCESSOR
111 : int hold_count;
112 : #endif
113 :
114 0 : KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
115 :
116 : #ifdef MULTIPROCESSOR
117 0 : KASSERT(timo || _kernel_lock_held());
118 : #endif
119 :
120 : #ifdef DDB
121 0 : if (cold == 2)
122 0 : db_stack_dump();
123 : #endif
124 0 : if (cold || panicstr) {
125 : int s;
126 : /*
127 : * After a panic, or during autoconfiguration,
128 : * just give interrupts a chance, then just return;
129 : * don't run any other procs or panic below,
130 : * in case this is the idle process and already asleep.
131 : */
132 0 : s = splhigh();
133 0 : splx(safepri);
134 : #ifdef MULTIPROCESSOR
135 0 : if (_kernel_lock_held()) {
136 0 : hold_count = __mp_release_all(&kernel_lock);
137 0 : __mp_acquire_count(&kernel_lock, hold_count);
138 0 : }
139 : #endif
140 0 : splx(s);
141 : return (0);
142 : }
143 :
144 0 : sleep_setup(&sls, ident, priority, wmesg);
145 0 : sleep_setup_timeout(&sls, timo);
146 0 : sleep_setup_signal(&sls, priority);
147 :
148 0 : return sleep_finish_all(&sls, 1);
149 0 : }
150 :
151 : int
152 0 : sleep_finish_all(struct sleep_state *sls, int do_sleep)
153 : {
154 : int error, error1;
155 :
156 0 : sleep_finish(sls, do_sleep);
157 0 : error1 = sleep_finish_timeout(sls);
158 0 : error = sleep_finish_signal(sls);
159 :
160 : /* Signal errors are higher priority than timeouts. */
161 0 : if (error == 0 && error1 != 0)
162 0 : error = error1;
163 :
164 0 : return error;
165 : }
166 :
167 : /*
168 : * Same as tsleep, but if we have a mutex provided, then once we've
169 : * entered the sleep queue we drop the mutex. After sleeping we re-lock.
170 : */
171 : int
172 0 : msleep(const volatile void *ident, struct mutex *mtx, int priority,
173 : const char *wmesg, int timo)
174 : {
175 0 : struct sleep_state sls;
176 : int error, spl;
177 : #ifdef MULTIPROCESSOR
178 : int hold_count;
179 : #endif
180 : WITNESS_SAVE_DECL(lock_fl);
181 :
182 0 : KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
183 0 : KASSERT(mtx != NULL);
184 :
185 0 : if (cold || panicstr) {
186 : /*
187 : * After a panic, or during autoconfiguration,
188 : * just give interrupts a chance, then just return;
189 : * don't run any other procs or panic below,
190 : * in case this is the idle process and already asleep.
191 : */
192 0 : spl = MUTEX_OLDIPL(mtx);
193 0 : MUTEX_OLDIPL(mtx) = safepri;
194 0 : mtx_leave(mtx);
195 : #ifdef MULTIPROCESSOR
196 0 : if (_kernel_lock_held()) {
197 0 : hold_count = __mp_release_all(&kernel_lock);
198 0 : __mp_acquire_count(&kernel_lock, hold_count);
199 0 : }
200 : #endif
201 0 : if ((priority & PNORELOCK) == 0) {
202 0 : mtx_enter(mtx);
203 0 : MUTEX_OLDIPL(mtx) = spl;
204 0 : } else
205 0 : splx(spl);
206 0 : return (0);
207 : }
208 :
209 0 : sleep_setup(&sls, ident, priority, wmesg);
210 0 : sleep_setup_timeout(&sls, timo);
211 0 : sleep_setup_signal(&sls, priority);
212 :
213 : WITNESS_SAVE(MUTEX_LOCK_OBJECT(mtx), lock_fl);
214 :
215 : /* XXX - We need to make sure that the mutex doesn't
216 : * unblock splsched. This can be made a bit more
217 : * correct when the sched_lock is a mutex.
218 : */
219 0 : spl = MUTEX_OLDIPL(mtx);
220 0 : MUTEX_OLDIPL(mtx) = splsched();
221 0 : mtx_leave(mtx);
222 :
223 0 : error = sleep_finish_all(&sls, 1);
224 :
225 0 : if ((priority & PNORELOCK) == 0) {
226 0 : mtx_enter(mtx);
227 0 : MUTEX_OLDIPL(mtx) = spl; /* put the ipl back */
228 : WITNESS_RESTORE(MUTEX_LOCK_OBJECT(mtx), lock_fl);
229 0 : } else
230 0 : splx(spl);
231 :
232 0 : return error;
233 0 : }
234 :
235 : /*
236 : * Same as tsleep, but if we have a rwlock provided, then once we've
237 : * entered the sleep queue we drop the it. After sleeping we re-lock.
238 : */
239 : int
240 0 : rwsleep(const volatile void *ident, struct rwlock *rwl, int priority,
241 : const char *wmesg, int timo)
242 : {
243 0 : struct sleep_state sls;
244 : int error, status;
245 : WITNESS_SAVE_DECL(lock_fl);
246 :
247 0 : KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
248 0 : rw_assert_anylock(rwl);
249 0 : status = rw_status(rwl);
250 :
251 0 : sleep_setup(&sls, ident, priority, wmesg);
252 0 : sleep_setup_timeout(&sls, timo);
253 0 : sleep_setup_signal(&sls, priority);
254 :
255 : WITNESS_SAVE(&rwl->rwl_lock_obj, lock_fl);
256 :
257 0 : rw_exit(rwl);
258 :
259 0 : error = sleep_finish_all(&sls, 1);
260 :
261 0 : if ((priority & PNORELOCK) == 0) {
262 0 : rw_enter(rwl, status);
263 : WITNESS_RESTORE(&rwl->rwl_lock_obj, lock_fl);
264 0 : }
265 :
266 0 : return error;
267 0 : }
268 :
269 : void
270 0 : sleep_setup(struct sleep_state *sls, const volatile void *ident, int prio,
271 : const char *wmesg)
272 : {
273 0 : struct proc *p = curproc;
274 :
275 : #ifdef DIAGNOSTIC
276 0 : if (p->p_flag & P_CANTSLEEP)
277 0 : panic("sleep: %s failed insomnia", p->p_p->ps_comm);
278 0 : if (ident == NULL)
279 0 : panic("tsleep: no ident");
280 0 : if (p->p_stat != SONPROC)
281 0 : panic("tsleep: not SONPROC");
282 : #endif
283 :
284 0 : sls->sls_catch = 0;
285 0 : sls->sls_do_sleep = 1;
286 0 : sls->sls_sig = 1;
287 :
288 0 : SCHED_LOCK(sls->sls_s);
289 :
290 0 : p->p_wchan = ident;
291 0 : p->p_wmesg = wmesg;
292 0 : p->p_slptime = 0;
293 0 : p->p_priority = prio & PRIMASK;
294 0 : TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
295 0 : }
296 :
297 : void
298 0 : sleep_finish(struct sleep_state *sls, int do_sleep)
299 : {
300 0 : struct proc *p = curproc;
301 :
302 0 : if (sls->sls_do_sleep && do_sleep) {
303 0 : p->p_stat = SSLEEP;
304 0 : p->p_ru.ru_nvcsw++;
305 0 : SCHED_ASSERT_LOCKED();
306 0 : mi_switch();
307 0 : } else if (!do_sleep) {
308 0 : unsleep(p);
309 0 : }
310 :
311 : #ifdef DIAGNOSTIC
312 0 : if (p->p_stat != SONPROC)
313 0 : panic("sleep_finish !SONPROC");
314 : #endif
315 :
316 0 : p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
317 0 : SCHED_UNLOCK(sls->sls_s);
318 :
319 : /*
320 : * Even though this belongs to the signal handling part of sleep,
321 : * we need to clear it before the ktrace.
322 : */
323 0 : atomic_clearbits_int(&p->p_flag, P_SINTR);
324 0 : }
325 :
326 : void
327 0 : sleep_setup_timeout(struct sleep_state *sls, int timo)
328 : {
329 0 : if (timo)
330 0 : timeout_add(&curproc->p_sleep_to, timo);
331 0 : }
332 :
333 : int
334 0 : sleep_finish_timeout(struct sleep_state *sls)
335 : {
336 0 : struct proc *p = curproc;
337 :
338 0 : if (p->p_flag & P_TIMEOUT) {
339 0 : atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
340 0 : return (EWOULDBLOCK);
341 : } else
342 0 : timeout_del(&p->p_sleep_to);
343 :
344 0 : return (0);
345 0 : }
346 :
347 : void
348 0 : sleep_setup_signal(struct sleep_state *sls, int prio)
349 : {
350 0 : struct proc *p = curproc;
351 :
352 0 : if ((sls->sls_catch = (prio & PCATCH)) == 0)
353 0 : return;
354 :
355 : /*
356 : * We put ourselves on the sleep queue and start our timeout
357 : * before calling CURSIG, as we could stop there, and a wakeup
358 : * or a SIGCONT (or both) could occur while we were stopped.
359 : * A SIGCONT would cause us to be marked as SSLEEP
360 : * without resuming us, thus we must be ready for sleep
361 : * when CURSIG is called. If the wakeup happens while we're
362 : * stopped, p->p_wchan will be 0 upon return from CURSIG.
363 : */
364 0 : atomic_setbits_int(&p->p_flag, P_SINTR);
365 0 : if (p->p_p->ps_single != NULL || (sls->sls_sig = CURSIG(p)) != 0) {
366 0 : if (p->p_wchan)
367 0 : unsleep(p);
368 0 : p->p_stat = SONPROC;
369 0 : sls->sls_do_sleep = 0;
370 0 : } else if (p->p_wchan == 0) {
371 0 : sls->sls_catch = 0;
372 0 : sls->sls_do_sleep = 0;
373 0 : }
374 0 : }
375 :
376 : int
377 0 : sleep_finish_signal(struct sleep_state *sls)
378 : {
379 0 : struct proc *p = curproc;
380 : int error;
381 :
382 0 : if (sls->sls_catch != 0) {
383 0 : if ((error = single_thread_check(p, 1)))
384 0 : return (error);
385 0 : if (sls->sls_sig != 0 || (sls->sls_sig = CURSIG(p)) != 0) {
386 0 : if (p->p_p->ps_sigacts->ps_sigintr &
387 0 : sigmask(sls->sls_sig))
388 0 : return (EINTR);
389 0 : return (ERESTART);
390 : }
391 : }
392 :
393 0 : return (0);
394 0 : }
395 :
396 : /*
397 : * Implement timeout for tsleep.
398 : * If process hasn't been awakened (wchan non-zero),
399 : * set timeout flag and undo the sleep. If proc
400 : * is stopped, just unsleep so it will remain stopped.
401 : */
402 : void
403 0 : endtsleep(void *arg)
404 : {
405 0 : struct proc *p = arg;
406 : int s;
407 :
408 0 : SCHED_LOCK(s);
409 0 : if (p->p_wchan) {
410 0 : if (p->p_stat == SSLEEP)
411 0 : setrunnable(p);
412 : else
413 0 : unsleep(p);
414 0 : atomic_setbits_int(&p->p_flag, P_TIMEOUT);
415 0 : }
416 0 : SCHED_UNLOCK(s);
417 0 : }
418 :
419 : /*
420 : * Remove a process from its wait queue
421 : */
422 : void
423 0 : unsleep(struct proc *p)
424 : {
425 0 : SCHED_ASSERT_LOCKED();
426 :
427 0 : if (p->p_wchan) {
428 0 : TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
429 0 : p->p_wchan = NULL;
430 0 : }
431 0 : }
432 :
433 : /*
434 : * Make a number of processes sleeping on the specified identifier runnable.
435 : */
436 : void
437 0 : wakeup_n(const volatile void *ident, int n)
438 : {
439 : struct slpque *qp;
440 : struct proc *p;
441 : struct proc *pnext;
442 : int s;
443 :
444 0 : SCHED_LOCK(s);
445 0 : qp = &slpque[LOOKUP(ident)];
446 0 : for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
447 0 : pnext = TAILQ_NEXT(p, p_runq);
448 : #ifdef DIAGNOSTIC
449 : /*
450 : * If the rwlock passed to rwsleep() is contended, the
451 : * CPU will end up calling wakeup() between sleep_setup()
452 : * and sleep_finish().
453 : */
454 0 : if (p == curproc) {
455 0 : KASSERT(p->p_stat == SONPROC);
456 : continue;
457 : }
458 0 : if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
459 0 : panic("wakeup: p_stat is %d", (int)p->p_stat);
460 : #endif
461 0 : if (p->p_wchan == ident) {
462 0 : --n;
463 0 : p->p_wchan = 0;
464 0 : TAILQ_REMOVE(qp, p, p_runq);
465 0 : if (p->p_stat == SSLEEP)
466 0 : setrunnable(p);
467 : }
468 : }
469 0 : SCHED_UNLOCK(s);
470 0 : }
471 :
472 : /*
473 : * Make all processes sleeping on the specified identifier runnable.
474 : */
475 : void
476 0 : wakeup(const volatile void *chan)
477 : {
478 0 : wakeup_n(chan, -1);
479 0 : }
480 :
481 : int
482 0 : sys_sched_yield(struct proc *p, void *v, register_t *retval)
483 : {
484 : struct proc *q;
485 : int s;
486 :
487 0 : SCHED_LOCK(s);
488 : /*
489 : * If one of the threads of a multi-threaded process called
490 : * sched_yield(2), drop its priority to ensure its siblings
491 : * can make some progress.
492 : */
493 0 : p->p_priority = p->p_usrpri;
494 0 : TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
495 0 : p->p_priority = max(p->p_priority, q->p_priority);
496 0 : p->p_stat = SRUN;
497 0 : setrunqueue(p);
498 0 : p->p_ru.ru_nvcsw++;
499 0 : mi_switch();
500 0 : SCHED_UNLOCK(s);
501 :
502 0 : return (0);
503 : }
504 :
505 : int
506 0 : thrsleep_unlock(void *lock)
507 : {
508 : static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
509 0 : _atomic_lock_t *atomiclock = lock;
510 :
511 0 : if (!lock)
512 0 : return 0;
513 :
514 0 : return copyout(&unlocked, atomiclock, sizeof(unlocked));
515 0 : }
516 :
517 : static int globalsleepaddr;
518 :
519 : int
520 0 : thrsleep(struct proc *p, struct sys___thrsleep_args *v)
521 : {
522 : struct sys___thrsleep_args /* {
523 : syscallarg(const volatile void *) ident;
524 : syscallarg(clockid_t) clock_id;
525 : syscallarg(const struct timespec *) tp;
526 : syscallarg(void *) lock;
527 : syscallarg(const int *) abort;
528 : } */ *uap = v;
529 0 : long ident = (long)SCARG(uap, ident);
530 0 : struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
531 0 : void *lock = SCARG(uap, lock);
532 : uint64_t to_ticks = 0;
533 0 : int abort, error;
534 0 : clockid_t clock_id = SCARG(uap, clock_id);
535 :
536 0 : if (ident == 0)
537 0 : return (EINVAL);
538 0 : if (tsp != NULL) {
539 0 : struct timespec now;
540 :
541 0 : if ((error = clock_gettime(p, clock_id, &now)))
542 0 : return (error);
543 : #ifdef KTRACE
544 0 : if (KTRPOINT(p, KTR_STRUCT))
545 0 : ktrabstimespec(p, tsp);
546 : #endif
547 :
548 0 : if (timespeccmp(tsp, &now, <)) {
549 : /* already passed: still do the unlock */
550 0 : if ((error = thrsleep_unlock(lock)))
551 0 : return (error);
552 0 : return (EWOULDBLOCK);
553 : }
554 :
555 0 : timespecsub(tsp, &now, tsp);
556 0 : to_ticks = (uint64_t)hz * tsp->tv_sec +
557 0 : (tsp->tv_nsec + tick * 1000 - 1) / (tick * 1000) + 1;
558 0 : if (to_ticks > INT_MAX)
559 : to_ticks = INT_MAX;
560 0 : }
561 :
562 0 : p->p_thrslpid = ident;
563 :
564 0 : if ((error = thrsleep_unlock(lock)))
565 : goto out;
566 :
567 0 : if (SCARG(uap, abort) != NULL) {
568 0 : if ((error = copyin(SCARG(uap, abort), &abort,
569 0 : sizeof(abort))) != 0)
570 : goto out;
571 0 : if (abort) {
572 : error = EINTR;
573 0 : goto out;
574 : }
575 : }
576 :
577 0 : if (p->p_thrslpid == 0)
578 0 : error = 0;
579 : else {
580 0 : void *sleepaddr = &p->p_thrslpid;
581 0 : if (ident == -1)
582 : sleepaddr = &globalsleepaddr;
583 0 : error = tsleep(sleepaddr, PUSER | PCATCH, "thrsleep",
584 0 : (int)to_ticks);
585 : }
586 :
587 : out:
588 0 : p->p_thrslpid = 0;
589 :
590 0 : if (error == ERESTART)
591 0 : error = ECANCELED;
592 :
593 0 : return (error);
594 :
595 0 : }
596 :
597 : int
598 0 : sys___thrsleep(struct proc *p, void *v, register_t *retval)
599 : {
600 : struct sys___thrsleep_args /* {
601 : syscallarg(const volatile void *) ident;
602 : syscallarg(clockid_t) clock_id;
603 : syscallarg(struct timespec *) tp;
604 : syscallarg(void *) lock;
605 : syscallarg(const int *) abort;
606 0 : } */ *uap = v;
607 0 : struct timespec ts;
608 : int error;
609 :
610 0 : if (SCARG(uap, tp) != NULL) {
611 0 : if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
612 0 : *retval = error;
613 0 : return 0;
614 : }
615 0 : if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) {
616 0 : *retval = EINVAL;
617 0 : return 0;
618 : }
619 0 : SCARG(uap, tp) = &ts;
620 0 : }
621 :
622 0 : *retval = thrsleep(p, uap);
623 0 : return 0;
624 0 : }
625 :
626 : int
627 0 : sys___thrwakeup(struct proc *p, void *v, register_t *retval)
628 : {
629 : struct sys___thrwakeup_args /* {
630 : syscallarg(const volatile void *) ident;
631 : syscallarg(int) n;
632 0 : } */ *uap = v;
633 0 : long ident = (long)SCARG(uap, ident);
634 0 : int n = SCARG(uap, n);
635 : struct proc *q;
636 : int found = 0;
637 :
638 0 : if (ident == 0)
639 0 : *retval = EINVAL;
640 0 : else if (ident == -1)
641 0 : wakeup(&globalsleepaddr);
642 : else {
643 0 : TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link) {
644 0 : if (q->p_thrslpid == ident) {
645 0 : wakeup_one(&q->p_thrslpid);
646 0 : q->p_thrslpid = 0;
647 0 : if (++found == n)
648 : break;
649 : }
650 : }
651 0 : *retval = found ? 0 : ESRCH;
652 : }
653 :
654 0 : return (0);
655 : }
656 :
657 : void
658 0 : refcnt_init(struct refcnt *r)
659 : {
660 0 : r->refs = 1;
661 0 : }
662 :
663 : void
664 0 : refcnt_take(struct refcnt *r)
665 : {
666 : #ifdef DIAGNOSTIC
667 : u_int refcnt;
668 :
669 0 : refcnt = atomic_inc_int_nv(&r->refs);
670 0 : KASSERT(refcnt != 0);
671 : #else
672 : atomic_inc_int(&r->refs);
673 : #endif
674 0 : }
675 :
676 : int
677 0 : refcnt_rele(struct refcnt *r)
678 : {
679 : u_int refcnt;
680 :
681 0 : refcnt = atomic_dec_int_nv(&r->refs);
682 0 : KASSERT(refcnt != ~0);
683 :
684 0 : return (refcnt == 0);
685 : }
686 :
687 : void
688 0 : refcnt_rele_wake(struct refcnt *r)
689 : {
690 0 : if (refcnt_rele(r))
691 0 : wakeup_one(r);
692 0 : }
693 :
694 : void
695 0 : refcnt_finalize(struct refcnt *r, const char *wmesg)
696 : {
697 0 : struct sleep_state sls;
698 : u_int refcnt;
699 :
700 0 : refcnt = atomic_dec_int_nv(&r->refs);
701 0 : while (refcnt) {
702 0 : sleep_setup(&sls, r, PWAIT, wmesg);
703 0 : refcnt = r->refs;
704 0 : sleep_finish(&sls, refcnt);
705 : }
706 0 : }
707 :
708 : void
709 0 : cond_init(struct cond *c)
710 : {
711 0 : c->c_wait = 1;
712 0 : }
713 :
714 : void
715 0 : cond_signal(struct cond *c)
716 : {
717 0 : c->c_wait = 0;
718 :
719 0 : wakeup_one(c);
720 0 : }
721 :
722 : void
723 0 : cond_wait(struct cond *c, const char *wmesg)
724 : {
725 0 : struct sleep_state sls;
726 : int wait;
727 :
728 0 : wait = c->c_wait;
729 0 : while (wait) {
730 0 : sleep_setup(&sls, c, PWAIT, wmesg);
731 0 : wait = c->c_wait;
732 0 : sleep_finish(&sls, wait);
733 : }
734 0 : }
|